首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
Spiders produce high performance fibers with diverse mechanical properties and biological functions. Molecular and biochemical studies of spider egg case silk have revealed that the main constituent of the large diameter fiber contains the fibroin TuSp1. Here we demonstrate by SDS-PAGE and protein silver staining the presence of a distinct approximately 300-kDa polypeptide that is found in solubilized egg case sacs. Combining matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry and reverse genetics, we have isolated a novel gene called AcSp1-like and demonstrate that its protein product is assembled into the small diameter fibers of egg case sacs and wrapping silks from the black widow spider, Latrodectus hesperus. BLAST searches of the NCBInr protein data base using the amino acid sequence of AcSp1-like revealed similarity to AcSp1, an inferred protein proposed to be a component of wrapping silk. However, the AcSp1-like protein was found to display more nonuniformity in its internal iterated repeat modules than the putative AcSp1 fibroin. Real time quantitative PCR analysis demonstrates that the AcSp1-like gene displays an aciniform gland-restricted pattern of expression. The amino acid composition of the fibroins extracted from the luminal contents of the aciniform glands was remarkably similar to the predicted amino acid composition of the AcSp1-like protein, which supports the assertion that AcSp1-like protein represents the major constituent stored within the aciniform gland. Collectively, our findings provide the first direct molecular evidence for the involvement of the aciniform gland in the production of a common fibroin that is assembled into the small diameter threads of egg case and wrapping silk of cob weavers.  相似文献   

3.
Spider silk is renowned for its extraordinary mechanical properties, having a balance of high tensile strength and extensibility. To date, the majority of studies have focused on the production of dragline silks from synthetic spider silk gene products. Here we report the first mechanical analysis of synthetic egg case silk fibers spun from the Latrodectus hesperus tubuliform silk proteins, TuSp1 and ECP-2. We provide evidence that recombinant ECP-2 proteins can be spun into fibers that display mechanical properties similar to other synthetic spider silks. We also demonstrate that silks spun from recombinant thioredoxin-TuSp1 fusion proteins that contain the conserved C-terminal domain exhibit increased extensibility and toughness when compared to the identical fibers spun from fusion proteins lacking the C-terminus. Mechanical analyses reveal that the properties of synthetic tubuliform silks can be modulated by altering the postspin draw ratios of the fibers. Fibers subject to increased draw ratios showed elevated tensile strength and decreased extensibility but maintained constant toughness. Wide-angle X-ray diffraction studies indicate that postdrawn fibers containing the C-terminal domain of TuSp1 have more amorphous content when compared to fibers lacking the C-terminus. Taken together, these studies demonstrate that recombinant tubuliform spidroins that contain the conserved C-terminal domain with embedded protein tags can be effectively spun into fibers, resulting in similar tensile strength but increased extensibility relative to nontagged recombinant dragline silk proteins spun from equivalently sized proteins.  相似文献   

4.
5.
Araneoid spiders use specialized abdominal glands to manufacture up to seven different protein-based silks/glues that have diverse physical properties. The fibroin sequences that encode egg case fibers (cover silk for the egg case sac) and the secondary structure of these threads have not been previously determined. In this study, MALDI tandem TOF mass spectrometry (MS/MS) and reverse genetics were used to isolate the first egg case fibroin, named tubuliform spidroin 1 (TuSp1), from the black widow spider, Latrodectus hesperus. Real-time quantitative PCR analysis demonstrates TuSp1 is selectively expressed in the tubuliform gland. Analysis of the amino acid composition of raw egg case silk closely aligns with the predicted amino acid composition from the primary sequence of TuSp1, which supports the assertion that TuSp1 represents a major component of egg case fibers. TuSp1 is composed of highly homogeneous repeats that are 184 amino acids in length. The long stretches of polyalanine and glycine-alanine subrepeats, which account for the crystalline regions of minor ampullate and major ampullate fibers, are very poorly represented in TuSp1. However, polyserine blocks and short polyalanine stretches were highly iterated within the primary sequence, and (13)C NMR spectroscopy demonstrated that the majority of alanine was found in a beta-sheet structure in post-spun egg case silk. The TuSp1 repeat unit does not display substantial sequence similarity to any previously described fibroin genes or proteins, suggesting that TuSp1 is a highly divergent member of the spider silk gene family.  相似文献   

6.
Spiders spin high performance fibers with diverse biological functions and mechanical properties. Molecular and biochemical studies of spider prey wrapping silks have revealed the presence of the aciniform silk fibroin AcSp1-like. In our studies we demonstrate the presence of a second distinct polypeptide present within prey wrapping silk. Combining matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry and reverse genetics, we have isolated a novel gene called MiSp1-like and demonstrate that its protein product is a constituent of prey wrap silks from the black widow spider, Latrodectus hesperus. BLAST searches of the NCBInr protein database using the amino acid sequence of MiSp1-like revealed similarity to the conserved C-terminal domain of silk family members. In particular, MiSp1-like showed the highest degree of sequence similarity to the nonrepetitive C-termini of published orb-weaver minor ampullate fibroin molecules. Analysis of the internal amino acid sequence of the black widow MiSp1-like revealed polyalanine stretches interrupted by glycine residues and glycine-alanine couplets within MiSp1-like as well as repeats of the heptameric sequence AGGYGQG. Real-time quantitative PCR analysis demonstrates that the MiSp1-like gene displays a minor ampullate gland-restricted pattern of expression. Furthermore, amino acid composition analysis, coupled with scanning electron microscopy of raw wrapping silk, supports the assertion that minor ampullate silks are important constituents of black widow spider prey wrap silk. Collectively, our findings provide direct molecular evidence for the involvement of minor ampullate fibroins in swathing silks and suggest composite materials play an important role in the wrap attack process for cob-weavers.  相似文献   

7.
Araneoid spiders use specialized abdominal glands to produce up to seven different protein-based silks/glues that have various mechanical properties. To date, the fibroin sequences encoding egg case fibers have not been fully determined. To gain further understanding of a recently reported spider silk protein gene family, several novel strategies were utilized in this study to isolate two full-length cDNAs of egg case silk proteins, cylindrical silk protein 1 (CySp1, 9.1 kb) and cylindrical silk protein 2 (CySp2, 9.8 kb), from the wasp spider, Argiope bruennichi. Northern blotting analysis demonstrated that CySp1 and CySp2 are selectively expressed in the cylindrical glands. The amino acid composition of raw egg case silk was closely consistent with the deduced amino acid composition based on the sequences of CySp1 and CySp2, which supports the assertion that CySp1 and CySp2 represent two major components of egg case silk. CySp1 and CySp2 are primarily composed of remarkable homogeneous assemble repeats that are 180 residues in length and consist of several complex subrepeats, and they contain highly homologous C-termini and markedly different N-termini. Our results suggest a possible link between CySp1 and CySp2. In addition, comparisons of stress/strain curves for dragline and egg case silk from Argiope bruennichi showed obvious differences in ultimate strength and extensibility, and similarities in toughness.  相似文献   

8.
9.
Modern spiders spin high-performance silk fibers with a broad range of biological functions, including locomotion, prey capture and protection of developing offspring 1,2. Spiders accomplish these tasks by spinning several distinct fiber types that have diverse mechanical properties. Such specialization of fiber types has occurred through the evolution of different silk-producing glands, which function as small biofactories. These biofactories manufacture and store large quantities of silk proteins for fiber production. Through a complex series of biochemical events, these silk proteins are converted from a liquid into a solid material upon extrusion.Mechanical studies have demonstrated that spider silks are stronger than high-tensile steel 3. Analyses to understand the relationship between the structure and function of spider silk threads have revealed that spider silk consists largely of proteins, or fibroins, that have block repeats within their protein sequences 4. Common molecular signatures that contribute to the incredible tensile strength and extensibility of spider silks are being unraveled through the analyses of translated silk cDNAs. Given the extraordinary material properties of spider silks, research labs across the globe are racing to understand and mimic the spinning process to produce synthetic silk fibers for commercial, military and industrial applications. One of the main challenges to spinning artificial spider silk in the research lab involves a complete understanding of the biochemical processes that occur during extrusion of the fibers from the silk-producing glands.Here we present a method for the isolation of the seven different silk-producing glands from the cobweaving black widow spider, which includes the major and minor ampullate glands [manufactures dragline and scaffolding silk] 5,6, tubuliform [synthesizes egg case silk] 7,8, flagelliform [unknown function in cob-weavers], aggregate [makes glue silk], aciniform [synthesizes prey wrapping and egg case threads] 9 and pyriform [produces attachment disc silk] 10. This approach is based upon anesthetizing the spider with carbon dioxide gas, subsequent separation of the cephalothorax from the abdomen, and microdissection of the abdomen to obtain the silk-producing glands. Following the separation of the different silk-producing glands, these tissues can be used to retrieve different macromolecules for distinct biochemical analyses, including quantitative real-time PCR, northern- and western blotting, mass spectrometry (MS or MS/MS) analyses to identify new silk protein sequences, search for proteins that participate in the silk assembly pathway, or use the intact tissue for cell culture or histological experiments.  相似文献   

10.
The silks from the cob weaving spider, Latrodectus hesperus (black widow), have been examined with the goal of expanding our understanding of the relationship between the protein structure and mechanical performance of these unique biomaterials. The scaffolding, dragline and inner egg case silks each appear to be distinct fibers based on mole percent amino acid composition and polypeptide composition. Further, we find that the amino acid composition of dragline and egg case silk are similar to the analogous silks produced by orb weaving spiders, while scaffolding silk may represent a novel silk. The black widow silks are comprised of multiple high molecular weight polypeptides, however, the egg case and scaffolding silks also contain some smaller polypeptides.  相似文献   

11.
Silk has a long history of use in medicine as sutures. To address the requirements of a mechanically robust and biocompatible material, basic research to clarify the role of repeated sequences in silk fibroin in its structures and properties seems important as well as the development of a processing technique suitable for the preparation of fibers with excellent mechanical properties. In this study, three silk-like protein analogs were constructed from two regions selected from among the crystalline region of Bombyx mori silk fibroin, (GAGSGA)(2), the crystalline region of Samia cynthia ricini silk fibroin, (Ala)(12), the crystalline region of spider dragline silk fibroin, (Ala)(6), and the Gly-rich region of spider silk fibroin, (GGA)(4). The silk-like protein analog constructed from the crystalline regions of the spider dragline silk and B. mori silk fibroins, (A(6)SCS)(8), that constructed from the crystalline regions of the S. c.ricini and B. mori silk fibroins, (A(12)SGS)(4), that constructed from and the crystalline region of S. c.ricini silk fibroin and the glycine-rich region of spider dragline silk fibroin, (A(12)SGS)(4),were expressed their molecular weights being about 36.0 kDa, 17.0 kDa and 17.5 kDa, respectively in E. coli by means of genetic engineering technologies. (A(12)SCS)(4) and (A(12)SGS)(4 )undergo a structural transition from alpha-helix to beta-sheet on a change in the solvent treatment from trifluoroacetic acid (TFA) to formic acid (FA). However, (A(6)SCS)(8) takes on the beta-sheet structure predominantly on TFA treatment and FA treatment. Structural analysis was performed on model peptides selected from spider dragline and S. c.ricini silks by means of (13)C CP/MAS NMR.  相似文献   

12.
Embiopterans (webspinning insects) are renowned for their prolific use of silk. These organisms spin silk to construct elaborate networks of tubes in which they live, forage, and reproduce. The silken galleries are essential for protecting these soft-bodied insects from predators and other environmental hazards. Despite the ecological importance of embiopteran silk, very little is known about its constituent proteins. Here, we characterize the silk protein cDNAs from four embiopteran species to better understand the function and evolution of these adaptive molecules. We show that webspinner fibroins (silk proteins) are highly repetitive in sequence and possess several conserved characteristics, despite differences in habitat preferences across species. The most striking similarities are in the codon usage biases of the fibroin genes, particularly in the repetitive regions, as well as sequence conservation of the carboxyl-terminal regions of the fibroins. Based on analyses of the silk genes, we propose hypotheses regarding codon bias and its effect on the translation and replication of these unusual genes. Furthermore, we discuss the significance of specific fibroin motifs to the mechanical and structural characteristics of silk fibers. Lastly, we report that the conservation of webspinner fibroin carboxyl-terminal regions suggests that fiber formation may occur through a mechanism analogous to that found in Lepidoptera. From these results, insight is gained into the tempo and mode of evolution that has shaped embiopteran fibroins.  相似文献   

13.
Spiders use a myriad of silk types for daily survival, and each silk type has a unique suite of task-specific mechanical properties. Of all spider silk types, pyriform silk is distinct because it is a combination of a dry protein fiber and wet glue. Pyriform silk fibers are coated with wet cement and extruded into “attachment discs” that adhere silks to each other and to substrates. The mechanical properties of spider silk types are linked to the primary and higher-level structures of spider silk proteins (spidroins). Spidroins are often enormous molecules (>250 kDa) and have a lengthy repetitive region that is flanked by relatively short (∼100 amino acids), non-repetitive amino- and carboxyl-terminal regions. The amino acid sequence motifs in the repetitive region vary greatly between spidroin type, while motif length and number underlie the remarkable mechanical properties of spider silk fibers. Existing knowledge of pyriform spidroins is fragmented, making it difficult to define links between the structure and function of pyriform spidroins. Here, we present the full-length sequence of the gene encoding pyriform spidroin 1 (PySp1) from the silver garden spider Argiope argentata. The predicted protein is similar to previously reported PySp1 sequences but the A. argentata PySp1 has a uniquely long and repetitive “linker”, which bridges the amino-terminal and repetitive regions. Predictions of the hydrophobicity and secondary structure of A. argentata PySp1 identify regions important to protein self-assembly. Analysis of the full complement of A. argentata PySp1 repeats reveals extreme intragenic homogenization, and comparison of A. argentata PySp1 repeats with other PySp1 sequences identifies variability in two sub-repetitive expansion regions. Overall, the full-length A. argentata PySp1 sequence provides new evidence for understanding how pyriform spidroins contribute to the properties of pyriform silk fibers.  相似文献   

14.
To gain further understanding of egg case silk proteins gene family, Zhao et al. (2006) isolated two full-length cDNAs for egg case silk proteins, cylindrical silk protein 1 (CySp1) and cylindrical silk protein 2 (CySp2), from the wasp spider, Argiope bruennichi. CySp2 was reported to contain no apparent Signal peptide sequences, and the CySp1-CySp2 complex, which would possess a signal peptide, would be transported across the endoplasmic reticulum and secreted to the Golgi. According to a report by Hayashi, genomic DNA sequencing is one approach that can be successfully utilized to retrieve 5′ ends of silk genes; using this method, we retrieved the 5’ end of CySp1. We found that CySp2 contained a typical signal peptide similar to that found in CySp1; thus, due to technical limitations, an artificial error had occurred in the CySp2 sequence reported by Zhao et al.  相似文献   

15.
Strength, elasticity, and biocompatibility make spider silk an attractive resource for the production of artificial biomaterials. Spider silk proteins, spidroins, contain hundreds of repeated poly alanine/glycine-rich blocks and are difficult to produce recombinantly in soluble form. Most previous attempts to produce artificial spider silk fibers have included solubilization steps in nonphysiological solvents. It is here demonstrated that a miniature spidroin from a protein in dragline silk of Euprosthenops australis can be produced in a soluble form in Escherichia coli when fused to a highly soluble protein partner. Although this miniature spidroin contains only four poly alanine/glycine-rich blocks followed by a C-terminal non-repetitive domain, meter-long fibers are spontaneously formed after proteolytic release of the fusion partner. The structure of the fibers is similar to that of dragline silks, and although self-assembled from recombinant proteins they are as strong as fibers spun from redissolved silk. Moreover, the fibers appear to be biocompatible because human tissue culture cells can grow on and attach to the fibers. These findings enable controlled production of high-performance biofibers at large scale under physiological conditions.  相似文献   

16.
Spider dragline silk is renowned as one of the toughest materials of its kind. In nature, spider silks are spun out of aqueous solutions under environmental conditions. This is in contrast to production of most synthetic fibres, where hazardous solvents, high temperatures and pressure are used. In order to identify some of the chemical processes involved in spider silk spinning, we have produced a collection of cDNA sequences from specific regions of Nephila senegalensis major ampullate gland. We examined in detail the sequence and expression of a putative Nephila senegalensis peroxidase gene (NsPox) from our EST collection. NsPox encodes a protein with similarity to Drosophila melanogaster and Aedes aegypti peroxidases. Northern analysis and in situ localisation experiments revealed that NsPox is expressed in major and minor ampullate glands of the spider where the main components of the dragline silk are produced. We suggest that NsPox plays a role in dragline silk fibre formation and/or processing.  相似文献   

17.
As a promising biomaterial with numerous potential applications, various types of synthetic spider silk fibers have been produced and studied in an effort to produce man-made fibers with mechanical and physical properties comparable to those of native spider silk. In this study, two recombinant proteins based on Nephila clavipes Major ampullate Spidroin 1 (MaSp1) consensus repeat sequence were expressed and spun into fibers. Mechanical test results showed that fiber spun from the higher molecular weight protein had better overall mechanical properties (70 KD versus 46 KD), whereas postspin stretch treatment in water helped increase fiber tensile strength significantly. Carbon-13 solid-state NMR studies of those fibers further revealed that the postspin stretch in water promoted protein molecule rearrangement and the formation of β-sheets in the polyalanine region of the silk. The rearrangement correlated with improved fiber mechanical properties and indicated that postspin stretch is key to helping the spider silk proteins in the fiber form correct secondary structures, leading to better quality fibers.  相似文献   

18.
Huang W  Lin Z  Sin YM  Li D  Gong Z  Yang D 《Biochimie》2006,88(7):849-858
Spider silks are renowned for their excellent mechanical properties. Although several spider fibroin genes, mainly from dragline and capture silks, have been identified, there are still many members in the spider fibroin gene family remain uncharacterized. In this study, a novel silk cDNA clone from the golden web spider Nephila antipodiana was isolated. It is serine rich and contains two almost identical fragments with one varied gap region and one conserved spider fibroin-like C-terminal domain. Both in situ hybridization and immunoblot analyses have shown that it is specifically expressed in the tubuliform gland. Thus, it likely encodes the silk fibroin from the tubuliform gland, which supplies the main component of the inner egg case. Unlike other silk proteins, the protein encoded by the novel cDNA in water solution exhibits the characteristic of an alpha-helical protein, which implies the distinct property of the egg case silk, though the fiber of tubuliform silk is mainly composed of beta-sheet structure. Its sequence information facilitates elucidation of the evolutionary history of the araneoid fibroin genes.  相似文献   

19.
蜘蛛丝蛋白研究进展   总被引:4,自引:0,他引:4  
由于蜘蛛丝蛋白分子高度重复的一级结构、特殊的溶解特性和分子折叠行为以及具有形成非凡力学特性丝纤维的能力而引人注目。本文从蛛丝蛋白基因、天然蛛丝形成过程、蛛丝蛋白的基因工程生产及蛛丝蛋白的应用前景等几个方面着重介绍了近20年来对蛛丝蛋白的研究进展。围绕蛛丝蛋白展开的研究将有助于揭示蛋白质一级结构、蛋白质分子折叠与蛋白质大分子特性之间的内在联系。  相似文献   

20.
Tian M  Lewis RV 《Biochemistry》2005,44(22):8006-8012
As a result of hundreds of millions of years of evolution, orb-web-weaving spiders have developed the use of seven different silks produced by different abdominal glands for various functions. Tubuliform silk (eggcase silk) is unique among these spider silks due to its high serine and very low glycine content. In addition, tubuliform silk is the only silk produced just during a short period of time, the reproductive season, in the spider's life. To understand the molecular characteristics of the proteins composing this silk, we constructed tubuliform-gland-specific cDNA libraries from three different spider families, Nephila clavipes, Argiope aurantia, and Araneus gemmoides. Sequencing of tubuliform silk cDNAs reveals the repetitive architecture of its coding sequence and novel amino acid motifs. The inferred protein, tubuliform spidroin 1 (TuSp1), contains highly homogenized repeats in all three spiders. Amino acid composition comparison of the predicted tubuliform silk protein sequence to tubuliform silk indicates that TuSp1 is the major component of tubuliform silk. Repeat unit alignment of TuSp1 among three spider species shows high sequence conservation among tubuliform silk protein orthologue groups. Sequence comparison among TuSp1 repetitive units within species suggests intragenic concerted evolution, presumably through gene conversion and unequal crossover events. Comparative analysis demonstrates that TuSp1 represents a new orthologue in the spider silk gene family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号