首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 272 毫秒
1.
去叶时间对半干旱草原植物养分回收和干草生产的影响 养分回收是植物养分保存的重要策略,其对环境和管理变化的响应关系到生态系统的养分循环和生产。去叶(刈割)是影响草地植物养分回收和生产的重要途径,而去叶时间的影响尚不清楚。本研究以内蒙古典型草原生态系统为对象,设置早期去叶(生物量高峰期之前)、峰期去叶(生物量高峰期)、晚期去叶(养分回收开始后)和不去叶(对照)四个处理,探讨了去叶时间对植物养分回收和生产的影响。通过测定植物物种和群落水平氮(N)和磷(P)回收特征,量化了植物N、P回收通量以及凋落物归还通量和干草输出通量,并评估了不同去叶时间处理下割草草地系统干草产量和质量。研究结果显示,峰期和晚期去叶降低植物群落N、P回收度,而早期去叶则对二者无影响;不同去叶时间处理下植物N、P回收效率相对稳定,仅晚期去叶降低N回收效率。峰期和晚期去叶降低植物群落N、P回收通量和凋落物N、P归还通量,而早期去叶并不影响这些参数。去叶时间降低植物群落养分回收通量,但未改变植物根系养分储存,说明根系养分吸收增加可补偿养分回收通量的降低。草地干草产量和质量在峰期去叶处理下最高,晚期去叶处理下最低。本研究结果为割草草地生态系统养分循环提供了新见解,通过调整刈割时间可以平衡草原的保护与生产,在植物生物量高峰期之前割草可实现保护和可持续生产的双重目标。  相似文献   

2.
To study the factors that limit the occurrence of species in fen grasslands, the effects of mowing and litter removal on germination, growth and establishment of two common species (Silene flos-cuculi andLotus pedunculatus) were analyzed along a productivity gradient at seven sites in Northern Germany. The sites differed in nutrient availability, vegetation composition and standing crop. In autumn 2002 a field experiment was set up at each site, including factorial combinations of two treatments (litter removal, mowing). Seeds and juvenile individuals of both species were transferred within the treatment combinations. The number of germinated and transplanted individuals was recorded during the 2003 and 2004 seasons and biomass of survived plants weighed in late summer 2004. Mowing and litter removal had positive effects on the number of germinated seeds of both species. The effect of litter removal was mostly significant at sites with a comparatively low nutrient availability and standing crop (350 g/m2), while the effect of mowing was more important at the site with the highest standing crop (1000 g/m2). In some cases the presence of litter had a positive effect on the survival of individuals, which may be caused by extremely dry weather conditions in 2003. The experiment showed that plant species reaction on mowing and litter removal differed both according to their life stage and the site conditions. These differences could be interpreted in context with Shifting Limitation Hypothesis because the abolition of seed limitation by sowing and creation of additional gaps for germination was most efficient at low productive sites, while the high standing crop reduced first of all the establishment probability, which could be increased by mowing.  相似文献   

3.
Plant–soil feedbacks affect plant performance and plant community dynamics; however, little is known about their role in ecological restoration. Here, we studied plant–soil feedbacks in restoration of steppe vegetation after agricultural disturbance in northern China. First, we analyzed abiotic and biotic soil properties under mono-dominant plant patches in an old-field restoration site and in a ‘target’ steppe site. Second, we tested plant–soil feedbacks by growing plant species from these two sites on soils from con- and heterospecific origin. Soil properties generally did not differ between the old-field site and steppe site, but there were significant differences among mono-dominant plant patches within the sites. While soil species origin (i.e., the plant species beneath which the soil was collected) affected biomass of individual plant species in the feedback experiment, species-level plant–soil feedbacks were ‘neutral’. Soil site origin (old-field, steppe) significantly affected biomass of old-field and steppe species. For example, old-field species had higher biomass in old-field soils than in steppe soils, indicating a positive land-use legacy. However, soil site origin effects depended on the plant species beneath which the soils were collected. The predictive value of abiotic and biotic soil properties in explaining plant biomass differed between and within groups of old-field and steppe species. We conclude that the occurrence of positive land-use legacies for old-field species may retard successional replacement of old-field species by steppe species. However, high levels of idiosyncrasy in responses of old-field and steppe plant species to con- and heterospecific soils indicate interspecific variation in the extent to which soil legacies and plant–soil feedbacks control successional species replacements in Chinese steppe ecosystems.  相似文献   

4.
《农业工程》2021,41(4):341-345
Plant litter is dead, above and below ground; organic material i.e. leaves barks, needles, twigs and roots. Plant litter plays a key role in nutrient cycling and community organization in grassland ecosystems. Litter can have important consequences on recruitment of plant species through modification of biological, physical, and chemical features of microenvironment. Plant litter offers a major input of organic matter to the soil which modifies soil chemistry, hence impacts nutrient cycling. At early stages of litter decomposition, a particular amount of carbon is transporting to the soil nutrient pool. In terrestrial ecosystems, plant litter regulating biogeochemical cycles, maintain soil fertility, nutrient availability, and therefore influence plant growth, diversity, composition, structure, and productivity. Litter can also impact plant above net plant productivity and below net plant productivity in grassland ecosystem. Plant litter accumulation and decomposition can impact plant species composition and community structure through temperature, light and nutrient availability. The effects of plant litter on vegetation may be negative, positive or neutral due vegetation variability, study duration, habitat, latitude, quantity and quality of litter. These diverse effects of plant litter on grassland ecosystem might be due to, management practice type, management intensity, climate type, timing, precipitation and soil nutrient pool etc. Current review attempts to describe prominent effects of plant litter on vegetation, seed germination, soil fertility, Productivity, species composition, community structure and mechanism in grassland ecosystem.  相似文献   

5.
大气氮沉降增加深刻影响生态系统物种多样性、生产力及其稳定性,研究草原生态系统N库如何响应不断增加的大气氮沉降至关重要。本研究在内蒙古额尔古纳草甸草原开展刈割和不同水平外源氮添加试验,设置6个氮添加水平: 0、2、5、10、20和50 g·m-2·a-1,同时设置刈割处理,分为刈割和不刈割2个水平。在连续处理的第7年,采集群落中优势植物地上部分、群落根、地表凋落物和0~100 cm分层土壤样品,测定N含量并计算N库储量。结果表明: 氮添加显著增加植物地上部分和凋落物N含量,以及羊草、植物群落和凋落物的N库及生态系统N库总量。刈割处理显著增加羊草叶片和凋落物N含量,降低羊草、植物群落和凋落物N库,但并不改变它们对氮添加的响应格局。此外,刈割和氮添加对植物群落N库存在显著的交互作用。在不刈割处理下,高水平氮添加使更多的氮储存在凋落物中等待分解,植物群落N库的饱和阈值出现在10 g·m-2·a-1;在刈割处理下,植物群落N库表现为随氮添加量增加而不断增加,并且在相同水平氮添加条件下刈割后进入到植物群落N库中的氮更多。刈割可以缓解氮沉降不断增加对生物多样性和生态系统稳定性造成的不利影响,并可以在一定程度上推迟氮沉降增加引起的生态系统氮饱和的发生。  相似文献   

6.
鲍雅静  李政海 《生态学报》2008,28(9):4540-4546
植物功能群(plant functional groups, PFGs) 是具有确定的植物功能特征的一系列植物的组合,是生态学家为研究植被对气候变化和干扰的响应而引入的生态学概念.目前功能群研究中最核心的问题仍在于决定植物功能群划分的植物特征的选择上.以内蒙古锡林河流域草原植物群落为例,选取3个草原类型(羊草草原、大针茅草原和羊草草甸草原)及其退化梯度系列(未退化、轻度退化、中度退化、重度退化),在对植物热值进行分析测定的基础上,依据植物的能量属性-单位重量干物质在完全燃烧后所释放出来的热量值,采用人为分段的方法对草原植物进行了能量功能群的划分(高能值植物功能群、中能值植物功能群和低能值植物功能群).并探讨了这种能量功能群划分方法在草原植被动态研究中的客观性与可行性.  相似文献   

7.
Grasslands recovered by sowing low diversity seed mixtures of local provenance are usually managed by mowing. Besides restoration success only a few studies have focused on the direct effects of post-restoration mowing on recovered grassland vegetation. In this study we followed vegetation changes in 13 successfully recovered grasslands in 5 × 5-m-sized sites with continuous and ceased mowing at Hortobágy National Park, East-Hungary. We asked the following questions: (i) What are the effects of cessation of mowing on the vegetation structure and diversity of recovered grasslands? (ii) What are the effects of cessation of mowing on the abundance of sown grasses, target and undesirable species? (iii) Is yearly mowing an appropriate management tool for the maintenance of recovered grasslands? Our results showed that the cessation of mowing caused litter accumulation, while diversity, total vegetation cover and the cover of sown grasses decreased compared to the mown sites. The cover of undesirable perennial species was significantly higher in unmown sites than in mown ones. The species composition of mown sites remained more similar to near-natural grasslands than the unmown ones. Our results suggest that without regular post-restoration mowing the favourable status of recovered grasslands can rapidly decline due to litter accumulation and by the expansion of undesirable species, even in the short-run. We also stress that while yearly mowing is enough to maintain grasslands recovered by low-diversity seed sowing, it cannot be considered to be enough to recover target vegetation composition.  相似文献   

8.
Due to its ability to create aboveground conditions that favour plant diversity, mowing is often used to preserve the high conservation value of semi-natural species-rich grasslands. However, mowing can also affect belowground conditions. By decreasing plant carbon supply to soil, mowing can suppress the activity of soil decomposers, diminish plant nutrient availability and thus create a feedback on plant growth. In this study, we first documented the effects of three-year mowing on plant community structure in a species-rich grassland. We found that mowing decreased the total areal cover of woody plants and increased the total cover of leguminous forbs. At the species level, mowing further increased the cover of two non-leguminous forbs, Prunella vulgaris and Sagina procumbens. Mowing did not affect the species number, diversity or evenness of the plant community. To study whether any of these effects could be explained by mowing-induced changes in the soil, and particularly by reduced nutrient availability, we then collected soil from different treatment plots and monitored the growth of nine plant species in these soils in a greenhouse. Plant growth did not differ between soils collected from mowed and unmowed plots, suggesting that our mowing regimes did not impose such changes in soil decomposer activity and nutrient supply that would feedback on plant growth. Moreover, each of the nine species responded equally to the different nutrient availability in different parts of the grassland, which indicates that even if mowing had reduced plant nutrient supply, this would not have led to changes in plant community structure. It appears that those changes in aboveground vegetation that we recorded after three years of mowing were purely due to the aboveground effects, such as frequent cutting of woody plants and enhanced light availability for low-growing forbs.  相似文献   

9.
The response of semiarid grasslands to small, non‐colonial herbivores has received little attention, focusing primarily on the effects of granivore assemblages on annual plant communities. We studied the long‐term effects of both small and large herbivores on vegetation structure and species diversity of shortgrass steppe, a perennial semiarid grassland considered marginal habitat for small mammalian herbivores. We hypothesized that 1) large generalist herbivores would affect more abundant species and proportions of litter‐bare ground‐vegetation cover through non‐selective herbivory, 2) small herbivores would affect less common species through selective but limited consumption, and 3) herbivore effects on plant richness would increase with increasing aboveground net primary production (ANPP). Plant community composition was assessed over a 14‐year period in pastures grazed at moderate intensities by cattle and in exclosures for large (cattle) and large‐plus‐small herbivores (additional exclusion of rabbits and rodents). Exclusion of large herbivores affected litter and bare ground and basal cover of abundant, common and uncommon species. Additional exclusion of small herbivores did not affect uncommon components of the plant community, but had indirect effects on abundant species, decreased the cover of the dominant grass Bouteloua gracilis and total vegetation, and increased litter and species diversity. There was no relationship between ANPP and the intensity of effects of either herbivore body size on richness. Exclusion of herbivores of both body sizes had complementary and additive effects which promoted changes in vegetation composition and physiognomy that were linked to increased abundance of tall and decreased abundance of short species. Our findings show that small mammalian herbivores had disproportionately large effects on plant communities relative to their small consumption of biomass. Even in small‐seeded perennial grasslands with a long history of intensive grazing by large herbivores, non‐colonial small mammalian herbivores should be recognized as an important driver of grassland structure and diversity.  相似文献   

10.
Plant invasions result in biodiversity losses and altered ecological functions, though quantifying loss of multiple ecosystem functions presents a research challenge. Plant phylogenetic diversity correlates with a range of ecosystem functions and can be used as a proxy for ecosystem multifunctionality. Laurentian Great Lakes coastal wetlands are ideal systems for testing invasive species management effects because they support diverse biological communities, provide numerous ecosystem services, and are increasingly dominated by invasive macrophytes. Invasive cattails are among the most widespread and abundant of these taxa. We conducted a three‐year study in two Great Lakes wetlands, testing the effects of a gradient of cattail removal intensities (mowing, harvest, complete biomass removal) within two vegetation zones (emergent marsh and wet meadow) on plant taxonomic and phylogenetic diversity. To evaluate native plant recovery potential, we paired this with a seed bank emergence study that quantified diversity metrics in each zone under experimentally manipulated hydroperiods. Pretreatment, we found that wetland zones had distinct plant community composition. Wet meadow seed banks had greater taxonomic and phylogenetic diversity than emergent marsh seed banks, and high‐water treatments tended to inhibit diversity by reducing germination. Aboveground harvesting of cattails and their litter increased phylogenetic diversity and species richness in both zones, more than doubling richness compared to unmanipulated controls. In the wet meadow, harvesting shifted the community toward an early successional state, favoring seed bank germination from early seral species, whereas emergent marsh complete removal treatments shifted the community toward an aquatic condition, favoring floating‐leaved plants. Removing cattails and their litter increased taxonomic and phylogenetic diversity across water levels, a key environmental gradient, thereby potentially increasing the multifunctionality of these ecosystems. Killing invasive wetland macrophytes but leaving their biomass in situ does not address their underlying mechanism of dominance and is less effective than more intensive treatments that also remove their litter.  相似文献   

11.
万志强  杨九艳  谷蕊  闫玉龙  梁艳  杨劼  高清竹 《生态学报》2016,36(17):5477-5484
在草原生态系统中,土壤是植物生长发育最重要的基质,对植物群落动态有显著的影响。刈割是内蒙古典型草原区除放牧外最重要的利用方式。研究不同刈割频度对典型草原区群落特征和若干土壤性质的影响及土壤因子与群落特征的相关性,旨在得出对群落多样性最有利并最适宜生产利用的刈割频度。研究区设置在内蒙古锡林浩特市东部以大针茅建群的典型草原;在2009—2013年进行不同频度的刈割处理,共设置处理,一年两次刈割、一年一次刈割、两年一次(割一年休一年)刈割、围封,在2013年8月采集测定土壤养分的样品。刈割对群落多样性影响显著,割一年休一年Shannon-Wiener多样性指数、Pielou均匀度指数、丰富度指数均高于其他刈割处理(P0.05);不同频度刈割下,一年两次刈割处理下土壤20—30cm和30—40cm的有机质含量显著高于其他处理(P0.05);不同频度刈割处理下土壤中的速效磷和速效氮的含量没有显著差异;一年两次处理的土壤全氮含量显著高于其他处理(P0.05)。Shannon-Wiener多样性指数与有机质含量、全氮含量呈显著负相关;Pielou均匀度指数与土壤元素间无显著相关关系;Richness指数与有机质含量呈显著负相关,与全氮含量为极显著负相关关系。割一年休一年刈割处理下土壤元素含量呈现更好的状态,结合群落物种多样性及生产利用的角度,割一年休一年为最合理的刈割频度。  相似文献   

12.
Vegetation effects on arthropods are well recognized, but it is unclear how different vegetation attributes might influence arthropod assemblages across mixed-agricultural landscapes. Understanding how plant communities influence arthropods under different habitat and seasonal contexts can identify vegetation management options for arthropod biodiversity. We examined relationships between vegetation structure, plant species richness and plant species composition, and the diversity and composition of beetles in different habitats and time periods. We asked: (1) What is the relative importance of plant species richness, vegetation structure and plant composition in explaining beetle species richness, activity-density and composition? (2) How do plant-beetle relationships vary between different habitats over time? We sampled beetles using pitfall traps and surveyed vegetation in three habitats (woodland, farmland, their edges) during peak crop growth in spring and post-harvest in summer. Plant composition better predicted beetle composition than vegetation structure. Both plant richness and vegetation structure significantly and positively affected beetle activity-density. The influence of all vegetation attributes often varied in strength and direction between habitats and seasons for all trophic groups. The variable nature of plant-beetle relationships suggests that vegetation management could be targeted at specific habitats and time periods to maximize positive outcomes for beetle diversity. In particular, management that promotes plant richness at edges, and promotes herbaceous cover during summer, can support beetle diversity. Conserving ground cover in all habitats may improve activity-density of all beetle trophic groups. The impacts of existing weed control strategies in Australian crop margins on arthropod biodiversity require further study.  相似文献   

13.
A vast area of native shrub-dominated steppe at the margins of desert oases in arid regions of China had been reclaimed as farmland in the last century for grain production to feed growing human populations. This study evaluated the consequences of this land-use change on the activity density, taxa richness and composition of functional groups (herbivores, predators and detritivores) of ground-dwelling beetles and spiders, which include some important ecological groups of natural enemies of insect pests (e.g. predatory spiders and beetles), pollinators and decomposers (e.g. detritivorous beetles). Ground-dwelling beetles and spiders were collected using pitfall traps in native steppe habitats and adjacent irrigated farmland of different ages (cultivated either for 27 or at least for 90 years). It was found the conversion of native steppe to farmland, regardless of farmland age, led to a significant increase in activity density of predators, with a greater increase in 90-year-old farmland than in 27-year-old farmland, but did not affect their taxa richness. However, native steppe conversion to farmland, regardless of farmland age, led to significant declines in activity density and taxa richness of both detritivores and herbivores, with a much greater decrease of activity or richness in detritivores than in herbivores in both farmland types. We also observed taxa-specific responses to the land conversion within functional groups. The functional composition of the beetle and spider community shifted from a community dominated by detritivores in the native steppe sites to one dominated by predators in the irrigated farmland sites. Our results suggest that the different functional groups of ground-dwelling beetles and spiders responded in a different way to the land conversion. The remarkable increase in predators and the dramatic decline in detritivores by converting natural vegetation to agricultural land are expected to strongly affect the desert ecosystem services such as biological pest control, pollination and decomposition.  相似文献   

14.
Temperate steppe is one of the most important natural habitats for the conservation of arthropod and bird biodiversity across the Eurasian Tectonic Plate. Since 1950, fragmentation of the steppe habitat has caused a loss of biodiversity and degradation of the species communities found in natural steppe. Therefore, in this study, both plants and insects were sampled at 56 sites in the steppe biome of northwestern China to explore the effects of plant community on insect community composition and diversity. The insect community structure varied in the four different steppe types (meadow steppe, typical steppe, desert steppe, and steppe desert). Plant cover (diversity) was an important driving force, which could enhance number of families and abundance of an insect community. Aboveground net primary productivity and water content of plants had no significant effects on insect community, although the plant community as a whole did mediate insect composition and community structure. Future research should explore the ecological role of particular functional groups in plant and insect communities. Supplemental sowing to improve plant diversity in steppe habitat may be another strategy to enhance biodiversity and achieve sustainable management.  相似文献   

15.
Plant litter decomposition is mainly affected by litter properties and environmental factors, but the influence of terrain on litter decomposition is not well understood. We studied the effects of terrain on litter decomposition over a period of 12 months at six locations in a typical steppe ecoregion and measured the concomitant release of carbon (C), nitrogen (N), and phosphorus (P). The study site has two aspects, shaded and sunny, each aspect having three slopes: 15°, 30°, and 45°. The same mixed litter was used at each location to exclude the influence of litter quality variation. Results showed that soil temperature and moisture, solar radiation, and plant species diversity varied by terrain, which in turn, affected the k‐value (standardized total effects, 0.78, 0.12, 0.92, 0.23, respectively) and the release of C (0.72, –0.25, 0.83, 0.24, respectively), N (0.89, –0.45, 0.76, 0.40, respectively) and P (0.88, 0.77, 0.58, 0.57, respectively). K‐value and C release decreased with increasing slope on shaded aspect, while increased with increasing slope on sunny aspect. The release of N and P decreased with increasing slope on the shaded aspect. K‐value and C, N, and P release were significantly higher on shaded than that on sunny aspect at 15° and 30°, while at 45°, it was higher on sunny than on shaded aspect. The litter mass loss was slower on shaded 45° and sunny 15°. So moderate grazing or mowing could be used to reduce litter accumulation and accelerate litter decomposition on these terrains. Structural equation modeling indicated that soil temperature and solar radiation had the greatest influence on k‐value and C, N, and P release, and these two factors were directly related to soil moisture and plant species diversity. Overall, our results emphasize the need to consider terrain for litter decomposition in typical steppe ecoregions.  相似文献   

16.
黄土高原半干旱区退化草地恢复与利用过程研究   总被引:4,自引:0,他引:4  
草地退化表现为土壤和植被遭到彻底破坏,草地演替过程受到强烈抑制.实验采用长期(30年)封禁措施,定位监测退化草地从次生半裸地演变为近似原生植被(进展演替)的变化过程.结果表明,随着封禁时间的变化,退化草地恢复演替经历了4个阶段,群落盖度、植株密度、物种丰富度和多样性指数、地上生物量和地下生物量在草地群落恢复过程中逐渐增加,其特征变化出现的峰值均在封禁第20年(地下生物量峰值在第15年),其中地上生物量最高达520.5 g/m2;直到封禁的第20~25年,以本氏针茅为建群种的草原群落衰败退化现象明显,而大针茅种群密度剧增;在封禁的第26年以上以大针茅为优势的群落生长较为稳定,从目前群落演替进程看,大针茅有替代本氏针茅的趋势.另外,在草原沟道两侧以斑块状聚集分布有中旱生灌木,群落的演替进入了一个新的阶段.随着封禁时间的延续,退化草地从自然封禁恢复的0~26年,通过侵入-竞争-扩散-定居的几个演替阶段,目前形成以大针茅为建群种相对稳定的"亚顶级".虽然草地生物量有一定下降,但草地质量提高,物种多样性丰富,促进草地的进展演替.草地植物群落主要由禾本科、豆科和菊科组成;多年生植物、C3和旱生物种可以作为草地演替过程和植被恢复的指示物种.长期封育对草地物种更新和生态系统稳定性有负面影响,因此,合理的封育时间是草地生态恢复中非常重要的一个因素.本研究提出,在黄土区退化草地封育10~15年后可以开始进行合理的利用,例如通过两年一次刈割和轻度放牧(2只羊/hm2).本研究可为干旱区、半干旱区相似的退化草地恢复提供理论依据.  相似文献   

17.
Abstract. To assess whether winter mowing in wetlands fulfils the aim of preventing succession towards drier communities, 34 permanent quadrats (15 m2) were surveyed annually from 1984–1985 to 2000 within large mown and unmown (control) areas (several ha) in a calcareous lake shore fen (W Switzerland). Three trends were noticed: decrease of aquatic species, spread of Cladium mariscus and establishment of woody species (especially Alnus glutinosa and Frangula alnus). None of these trends was prevented by mowing, but mowing did prevent the accumulation of C. mariscus litter and kept woody saplings small. Succession was generally slow and often occurred in the form of sudden, discrete changes. Plant species richness increased with mowing and remained constant without mowing. Soil disturbance by the mowing machine contributed more to the effects of management on species composition than the periodic removal of biomass. It is concluded that mowing every three years in winter is insufficient to preserve semi‐aquatic communities against succession but sufficient to maintain the plant species richness of a low productive, regularly flooded fen.  相似文献   

18.
Mowing is known to favor plant diversity and influence ecosystem functioning in semi-natural grasslands. This effect could be influenced by climate variability, especially in regions with harsh climate, such as subalpine zones. In particular, short-term extreme weather fluctuations may induce rapid plant responses, affecting in turn the response to mowing. We tested the effects of concomitant summer weather manipulation and mowing on a subalpine grassland in the Central French Alps for two consecutive years. We addressed two questions: (1) How is a subalpine grassland affected by extreme summer weather? (2) Does extreme summer weather alter mowing effects on the grassland plant diversity and functioning? We used a multi-level, integrative approach assessing the responses of six abundant plant species, as well as effects on plant community structure, biomass production, and litter decomposition rates. Extreme summer weather was simulated by increasing summer temperature by 1.1°C, and decreasing summer rainfall by 80%—resulting in a 30% decrease in total annual precipitation. In addition, a heat-wave event was simulated during the first year of the experiment. This weather manipulation was combined with a late-summer mowing treatment (mown vs. unmown). Extreme summer weather mainly increased leaf senescence and decreased plant vegetative growth. Leaf litter decomposition was slowed, but only for species characterized by the fastest rates of litter decomposition. Mowing increased plant diversity by restricting the dominant grass species, thereby favoring subordinates. In the short term, this subalpine grassland was rather resistant to extreme summer weather, whereas mowing cessation remained the main factor affecting its biodiversity.  相似文献   

19.
In intensively used landscapes, remnant grassland fragments are often restricted to places unsuitable for agricultural cultivation. Such refuges are the ancient burial mounds called “kurgans,” which are typical landscape elements of the Eurasian steppe and forest steppe zone. Due to their hill‐like shape, loose soil structure and undisturbed status kurgans provide proper habitats for burrowing mammals. Accordingly, grassland vegetation on kurgans is often exposed to bioturbation, which can influence the habitat structure and plant species pool. In our study, we explored the effect of fox burrows and landscape context on the habitat properties and vegetation composition of small landscape elements, using kurgans as model habitats. We surveyed the vegetation of fox burrows and that of the surrounding grassland on five kurgans situated in cleared landscapes surrounded by arable lands and five kurgans in complex landscapes surrounded by grazed grasslands. We recorded the percentage cover of vascular plants, the amount of litter, and soil moisture content in twelve 0.5 m × 0.5 m plots per kurgan, in a total of 120 plots. We found that foxes considerably transformed habitat conditions and created microhabitats by changing the soil nutrient availability and reducing total vegetation cover and litter. Several grassland specialist species, mostly grasses (Agropyron cristatum, Elymus hispidus, and Stipa capillata) established in the newly created microhabitats, although the cover of noxious species was also considerable. We found that landscape context influenced the sort of species which could establish on kurgans by affecting the available species pool and soil moisture. Our results revealed that foxes act as ecosystem engineers on kurgans by transforming abiotic and biotic conditions by burrowing. Their engineering activity maintains disturbance‐dependent components of dry grasslands and increases local environmental heterogeneity.  相似文献   

20.
草原灌丛化是全球干旱半干旱地区面临的重要生态问题。灌丛化对草原生态系统结构与功能的影响较为复杂, 有待于在更广泛的区域开展研究。该研究在内蒙古锡林郭勒典型草原选择轻度、中度和重度灌丛化草地, 通过群落调查, 结合植物功能性状和土壤理化性质观测, 研究了小叶锦鸡儿(Caragana microphylla)灌丛化对草原群落结构(物种多样性、功能多样性和功能群组成)和生态系统功能(初级生产力、植被和土壤养分库)的影响。结果表明: 1)不同程度灌丛化草地的物种丰富度、功能性状多样性和群落加权性状平均值差异显著, 其中, 中度灌丛化草地的物种多样性和功能多样性较高, 表明一定程度的灌丛化有利于生物多样性维持。2)重度灌丛化草地的地上净初级生产力(ANPP)显著高于轻度和中度灌丛化草地, 其原因主要是随着灌丛化程度加剧, 群落内一/二年生草本植物显著增加, 而多年生禾草和多年生杂类草显著减少。三个灌丛化草地的植被叶片和土壤碳、氮库差异均不显著。3)灌丛化对草原生态系统功能包括ANPP、植被和土壤养分库均没有直接的影响, 而是通过影响功能群组成、土壤理化性质和功能多样性, 间接地影响生态系统功能; 灌丛化导致功能群发生替代和土壤旱碱化是最重要的生物和非生物因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号