首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Huang QQ  Chen A  Jin JP 《Gene》1999,229(1-2):1-10
Three muscle type-specific troponin T (TnT) genes are present in vertebrate to encode a number of protein isoforms via alternative mRNA splicing. While the genomic structures of cardiac and fast skeletal muscle TnT genes have been documented, this study cloned and characterized the slow skeletal muscle TnT (sTnT) gene. Complete nucleotide sequence and genomic organization revealed that the mouse sTnT gene spans 11.1kb and contains 14 exons, which is smaller and simpler than the fast skeletal muscle and cardiac TnT genes. Potentially representing a prototype of the TnT gene family, the 5'-region of the sTnT gene contains fewer unsplit large exons, among which two alternatively spliced exons are responsible for the NH2-terminal variation of three sTnT isoforms. The sTnT gene structure shows that the alternatively spliced central segment found in human sTnT cDNAs may be a result from splicing using an alternative acceptor site at the intron 11-exon 12 boundary. Together with the well-conserved protein structure, the highly specific expression of sTnT in slow skeletal muscles indicates a differentiated function of this member of the TnT gene family. The determination of genomic structure and alternative splicing pathways of sTnT gene lays a foundation to further understand the TnT structure-function evolution as well as contractile characteristics of different types of muscle fiber.  相似文献   

2.
3.
We investigated the expression and functional properties of slow skeletal troponin T (sTnT) isoforms in rat skeletal muscles. Four sTnT cDNAs were cloned from the slow soleus muscle. Three isoforms were found to be similar to sTnT1, sTnT2, and sTnT3 isoforms described in mouse muscles. A new rat isoform, with a molecular weight slightly higher than that of sTnT3, was discovered. This fourth isoform had never been detected previously in any skeletal muscle and was therefore called sTnTx. From both expression pattern and functional measurements, it appears that sTnT isoforms can be separated into two classes, high-molecular-weight (sTnT1, sTnT2) and low-molecular-weight (sTnTx, sTnT3) isoforms. By comparison to the apparent migration pattern of the four recombinant sTnT isoforms, the newly described low-molecular-weight sTnTx isoform appeared predominantly and typically expressed in fast skeletal muscles, whereas the higher-molecular-weight isoforms were more abundant in slow soleus muscle. The relative proportion of the sTnT isoforms in the soleus was not modified after exposure to hindlimb unloading (HU), known to induce a functional atrophy and a slow-to-fast isoform transition of several myofibrillar proteins. Functional data gathered from replacement of endogenous troponin complexes in skinned muscle fibers showed that the sTnT isoforms modified the Ca(2+) activation characteristics of single skeletal muscle fibers, with sTnT2 and sTnT1 conferring a similar increase in Ca(2+) affinity higher than that caused by low-molecular-weight isoforms sTnTx and sTnT3. Thus we show for the first time the presence of sTnT in fast muscle fibers, and our data show that the changes in neuromuscular activity on HU are insufficient to alter the sTnT expression pattern.  相似文献   

4.
In adult fast skeletal muscle, specific combinations of thin filament and Z-line protein isoforms are coexpressed. To determine whether the expression of these sets of proteins, designated the TnT1f, TnT2f, and TnT3f programs, is coordinated during development, we characterized the transitions in troponin T (TnT), tropomyosin (Tm), and alpha-actinin isoforms that occur in developing fetal and neonatal rabbit skeletal muscle. Two coordinated developmental transitions were identified, and a novel pattern of thin filament expression was found in fetal muscle. In fetal muscle, new TnT species--whose protein and immunochemical properties suggest that they are the products of a new TnT gene--are expressed in combination with beta 2 Tm and alpha-actinin1f/s. This pattern, which is found in both back and hindlimb muscles, is specific to fetal and early neonatal muscle. Just prior to birth, there is a transition from the fetal program to the isoforms that define the TnT3f program, TnT3f, and alpha beta Tm. Like the fetal program, expression of the TnT3f program appears to be a general feature of muscle development, because it occurs in a variety of fast muscles as well as in the slow muscle soleus. The transition to adult patterns of thin filament expression begins at the end of the first postnatal week. Based on studies of erector spinae, the isoforms comprising the TnT2f program, TnT2f, alpha 2 Tm, and alpha-actinin2f, appear and increase coordinately at this time. The transitions, first to the TnT3f program, and then to adult patterns of expression indicate that synthesis of the isoforms comprising each program is coordinated during muscle specialization and throughout muscle development. In addition, these observations point to a dual role for the TnT3f program, which is the major thin filament program in some adult muscles, but appears to bridge the transition from developmentally to physiologically regulated patterns of thin filament expression during the late fetal and early neonatal development.  相似文献   

5.
Troponin T (TnT) is an essential protein in the Ca2+ regulatory system of striated of muscle. Three fiber type-specific TnT genes have evolved in higher vertebrates to encode cardiac, slow and fast skeletal muscle TnT isoforms. To understand the functional significance of TnT isoforms, we studied the effects of acidosis on the contractility of transgenic mouse cardiac muscle that expresses fast skeletal muscle TnT. Contractility analysis of intact cardiac muscle strips showed that while no differences were detected at physiological pH, the transgenic cardiac muscle had significantly greater decreases in +dF/dtmax at acidic pH than that of the wild-type control. Contractility of skinned cardiac muscles demonstrated that the presence of fast TnT resulted in significantly larger decreases in force and Ca2+ sensitivity at acidic pH than that of the wild-type control. The effect of TnT isoforms on the tolerance of muscle to acidosis may explain the higher tolerance of embryonic versus adult cardiac muscles. The results are consistent with the hypothesis that charge differences in TnT isoforms contribute to the contractility of muscle. The data further support a hypothesis that slow TnT is similar to the cardiac, but not fast, and TnT may contribute to the higher tolerance of slow muscles to stress conditions. Therefore, TnT isoform diversity may contribute to the compatibility of muscle thin filaments to cellular environments in different fiber types, during development and functional adaptation.  相似文献   

6.
The aim of this study is to investigate the molecular events associated with the deleterious effects of acidosis on the contractile properties of cardiac muscle as in the ischemia of heart failure. We have conducted a study of the effects of increasing acidity on the Ca(2+) induced conformational changes of pyrene labelled cardiac troponin C (PIA-cTnC) in isolation and in complex with porcine cardiac or chicken pectoral skeletal muscle TnI and/or TnT. The pyrene label has been shown to serve as a useful fluorescence reporter group for conformational and interaction events of the N-terminal regulatory domain of TnC with only minimal fluorescence changes associated with C-terminal domain. Results obtained show that the significant decreases at pH 6.0 of site II Ca(2+) affinity of PIA-cTnC when complexed as a binary complex with either cTnI or cTnT are significantly reduced when cTnI is replaced with sTnI or cTnT with sTnT. However, this effect is appreciably diminished when the cTnI and cTnT in the ternary complex are replaced by sTnI and sTnT. The smaller effects in the ternary complex of replacing both cTnI and cTnT by their skeletal counterparts on depressing the Ca(2+) affinity from pH 7.0 to 6.0 arise from TnI replacement. Thus, changes in TnC conformation resulting from isoform-specific interactions with TnI and TnT could be an integral part of the effect of pH on myofilament Ca(2+)sensitivity.  相似文献   

7.
In contrast to skeletal muscles that simultaneously express multiple troponin T (TnT) isoforms, normal adult human cardiac muscle contains a single isoform of cardiac TnT. To understand the significance of myocardial TnT homogeneity, we examined the effect of TnT heterogeneity on heart function. Transgenic mouse hearts overexpressing a fast skeletal muscle TnT together with the endogenous cardiac TnT was investigated in vivo and ex vivo as an experimental system of concurrent presence of two classes of TnT in the adult cardiac muscle. This model of myocardial TnT heterogeneity produced pathogenic phenotypes: echocardiograph imaging detected age-progressive reductions of cardiac function; in vivo left ventricular pressure analysis showed decreased myocardial contractility; ex vivo analysis of isolated working heart preparations confirmed an intrinsic decrease of cardiac function in the absence of neurohumoral influence. The transgenic mice also showed chronic myocardial hypertrophy and degeneration. The dominantly negative effects of introducing a fast TnT into the cardiac thin filaments to produce two classes of Ca(2+) regulatory units in the adult myocardium suggest that TnT heterogeneity decreases contractile function by disrupting the synchronized action during ventricular contraction that is normally activated as an electrophysiological syncytium.  相似文献   

8.
9.
In adult fast skeletal muscle, specific combinations of thin filament and Z-line protein isoforms are coexpressed. To determine whether the expression of these sets of proteins, designated the TnT1f, TnT2f, and TnT3f programs, is coordinated during development, we characterized the transitions in troponin T (TnT), tropomyosin (Tm), and α-actinin isoforms that occur in developing fetal and neonatal rabbit skeletal muscle. Two coordinated developmental transitions were identified, and a novel pattern of thin filament expression was found in fetal muscle. In fetal muscle, new TnT species—whose protein and immunochemical properties suggest that they are the products of a new TnT gene—are expressed in combination with β2 Tm and α-actinin1f/8. This pattern, which is found in both back and hindlimb muscles, is specific to fetal and early neonatal muscle. Just prior to birth, there is a transition from the fetal program to the isoforms that define the TnT3f program, TnT3f, and αβ Tm. Like the fetal program, expression of the TnT3f program appears to be a general feature of muscle development, because it occurs in a variety of fast muscles as well as in the slow muscle soleus. The transition to adult patterns of thin filament expression begins at the end of the first postnatal week. Based on studies of erector spinae, the isoforms comprising the TnT2f program, TnT2f, α2 Tm, and α-actinin2f, appear and increase coordinately at this time. The transitions, first to the TnT3f program, and then to adult patterns of expression indicate that synthesis of the isoforms comprising each program is coordinated during muscle specialization and throughout muscle development. In addition, these observations point to a dual role for the TnT3f program, which is the major thin filament program in some adult muscles, but appears to bridge the transition from developmentally to physiologically regulated patterns of thin filament expression during late fetal and early neonatal development.  相似文献   

10.
Alternative splicing of troponin T (TnT) in striated muscle during development results in expression of different isoforms, with the splicing of a 5(') exon of TnT resulting in the expression of low-molecular-weight basic adult TnT isoforms and high-molecular-weight acidic embryonic TnT isoforms. Although other differences exist, the main differences between cardiac TnT (cTnT) and fast skeletal muscle TnT (fTnT) are in the NH(2) terminus, with fTnT being less acidic than cTnT. A transgenic mouse line expressing chicken fTnT in the heart was used to investigate the functional significance of TnT NH(2)-terminal charge differences on cardiac muscle contractility. The rates of force redevelopment (k(tr)) at four levels of Ca(2+) activation were recorded for skinned left ventricular trabeculae from control and transgenic mice. The k(tr) vs Ca(2+) relationship was different in control mice and transgenic mice, suggesting that the structure of TnT, and possibly the NH(2)-terminal region, is involved in determining the kinetics of cross-bridge cycle. These results suggest that isoform shifts in TnT may be an important molecular mechanism for determining the Ca(2+) dependence of cardiac muscle contractility.  相似文献   

11.
Fetal rat skeletal muscles express a troponin T (TnT) isoform similar to the TnT isoform expressed in the embryonic heart with respect to electrophoretic mobility and immunoreactivity with cardiac TnT-specific monoclonal antibodies. Immunoblotting analyses reveal that both the embryonic and the adult isoforms of cardiac TnT are transiently expressed during the neonatal stages. In addition, other TnT species, different from both cardiac TnTs and from the TnT isoforms expressed in adult muscles, are present in skeletal muscles during the first two postnatal weeks. By immunocytochemistry, cardiac TnT is detectable at the somitic stage and throughout embryonic and fetal development, and disappears during the first weeks after birth, persisting exclusively in the bag fibers of the muscle spindles. Cardiac TnT is re-expressed in regenerating muscle fibers following a cold injury and in mature muscle fibers after denervation. Developmental regulation of this TnT variant is not coordinated with that of the embryonic myosin heavy chain with respect to timing of disappearance and cellular distribution. No obligatory correlation between the two proteins is likewise found in regenerating and denervated muscles.  相似文献   

12.
13.
Using monoclonal antibodies (McAbs) which can distinguish between breast- and leg-type troponin T (TnT), we studied the spatial distribution of TnT isoforms in adult chicken fast skeletal muscles. The breast (pectoralis major) and leg (iliotibialis posterior) muscles were composed predominantly of homogeneous fibers containing breast- and leg-type TnT, respectively. The posterior latissimus dorsi muscle was composed of heterogeneous fibers of at least two types, namely breast and leg types. In developing and regenerating fast muscles, only leg-type TnT was expressed at early stages, and later breast-type TnT appeared either transiently or permanently. This led ultimately to several distinct adult fast muscle breast/leg TnT isoform profiles. Since both types of TnT were synthesized in embryonic and regenerating muscles with nerves intact as well as in regenerating muscles with nerves resected, the switching on of their expression during fast muscle development appears to be independent of nerves. However, its full development ("fine tuning" of the protein isoform distribution within the fast fiber types) and the maintenance of the adult state are presumed to be dependent on the nerves, since, although regenerating fibers in denervated muscles could exhibit the early and then the later embryonic stainabilities, they again returned to the early embryonic state; further, the denervation of adult muscles caused the replacement of TnT isoform from the adult to the early embryonic state.  相似文献   

14.
Polyclonal antibodies were raised in guinea pigs against troponin-T (TnT) isoforms purified from fast- and slow-twitch rabbit muscles. With the use of these antibodies and immunoblots of one- and two-dimensional electrophoreses, the distribution of fast and slow TnT isoforms was investigated in normal and chronically stimulated hindlimb muscles of the rabbit. According to differences in their apparent molecular masses, six fast TnT isoforms (TnTcf, TnT1f, TnT2f, TnT3f, TnT4f, TnT5f) were distinguished in normal tibialis anterior and extensor digitorum longus muscles. These muscles also contained low amounts of TnT1s and TnT2s which were the predominant TnT isoforms in slow-twitch soleus muscle. Fast and slow TnT isoforms were found to exist in several charge variants, i.e. one for TnTcf, three different charge forms for TnT1f, seven for TnT2f, four for TnT3f, three for TnT4f, one for TnT5f, four for TnT1s, and three for TnT2s. Some charge variants were phosphorylated isoforms because treatment with alkaline phosphatase reduced the number of the 19 fast and 7 slow variants to 12 and 3, respectively. The stimulation-induced fast-to-slow transition caused progressive decreases in fast and increases in slow isoforms. The decrease and the disappearance of the major fast isoforms followed a sequence of TnT2f, TnTcf, TnT4f, TnT1f, and TnT3f. This decrease in fast isoforms fits well with the reduction of fast TnT mRNAs assessed by Northern blot analysis. Prolonged stimulation ultimately created a TnT isoform pattern similar to that found in normal slow-twitch muscle. Stimulation also induced changes in the tropomyosin subunit pattern with a decrease in the fast and an increase in the slow alpha-tropomyosin subunit without altering the alpha/beta-tropomyosin subunit ratio. Similar to slow-twitch soleus muscle, long-term stimulated muscles contained appreciable amounts of the fast alpha-tropomyosin subunit, but only traces of fast TnT isoforms. This combination indicated that the predominant slow TnT isoforms may be capable of interacting with fast tropomyosin in these muscles.  相似文献   

15.
姜惠杰  孙虎山 《动物学报》2003,49(3):362-369
骨骼肌快肌的收缩主要是由钙离子通过肌钙蛋白所调节控制。这些肌钙蛋白位于肌纤维之中。肌蛋白包括肌钙蛋白T、肌钙蛋白C、肌钙蛋白I。采用双向聚丙烯酰胺凝胶电泳和免疫学技术,对大鼠胚胎、新生大鼠和成年大鼠的骨能肌快肌肌钙蛋白T的同工型进行了研究。在成年大鼠的骨能肌快肌中,发现了10种肌钙蛋白T同工型。在大鼠胚胎和新生大鼠的骨能肌中,发现了7种肌钙蛋白T同工型。作为不同动物、不同发育阶段和不同组织发育的特殊标记,这些肌钙蛋白T同工型具有重要意义[动物学报49(3):362—369,2003]。  相似文献   

16.
段颖莉  于舒洋  李宁 《遗传》2002,24(6):699-706
脊椎动物中的肌钙蛋白T(tropnin T,TnT)分为心肌型TnT(cardiac TnT,cTnT)、快肌型TnT(fast skeletal TnT,fTnT)和慢肌型TnT(slow skeletal TnT,sTnT),且每种TnT又因mRNA可变剪接(alternative mRNA splicing)形成了多种同工异构型,其中fTnT的同工异构型形式最为复杂。某些鸟类如鸡形目鸟类的成熟快肌(尤其是胸部快肌)中特异性表达的TnT同工异构型有如下特点:(1)N端区含有过渡金属离子结合位点——Tx元件(一般为4~7个重复的H-E/A-E-A-H序列);(2)与哺乳动物及雏鸟fTnT相比,其C端区外显子16有很高的表达率。本文还就鸡形目鸟类成熟胸肌中表达的fTnT同工异构型可能具有的生理学意义及应用前景进行了探讨。 The Fast TnT Isoforms Specifically Expressed in Avian Adult Pectoral Muscles of Galliforms and Physiological Significance DUAN Ying-li,YU Shu-yang,LI Ning National Laboratories for Agrobiotechnology,China Agricultural University,Beijing 100094,China Abstract:Three homologous genes have evolved to encode the cardiac,slow and fast skeletal muscle troponin Ts(TnTs) in the vertebrate.Multiple isoforms in each type of TnT are generated through alternative mRNA splicing during the development and the modality of the fast skeletal TnT isoforms is the most complex.The TnT isoforms specifically expressed in avian adult fast skeletal muscle (especially in the adult pectoral muscle) of Galliforms have been characterized as follows:1.There exist a cluster of transition metal ion binding sites [generally 4~7 repeats of a sequence motif His-(Glu/Ala)- Glu-Ala-His,designated as Tx] in the NH2-terminal variable region.2.Compared with mammalian TnT and the neonatal or young avian TnT,these avian pectoral muscle TnTs prefer to express exon 16 in the COOH-terminal variable region.Furthermore,possible effects of the pectoral fTnT isoforms on the physiological activity are discussed in this article. Key words:Aves; troponin T; isoform  相似文献   

17.
Fast and slow/cardiac troponin C (TnC) are the two different isoforms of TnC. Expression of these isoforms is developmentally regulated in vertebrate skeletal muscle. Therefore, in our studies, the pattern of their expression was analyzed by determining the steady-state levels of both TnC mRNAs. It was also examined if mRNAs for both isoforms of TnC were efficiently translated during chicken skeletal muscle development. We have used different methods to determine the steady-state levels of TnC mRNAs. First, probes specific for the fast and slow TnC mRNAs were developed using a 390 base pair (bp) and a 255 bp long fragment, of the full-length chicken fast and slow TnC cDNA clones, respectively. Our analyses using RNA-blot technique showed that fast TnC mRNA was the predominant isoform in embryonic chicken skeletal muscle. Following hatching, a significant amount of slow TnC mRNA began to accumulate in the skeletal (pectoralis) muscle. At 43 weeks posthatching, the slow TnC mRNA was nearly as abundant as the fast isoform. Furthermore, a majority of both slow and fast TnC mRNAs was found to be translationally active. A second method allowed a more reliable measure of the relative abundance of slow and fast TnC mRNAs in chicken skeletal muscle. We used a common highly conserved 18-nucleotide-long sequence towards the 5'-end of these mRNAs to perform primer extension analysis of both mRNAs in a single reaction. The result of these analyses confirmed the predominance of fast TnC mRNA in the embryonic skeletal muscle, while significant accumulation of slow TnC mRNA was observed in chicken breast (pectoralis) muscle following hatching. In addition to primer extension analysis, polymerase chain reaction was used to amplify the fast and slow TnC mRNAs from cardiac and skeletal muscle. Analysis of the amplified products demonstrated the presence of significant amounts of slow TnC mRNA in the adult skeletal muscle.  相似文献   

18.
19.
20.
The heterogenic nature of troponin T (TnT) isoforms in fast skeletal and cardiac muscle suggests important functional differences. Dynamic features of rat cardiac TnT (cTnT) and rat fast skeletal TnT (fsTnT) reconstituted cardiac muscle preparations were captured by fitting the force response of small amplitude (0.5%) muscle length changes to the recruitment-distortion model. The recruitment of force-bearing cross-bridges (XBs) by increases in muscle length was favored by cTnT. The recruitment magnitude was approximately 1.5 times greater for cTnT- than for fsTnT-reconstituted muscle fibers. The speed of length-mediated XB recruitment (b) in cTnT-reconstituted muscle fiber was 0.50-0.57 times as fast as fsTnT-reconstituted muscle fibers (3.05 vs. 5.32 s(-1) at sarcomere length, SL, of 1.9 microm and 4.16 vs. 8.36 s(-1) at SL of 2.2 microm). Due to slowing of b in cTnT-reconstituted muscle fibers, the frequency of minimum stiffness (f(min)) was shifted to lower frequencies of muscle length changes (at SL of 1.9 microm, 0.64 Hz, and 1.16 Hz for cTnT- and fsTnT-reconstituted muscle fibers, respectively; at SL of 2.2 microm, 0.79 Hz, and 1.11 Hz for cTnT- and fsTnT-reconstituted muscle fibers, respectively). Our model simulation of the data implicates TnT as a participant in the process by which SL- and XB-regulatory unit cooperative interactions activate thin filaments. Our data suggest that the amino-acid sequence differences in cTnT may confer a heart-specific regulatory role. cTnT may participate in tuning the heart muscle by decreasing the speed of XB recruitment so that the heart beats at a rate commensurate with f(min).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号