首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
为探究低温层积过程中桃儿七种子胚形态及生理生化变化与休眠解除的内在联系,该研究通过低温层积处理(90 d)解除桃儿七种子休眠,观测不同层积时间种子胚形态、胚率、发芽率、营养物质(淀粉、可溶性蛋白质、可溶性糖)含量、内源激素[赤霉素(GA)、吲哚乙酸(IAA)、脱落酸(ABA)]水平及呼吸途径关键限速酶[丙酮酸激酶(PK)、琥珀酸脱氢酶(SDH)、6 磷酸 葡萄糖脱氢酶(G 6 PDH)]的活性变化。结果显示:(1)在低温层积过程中,桃儿七种子胚形态为鱼雷或子叶型胚;种子发芽率在层积后期(60~75 d)显著提高(P<0.05)。(2)层积后,种子内淀粉含量及PK活性、SDH活性显著降低(P<0.05),其可溶性蛋白含量和IAA含量显著升高(P<0.05),萌发促进物和抑制物比例(GA/ABA、IAA/ABA、GA+IAA/ABA)也呈升高趋势。(3)种子胚率与其可溶性糖含量呈显著负相关关系,种子发芽率与其可溶性蛋白呈显著正相关关系(P<0.05)。研究发现,桃儿七种子无形态休眠;种子内营养物质的分解转化为种子休眠解除过程中各种代谢活动提供能量,且淀粉可能是此过程中最主要的供能物质;磷酸戊糖途径(PPP)的活化、萌发促进物和抑制物比例的升高及IAA含量的显著上升是桃儿七解除休眠的关键。  相似文献   

2.
目的:探究大果白刺种子萌发过程中内源激素的变化。方法:通过HPLC测定低温层积后大果白刺种子内源激素含量的变化。结果:大果白刺种子GA3含量显著提高,而ABA、IAA、ZR和ETH含量均显著下降。GA3/ABA值显著提升,IAA/ABA和ZR/ABA值呈现下降趋势。结论:GA3含量和GA3/ABA值较高,ABA、IAA、ZR、ETH含量和IAA/ABA、ZR/ABA值较低,证明各种内源激素含量及其比值是制约其种子休眠的重要因素。  相似文献   

3.
细叶楠(Phoebe hui Cheng ex Yang)是我国特有的珍贵树种,种子具有生理休眠特性。本文以细叶楠种子为实验材料,研究不同低温层积处理时间(0、20、40、60 d)对细叶楠种子发芽率、营养物质(淀粉、可溶性糖、可溶性蛋白)、过氧化物酶(POD)以及内源激素脱落酸(ABA)、赤霉素(GA3)、生长素(IAA)、玉米素核苷(ZR)的影响,分析细叶楠种子萌发与其生理指标的相关性。结果显示:(1)低温层积可以有效打破细叶楠种子的休眠,且处理60 d效果最佳。(2)在低温层积过程,细叶楠种子萌发时间缩短,发芽率提高;种子内淀粉含量降低,可溶性糖和可溶性蛋白含量升高;POD活性上升;ABA含量下降,GA3、IAA含量增加,而ZR含量先上升后下降。(3)细叶楠种子休眠的解除与萌发与其体内营养物质含量、POD活性以及内源激素含量的变化密切相关。  相似文献   

4.
为揭示南方红豆杉种子内源激素与休眠的关系,采用酶联免疫吸附法(ELISA)测定了经过层积处理的种皮和胚乳的脱落酸(ABA)、赤霉素(GA3 )、吲哚乙酸(IAA)、玉米素核苷(ZR)4种内源激素含量的变化情况.结果表明:种子胚乳中内源ABA的含量随着层积时间的延长而逐渐下降,GA含量增加,IAA和ZR的含量先增加后降低...  相似文献   

5.
用不同质量浓度GA3浸泡天女木兰种子并结合变温层积处理,应用高效液相色谱法对不同时期种子中4种激素GA3、IAA、ABA、ZR含量进行测定,并测量种胚长和萌发率,以探讨天女木兰种胚发育,内源激素含量变化与种子休眠萌发之间的调控关系,为进一步研究种子休眠机理提供理论基础。结果表明:(1)天女木兰成熟种子胚发育不完全,胚乳内高浓度ABA和低浓度GA3是其休眠的主要原因。(2)GA3处理能促使天女木兰种子提前30d完成形态后熟,并以1 500mg·L-1 GA3处理效果最佳。(3)在变温层积过程,天女木兰种胚发育可分三个阶段:阶段Ⅰ(0~70d)完成种胚进一步分化;阶段Ⅱ(70~120d)种胚快速生长时期;阶段Ⅲ(120~150d)休眠完全解除,种子具备发芽能力。种子能否打破休眠主要取决于阶段Ⅰ和Ⅱ的状况。(4)GA3/ABA、IAA/ABA和ZR/ABA在种子后熟期间的变化同胚生长发育存在一致性,认为内源激素的相对水平对种子休眠具有重要的调控作用。  相似文献   

6.
珍稀濒危植物珙桐种子休眠萌发过程中内源激素的变化   总被引:7,自引:0,他引:7  
珙桐是我国特有珍稀濒危植物,休眠期长且具二次休眠现象。将处于休眠萌发过程中的珙桐种子依据胚根长度划分为4个阶段,利用高效液相色谱(HPLC)测定各阶段种子及其内果皮中ABA(脱落酸)、GA(赤霉素)、KT(细胞分裂素)、IAA(3-吲哚乙酸)4种内源激素含量,分析其比值动态变化,并与幼苗阶段进行比较。结果显示:未破壳种子的内果皮中内源激素含量以ABA最高,其次是GA、IAA、KT,随着种子破壳后四种激素含量显著降低。除ABA外,种子中GA、IAA和KT含量随着胚根的伸长逐渐升高,但仍低于幼苗阶段。此外,随着胚根伸长,种子中GA/ABA、IAA/ABA、KT/ABA比值逐渐增大,其中以GA/ABA的变化最显著。因此,珙桐种子的休眠和萌发可能主要受ABA和GA的平衡和拮抗来调控。  相似文献   

7.
研究低温层积对肉苁蓉种子胚率、内源赤霉素(GA)和脱落酸(ABA)含量以及外源赤霉素(GA3)对低温层积不同时间种子萌发率影响的结果表明:低温层积可以提高种子的胚率及其GA的含量,降低其ABA含量;层积120~150d的肉苁蓉种子经外源GA3处理后,其萌发率可以达到70%以上;层积120d是外源GA3促进种子萌发的临界点。  相似文献   

8.
探讨杜仲(Eucommia ulmoides Oliver)种子萌发过程中保护酶活性及内源激素含量的变化,为其种子破眠及萌发不同时期采取有效处理措施,从而提高出苗率提供参考。利用室温(CK)、40℃、50℃、60℃和70℃不同水温,探讨温水浸种对杜仲种子萌发的影响。种子萌发进程中,利用常规生理生化方法测定种子内超氧化物歧化酶(SOD)、过氧化物酶(POD)活性和丙二醛(MDA)含量,以及酶联免疫法测定赤霉素(GA3)、吲哚乙酸(IAA)、脱落酸(ABA)和玉米素核苷(ZR)含量。结果表明:①温水浸种处理能提高了杜仲种子的发芽率及发芽势,其中以50℃温水处理最为显著。②与室温浸种处理相比,50℃温水浸种处理提高了种子内SOD及POD活性,减轻了质膜氧化损伤程度,致使MDA含量的持续下降,从而促使种子朝向有利于萌发的方向发展。此外,50℃温水浸种处理在提高种子内促进生长内源GA3、IAA及ZR含量的同时,并降低了抑制生长的内源ABA含量,致使GA3/ABA、IAA/ABA和ZR/ABA值均明显高于室内浸种处理,最终促进了杜仲种子的萌发。  相似文献   

9.
珍稀濒危植物金丝李(Garcinia paucinervis)种子的萌发十分缓慢,探讨其休眠机理,可为该物种的种质资源保育与可持续利用提供理论依据。本文对金丝李种子种皮结构及其透水性,剔除部分种皮和胚乳后种子的萌发情况,胚乳和胚等粗提物的活性,储藏、层积和不同温度下种子萌发情况,萌发过程中内源激素含量等进行了研究。结果表明:金丝李种皮无栅栏细胞层,下表面的角质层较薄;种皮对种子的吸胀阻碍小;随着种孔端剔除种皮和胚乳程度的加深,金丝李种子的萌发进程逐渐延长,甚至降低其萌发率,种脐端削除处理对种子萌发影响不大;内果皮、种皮、胚乳和胚中可能存在抑制金丝李种子萌发和生长的内源抑制物;新鲜种子胚率达86.12%,低温层积后胚率无显著变化;低温层积处理延缓其萌发进程,对萌发率无显著影响,4℃低温层积是储藏金丝李种子的较好方法;种子萌发对温度敏感,在32℃培养下可打破种子休眠,萌发速度显著加快。种子萌发过程中ABA含量降低,GA与ABA、IAA与ABA的比值随种子萌发显著升高,萌发促进与抑制物比例逐渐趋于提高。因此,金丝李种子存在内源抑制物,同时缺乏萌发促进物质,导致生理休眠。该种子休眠特性使其幼苗生长能应对生境的季节变化,种群在风险环境中得以延续,避免大量幼苗竞争。植被破坏导致种子萌发阶段受阻是造成金丝李濒危的原因之一。  相似文献   

10.
3,4-二羟基苯乙酮(DHAP)是天山云杉(Picea schrenkiana ssp. tianschanica)叶和凋落物中存在的主要自毒物质, 是导致天山云杉林天然更新障碍的原因之一。为了解释自毒物质发生作用的生理机制, 该文设计多个浓度梯度的DHAP溶液处理天山云杉种子, 以发芽率和发芽势为种子萌发参数, 运用反相超高效液相色谱(UPLC)分析技术, 检测了种子萌发过程中内源植物激素玉米素(ZT)、赤霉素(GA3)、吲哚乙酸(IAA)和脱落酸(ABA)含量水平的变化。研究结果表明: DHAP处理对天山云杉种子萌发影响具有浓度效应, 表现为5.0 mmol·L-1 > 0.1 mmol·L-1 > 1.0 mmol·L-1 >对照, 即5.0 mmol·L-1 DHAP处理组对种子萌发的抑制作用最强、0.1 mmol·L-1 DHAP处理组次之、1.0 mmol·L-1 DHAP处理组最弱; DHAP处理组的种子内源ZT、GA3浓度水平降低, ABA含量升高, GA3浓度峰值出现时间延迟, IAA浓度在高浓度(5.0 mmol·L-1 DHAP)处理组短时间内(3-6天)过量积累, 1.0和5.0 mmol·L-1 DHAP处理组的种子内源ABA浓度峰值出现时间延迟; DHAP处理种子萌发1-6天时, ZT/(GA3+IAA)比值降低, IAA/ZT、ABA/ZT比值增大; ABA/(ZT + GA3 + IAA)比值在0.1 mmol·L-1 DHAP处理组增大, 在5.0 mmol·L-1 DHAP处理组降低。DHAP处理引发种子内源激素含量水平及激素含量间比值变化, 可能是抑制、延迟天山云杉种子萌发的主要原因。  相似文献   

11.
以紫斑牡丹种子为试验材料,研究不同浓度的赤霉素(GA_3)处理对种子生根以及生根过程中营养物质、酶活性和内源激素水平变化的影响,为探讨紫斑牡丹种子萌发机制提供依据。结果表明:(1)GA_3处理能够促进种子生根,并以300 mg/L GA_3处理对种子生根效果最好,与对照相比可提前14.67 d生根,生根率可达71.00%。(2)与对照相比,GA_3处理可以在0~15 d时促进种子淀粉水解和可溶性糖的积累,并加速可溶性蛋白的消耗,在0~30 d促进过氧化物酶(POD)活性的提高,从而促进种子萌发生根。(3)在种子沙藏生根过程中,种子脱落酸(ABA)含量呈下降趋势,赤霉素(GA)、玉米素核苷(ZR)和吲哚乙酸(IAA)含量均表现出先上升后下降的趋势,与对照相比,GA_3处理可使种子GA、ZR和IAA的含量在沙藏前期明显上升,以解除种子休眠。研究发现,外源GA_3处理可以调控紫斑牡丹种子内源激素含量和POD活性的变化,促进营养物质转化,从而提前解除种子休眠使其萌发。  相似文献   

12.
After‐ripening is a common method used for dormancy release in rice. In this study, the rice variety Jiucaiqing (Oryza sativa L. subsp. japonica) was used to determine dormancy release following different after‐ripening times (1, 2 and 3 months). Germination speed, germination percentage and seedling emergence increased with after‐ripening; more than 95% germination and 85% seedling emergence were observed following 1 month of after‐ripening within 10 days of imbibition, compared with <45% germination and 20% seedling emergence in freshly harvested seed. Hence, 3 months of after‐ripening could be considered a suitable treatment period for rice dormancy release. Dormancy release by after‐ripening is mainly correlated with a rapid decline in ABA content and increase in IAA content during imbibition. Subsequently, GA1/ABA, GA7/ABA, GA12/ABA, GA20/ABA and IAA/ABA ratios significantly increased, while GA3/ABA, GA4/ABA and GAs/IAA ratio significantly decreased in imbibed seeds following 3 months of after‐ripening, thereby altering α‐amylase activity during seed germination. Peak α‐amylase activity occurred at an earlier germination stage in after‐ripened seeds than in freshly harvested seeds. Expression of ABA, GA and IAA metabolism genes and dormancy‐related genes was regulated by after‐ripening time upon imbibition. Expression of OsCYP707A5, OsGA2ox1, OsGA2ox2, OsGA2ox3, OsILR1, OsGH3‐2, qLTG3‐1 and OsVP1 increased, while expression of Sdr4 decreased in imbibed seeds following 3 months of after‐ripening. Dormancy release through after‐ripening might be involved in weakening tissues covering the embryo via qLTG3‐1 and decreased ABA signalling and sensitivity via Sdr4 and OsVP1.  相似文献   

13.
Desert annual Suaeda acuminata produces two morphologically distinct types of seeds on the same plant. The main aims of our study were to compare germination characteristics of the dimorphic seeds, ascertain their dormancy types and give the hormonal explanation. The two seed types of S. acuminata absorbed water at different rates with brown seeds imbibing water faster. Germination percentages of brown seeds were significantly higher than those of black seeds in all temperature and light regimes tested. Eight weeks of cold stratification did not break dormancy of black seeds, whereas exogenous GA3 promoted germination. Excised embryos of untreated black seeds produced normal seedlings. Contents of ZR, GA3 and ABA of brown seeds were significantly higher than that of black seeds; while contents of IAA of black seeds were significantly higher than that of brown seeds. Brown seeds of S. acuminata are non-dormant, whereas black seeds have intermediate physiological dormancy (PD). Interaction among ZR, ABA and GA3 may play an important role in dormancy status of both seed types. This is the first report of non-dormancy and intermediate PD in a heteromorphic species.  相似文献   

14.
Seeds of Bunium persicum (Boiss.) B. Fedtsch. have complex physiological dormancy that can be released by 15 weeks stratification. The present study revealed that cold stratification enhanced content of H2O2, O2 and application of GA3 and ROS donors (Fenton reagent, H2O2, methylviologen and menadione) did not affect or only slightly promoted the germination of non-stratified, fully dormant seeds. Dormancy was markedly decreased by ROS-generating reagents, GA3 and fluridone (an inhibitor of ABA biosynthesis) and was enhanced by ROS-decreasing compounds (DMTU, Tiron, SB and DPI), diniconazole (Dinc, an inhibitor of ABA catabolism) and paclobutrazol (PAC, an inhibitor of GA biosynthesis) when dormancy was partially removed by cold stratification. The response to these compounds reduced with increasing time of stratification. ABA inhibited germination by repressing of NADPH oxidase activity and ROS accumulation and conversely, GA triggered germination by promoting an increase of NADPH oxidase activity and ROS levels. Data in this study, for the first time suggest releasing deep complex physiological dormancy by cold stratification is associated with interplay between ROS and ABA/GA.  相似文献   

15.
Seeds ofTaxus maireiare known for their deep dormancy whichcan only be broken by a procedure involving warm stratificationfollowed by cold stratification. Treatments with alternatingtemperatures of 25/15 or 23/11 °C (12 h light) for 6 monthsfollowed by 5 °C for 3 months were successful in overcomingseed dormancy. After 6 months of warm stratification, cytologicalchanges observed included: enlargement of the embryo; a decreasein the number of lipid bodies; appearance of ER; and increasesin mitochondria, plastids, dictyosomes, vacuoles and microbodiesin the shoot apical meristem. Cold stratification followingthe warm treatment induced cell division, and one or two distinctnucleoli in the shoot apical meristem cells were observed. Bothwarm and cold stratification reduced endogenous ABA concentrationsfrom the original 8888 pg per freshly harvested seed to 392and 536 pg, respectively. Treatment with exogenous gibberellinsafter seeds had been warm-stratified showed that GA4and GA7wereeffective at promoting seed germination, but GA3was not. Theseresults suggest that the strong seed dormancy ofT. maireicouldbe caused by a high ABA content and underdevelopment of theembryos in freshly shed seeds. We conclude that warm stratificationwith alternating temperatures increases the growth of embryosby cell expansion and enlargement and decreases ABA content,but seeds still remain ungerminated. Cold stratification mayinduce the response to GAs and initiate cell division resultingin release from physiological dormancy and subsequent germinationofT. maireiseeds.Copyright 1998 Annals of Botany Company Taxus mairei; ultrastructure; abscisic acid; gibberellin; seed dormancy; stratification; germination.  相似文献   

16.
Freshly harvested, dormant seeds of Amaranthus retroflexus were unable to germinate at 25 and 35 °C. To release their dormancy at the above temperatures, the seeds were stratified at a constant temperature (4 °C) under laboratory conditions or at fluctuating temperatures in soil or by outdoor burial in soil. Fully dormant, or seeds stratified or buried (2006/2007 and 2007/2008) for various periods were treated with exogenous gibberellic acid (GA3), ethephon and abscisic acid (ABA). Likewise, the effects of these regulators, applied during stratification, on seed germination were determined. The results indicate that A. retroflexus seed dormancy can be released either by stratification or by autumn–winter burial. The effect of GA3 and ethylene, liberated from ethephon, applied after various periods of stratification or during stratification, depends on dormancy level. GA3 did not affect or only slightly stimulated the germination of non-stratified, fully dormant seeds at 25 and 35 °C respectively. Ethylene increased germination at both temperatures. Seed response to GA3 and ethylene at 25 °C was increased when dormancy was partially removed by stratification at constant or fluctuating temperatures or autumn–winter burial. The response to GA3 and ethylene increased with increasing time of stratification. The presence of GA3 and ethephon during stratification may stimulate germination at 35 °C. Thus, both GA3 and ethylene can partially substitute the requirement for stratification or autumn–winter burial. Both hormones may also stimulate germination of secondary dormant seeds, exhumed in September. The response to ABA decreased in parallel with an increasing time of stratification and burial up to May 2007 or March 2008. Endogenous GAn, ethylene and ABA may be involved in the control of dormancy state and germination of A. retroflexus. It is possible that releasing dormancy by stratification or partial burial is associated with changes in ABA/GA and ethylene balance and/or sensitivity to these hormones.  相似文献   

17.
Mature seeds of the Cape Verde Islands (Cvi) ecotype of Arabidopsis thaliana (L.) Heynh. show a very marked dormancy. Dormant (D) seeds completely fail to germinate in conditions that are favourable for germination whereas non-dormant (ND) seeds germinate easily. Cvi seed dormancy is alleviated by after-ripening, stratification, and also by nitrate or fluridone treatment. Addition of gibberellins to D seeds does not suppress dormancy efficiently, suggesting that gibberellins are not directly involved in the breaking of dormancy. Dormancy expression of Cvi seeds is strongly dependent on temperature: D seeds do not germinate at warm temperatures (20–27°C) but do so easily at a low temperature (13°C) or when a fluridone treatment is given to D seeds sown at high temperature. To investigate the role of abscisic acid (ABA) in dormancy release and maintenance, we measured the ABA content in both ND and D seeds imbibed using various dormancy-breaking conditions. It was found that dry D seeds contained higher amounts of ABA than dry ND after-ripened seeds. During early imbibition in standard conditions, there was a decrease in ABA content in both seeds, the rate of which was slower in D seeds. Three days after sowing, the ABA content in D seeds increased specifically and then remained at a high level. When imbibed with fluridone, nitrate or stratified, the ABA content of D seeds decreased and reached a level very near to that of ND seeds. In contrast, gibberellic acid (GA3) treatment caused a transient increase in ABA content. When D seeds were sown at low optimal temperature their ABA content also decreased to the level observed in ND seeds. The present study indicates that Cvi D and ND seeds can be easily distinguished by their ability to synthesize ABA following imbibition. Treatments used here to break dormancy reduced the ABA level in imbibed D seeds to the level observed in ND seeds, with the exception of GA3 treatment, which was active in promoting germination only when ABA synthesis was inhibited.Abbreviations ABA Abscisic acid - Cvi Cape Verde Islands - D Dormant - GA Gibberellin - GA3 Gibberellic acid - ND Non dormant  相似文献   

18.

Background and Aims

Epicotyl dormancy break in seeds that have deep simple epicotyl morphophysiological dormancy (MPD) requires radicle emergence and even a certain root length in some species. However, the mechanisms by which root length affects epicotyl dormancy break are not clear at present. This study aims to explore the relationship between root length and epicotyl dormancy release in radicle-emerged seeds of Tibetan peony, Paeonia ludlowii, with discussion of the possible mechanisms.

Methods

Radicle-emerged seeds (radicle length 1·5, 3·0, 4·5 and 6·0 cm) were incubated at 5, 10 and 15 °C. During the stratification, some seeds were transferred to 15 °C and monitored for epicotyl–plumule growth. Hormone content was determined by ELISA, and the role of hormones in epicotyl dormancy release was tested by exogenous hormone and embryo culture.

Key Results

Cold stratification did not break the epicotyl dormancy until the root length was ≥6 cm. The indole-3-actic acid (IAA) and GA3 contents of seeds having 6 cm roots were significantly higher than those of seeds with other root lengths, but the abscisic acid (ABA) content was lowest among radicle-emerged seeds. GA3 (400 mg L−1) could break epicotyl dormancy of all radicle-emerged seeds, while IAA (200 mg L−1) had little or no effect. When grown on MS medium, radicles of naked embryos grew and cotyledons turned green, but epicotyls did not elongate. Naked embryos developed into seedlings on a mixed medium of MS + 100 mg L−1 GA3.

Conclusions

A root length of ≥6·0 cm is necessary for epicotyl dormancy release by cold stratification. The underlying reason for root length affecting epicotyl dormancy release is a difference in the GA3/ABA ratio in the epicotyl within radicle-emerged seeds, which is mainly as a result of a difference in ABA accumulation before cold stratification.  相似文献   

19.
Flixweed is one of the most abundant weeds in North America and China, and causes a reduction in crop yields. Dormancy of flixweed seeds is deep at maturity and is maintained in soil for several months. To identify regulators of seed dormancy and germination of flixweed, the effect of environmental and hormonal signals were examined using dormant and non-dormant seeds. The level of dormancy was decreased during after-ripening and stratification, but long imbibition (over 5 days) at 4 °C in the dark resulted in the introduction of secondary dormancy. The strict requirement of duration of cold treatment for the break of dormancy may play a role in the seasonal regulation of germination. The germination of non-dormant flixweed seeds was critically regulated by red (R) and far-red (FR) light in a photoreversible manner. Sodium nitroprusside, a donor of nitric oxide (NO), promoted germination of half-dormant seeds, suggesting that NO reduced the level of seed dormancy. As has been shown in other related species, light elevated sensitivity to GA4 in dark-imbibied flixweed seeds, but cold treatment did not affect GA4-sensitivity unlike in Arabidopsis. Taken together, our results indicate that seed germination in flixweed and its close relative Arabidopsis is controlled by similar as well as distinct mechanisms in response to various endogenous and environmental signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号