首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The origin of six-rowed cultivated barley was studied using a DNA marker cMWG699 closely linked to the vrs1 locus. Restriction patterns of the PCR-amplified product of the cMWG699 locus were examined in 280 cultivated (Hordeum vulgare ssp. vulgare) and 183 wild (H. vulgare ssp. spontaneum) barleys. Nucleotide sequences of the PCR products were also examined in selected accessions. Six-rowed cultivated barleys were divided into two distinct groups, types I and II. Type I six-rowed cultivated barley was distributed widely while type II six-rowed cultivated barley was found only in the Mediterranean region. The type I sequence was also found in a wild barley accession from Turkmenistan whereas the type II sequence was also found in a two-rowed cultivated barley from North Africa and a wild barley from Morocco. These results suggested that the six-rowed type I and II barleys were derived from two-rowed type I and II barleys, respectively, by independent mutations at the vrs1 locus. Received: 3 November 2000 / Accepted: 17 April 2001  相似文献   

2.
Distribution of MWG699 polymorphism in Spanish European barleys.   总被引:3,自引:0,他引:3  
The STS marker MWG699/TaqI is closely linked to the vrs1 locus and has been proposed as a marker of domestication in barley. This study included 257 cultivated barleys of both two- and six-rowed varieties, mainly from the western Mediterranean region. These included many landraces from the Spanish barley core collection, Moroccan landraces, and a set of accessions from other European countries. Restriction analysis of amplified DNA revealed three alleles, as previously described. Most of the two-rowed entries had the same allele, type K. Six-rowed entries showed both types A and D. Indeed, type D was widespread among Spanish landraces and commercial varieties from central Europe. It was also found in some two-rowed landraces originating from Spain and Morocco. Barleys with the D haplotype were predominantly winter types, whereas the A haplotype was evenly distributed among spring and winter types. These results support the existence of two different genetic sources among six-rowed Spanish landraces.  相似文献   

3.
Five barley chloroplast DNA microsatellites (cpSSRs) were used to study genetic relationships among a set of 186 barley accessions—34 Hordeum vulgare ssp. spontaneum (HS accessions) from Morocco, Ethiopia, Cyprus, Crete, Libya, Iraq, Iran, Turkey, Afghanistan and Israel, 122 H. vulgare ssp. vulgare landraces (HV landraces) from Spain, Bolivia (old Spanish introductions), Morocco, Libya and Ethiopia and 20 modern European spring barleys (HV cultivars). All loci were polymorphic in the material studied, with the number of alleles per locus ranging from two to three. Fifteen multi-locus haplotypes were observed, 11 in HS accessions and seven in HV landraces and cultivars. Of the seven haplotypes found in the HV lines, three were shared with the HS accessions, and four were unique. Cluster analysis revealed two main groups, one consisting of HS accessions from Ethiopia and the HV landraces from Spain, Bolivia (old Spanish), Morocco and Ethiopia, whereas the other larger group contained all of the other accessions studied. Based on these grouping and the existence of haplotypes found in the HV landraces and cultivars but not in the HS wild barley, a polyphyletic origin is proposed for barley, with further centres of origin in Ethiopia and the Western Mediterranean.  相似文献   

4.
Summary The distribution of genetic variants of a group of low molecular weight, chloroform-methanol soluble proteins (CM proteins), among Moroccan and non-Moroccan accessions of Hordeum spontaneum and among selections from several Moroccan landraces of H. vulgare and cultivars of the same species with widespread European origin, suggests that domestication of barley might have taken place in Morocco. An agromorphological characterization of the H. spontaneum accessions further supports this hypothesis. The possible Moroccan origin of the French cultivar Hatif de Grignon and of several Spanish 6-rowed barleys is also presented.  相似文献   

5.
The origin of six-rowed cultivated barley has been revealed to be more complex since the discovery of agriocrithon, a six-rowed barley with brittle rachis. The present study investigates whether such six-rowed brittle barley is wild or hybrid in nature, by analyzing genetic diversity at the cMWG699 marker locus, which is closely linked to the vrs1 (six-row gene) locus. DNA sequence analysis for 42 accessions showed only three types in six-rowed brittle barleys; in contrast, nine sequence types were found in ten wild barleys, ssp. spontaneum, in our previous study. Nucleotide diversities for the six-rowed brittle barley were 2.8–4.5 times lower than that for the ssp. spontaneum at this marker locus. The three sequence types found in the six-rowed brittle barley also appeared in the six-rowed cultivated barley. A cross-allelism test confirmed that the six-rowed character of the six-rowed brittle barley was controlled by the vrs1 locus. The nucleotide diversity and genealogy demonstrated that f. agriocrithon does not have the same level of diversity as found in wild barley, ssp. spontaneum. Consequently, f. agriocrithon does not appear to represent genuinely wild populations, but more probably originated from hybridization between ssp. spontaneum and six-rowed cultivated barley.  相似文献   

6.
Six-rowed spike 1 (Vrs1) is a gene of major importance for barley breeding and germplasm management as it is the main gene determining spike row-type (2-rowed vs. 6-rowed). This is a widely used DUS trait, and has been often associated to phenotypic traits beyond spike type. Comprehensive re-sequencing Vrs1 revealed three two-rowed alleles (Vrs1.b2; Vrs1.b3; Vrs1.t1) and four six-rowed (vrs1.a1; vrs1.a2; vrs1.a3; vrs1.a4) in the natural population. However, the current knowledge about Vrs1 alleles and its distribution among Spanish barley subpopulations is still underexploited. We analyzed the gene in a panel of 215 genotypes, made of Spanish landraces and European cultivars. Among 143 six-rowed accessions, 57 had the vrs1.a1 allele, 83 were vrs1.a2, and three showed the vrs1.a3 allele. Vrs1.b3 was found in most two-rowed accessions, and a new allele was observed in 7 out of 50 two-rowed Spanish landraces. This allele, named Vrs1.b5, contains a ‘T’ insertion in exon 2, originally proposed as the causal mutation giving rise to the six-row vrs1.a2 allele, but has an additional upstream deletion that results in the change of 15 amino acids and a potentially functional protein. We conclude that eight Vrs1 alleles (Vrs1.b2, Vrs1.b3, Vrs1.b5, Vrs1.t1, vrs1.a1, vrs1.a2, vrs1.a3, vrs1.a4) discriminate two and six-rowed barleys. The markers described will be useful for DUS identification, plant breeders, and other crop scientists.  相似文献   

7.
We analyzed the genetic diversity of 115 barley germplasms, including 112 landraces and three new barley cultivars grown in the Shanghai region, using a set of 11 SSR markers. Sixty-six alleles were observed at the 11 SSR loci, ranged from three to ten, with a mean of six alleles per locus. The polymorphism information content ranged from 0.568 to 0.853, with a mean of 0.732, indicating considerable genetic variation in barley in the Shanghai area. Clustering analysis indicated that these barley accessions could be divided into two categories (A and B). Ninety-seven six-rowed barley cultivars were classified in the A category; sixteen two-rowed and two six-rowed barley cultivars were classified in the B category. This demonstrated genetic differences between two-rowed and six-rowed barley varieties. In addition, we found that the three new barley cultivars are closely related.  相似文献   

8.
One hundred and six accessions of wild barley collected from Tibet, China, including 50 entries of the two-rowed wild barley Hordeum vulgare ssp. spontaneum (HS), 29 entries of the six-rowed wild barley Hordeum vulgare ssp. agriocrithon (HA), and 27 entries of the six-rowed wild barley Hordeum vulgare ssp. agriocrithon var. lagunculiforme (HL), were analyzed using 30 SSR markers selected from the seven barley linkage groups for studying genetic diversity and evolutionary relationship of the three subspecies of Tibetan wild barley to cultivated barley in China. Over the 30 genetic loci that were studied, 229 alleles were identified among the 106 accessions, of which 70 were common alleles. H. vulgare ssp. spontaneum possesses about thrice more private alleles (2.83 alleles/locus) than HS (0.93 alleles/locus), whereas almost no private alleles were detected in HL. The genetic diversity among-subspecies is much higher than that within-subspecies. Generally, the genetic diversity among the three subspecies is of the order HS > HL > HA. Phylogenetic analysis of the 106 accessions showed that all the accessions of HS and HA was clustered in their own groups, whereas the 27 accessions of HL were separated into two groups (14 entries with group HS and the rest with group HA). This indicated that HL was an intermediate form between HS and HA. Based on this study and previous works, we suggested that Chinese cultivated barley might evolve from HS via HL to HA.  相似文献   

9.
应用微卫星标记研究西藏野生大麦的遗传多样性   总被引:9,自引:0,他引:9  
以西藏不同地区的106份野生大麦为材料,其中包括50份野生二棱大麦(HS),27份野生瓶形大麦(HL)和29份野生六棱大麦(HA),用Liu等(1996)发表的SSR连锁图的每个连锁群的两个臂的不同位置上选取3~5个共30个SSR标记,研究了西藏3类野生大麦的遗传多样性。结果表明,这3类野生大麦在遗传组成及等位变异频率分布上存在着明显的遗传分化。在总样本中,共检测到229个等位变异,平均每个SSR位点检测到7.6个等位变异,其中70个为这3类野生大麦间共同的等位变异,等位变异数在这3类野生大麦间有明显的差异,亚种问的遗传多样性明显高于亚种内的遗传多样性。其遗传多样性大小顺序为HS〉HL〉HA。聚类分析表明,野生二棱大麦、野生六棱大麦分别聚在不同的两类,而野生瓶形大麦中各有约50%的材料分别聚在这两类。根据本研究及前人研究结果,我们认为中国栽培大麦是从野生二棱大麦经野生瓶形大麦向野生六棱大麦进化的。该结果支持了栽培大麦起源的“野生二棱大麦单系起源论”的观点。  相似文献   

10.
This study evaluates putative changes of genetic diversity and relationships of barley in the Nordic and Baltic countries that might have taken place during the last century as a result of commercial breeding. Four ISSR primers were used to analyse 227 accessions, yielding a total of 47 polymorphic loci. Shannon-Weaver diversity values for each locus ranged from 0.012 to 0.693. Overall, there were no significant changes of genetic diversity observed over time. A significant decrease of diversity was, however, observed in material from the southern parts of the Nordic and Baltic countries. In material from the northern parts no decrease of diversity was observed. The genetic diversity of six-rowed barley bred in the middle of the 20th century was low, but there was no significant difference between modern accessions and landraces or old cultivars. The magnitude in changes of genetic diversity differed also in material from different countries of origin. A cluster analysis clearly separated the material into two groups. The first cluster included 86.5% of all six-rowed accessions, whereas the second cluster contained 97.4% of all two-rowed accessions.  相似文献   

11.
Q Zhang  G P Yang  X Dai  J Z Sun 《Génome》1994,37(4):631-638
This study was conducted to address some of the issues concerning the possible significance of Tibet in the origin and evolution of cultivated barley. A total of 1757 barley accessions from Tibet, including 1496 entries of Hordeum vulgare ssp. vulgare (HV), 229 entries of the six-rowed wild barley H. vulgare ssp. agriocrithon (HA), and 32 entries of the two-rowed wild barley H. vulgare ssp. spontaneum (HS), were assayed for allozymes at four esterase loci. A subsample of 491 accessions was surveyed for spacer-length polymorphism at two ribosomal DNA loci. Genetic variation is extensive in these barley groups, and the amount of genetic diversity in cultivated barley of this region is comparable with that of cultivated barley worldwide. The level of genetic variation of HA is significantly lower than the other two barley groups, and there is also substantial heterogeneity in the level of polymorphism among different agrigeographical subregions. However, little genetic differentiation was detected among the three barley groups (HV, HA, and HS), as well as among different agrigeographical subregions. Comparison of the results from this and previous studies indicated a strong differentiation between Oriental and Occidental barley, thus favoring the hypothesis of a diphyletic origin of cultivated barley.  相似文献   

12.
The pool of Western Mediterranean landraces has been under-utilised for barley breeding so far. The objectives of this study were to assess genetic diversity in a core collection of inbred lines derived from Spanish barley landraces to establish its relationship to barleys from other origins, and to correlate the distribution of diversity with geographical and climatic factors. To this end, 64 SSR were used to evaluate the polymorphism among 225 barley (Hordeum vulgare ssp. vulgare) genotypes, comprising two-row and six-row types. These included 159 landraces from the Spanish barley core collection (SBCC) plus 66 cultivars, mainly from European countries, as a reference set. Out of the 669 alleles generated, a large proportion of them were unique to the six-row Spanish barleys. An analysis of molecular variance revealed a clear genetic divergence between the six-row Spanish barleys and the reference cultivars, whereas this was not evident for the two-row barleys. A model-based clustering analysis identified an underlying population structure, consisting of four main populations for the whole genotype set, and suggested further possible subdivision within two of these populations. Most of the six-row Spanish landraces clustered into two groups that corresponded to geographic regions with contrasting environmental conditions. The existence of wide genetic diversity in Spanish germplasm, possibly related to adaptation to a broad range of environmental conditions, and its divergence from current European cultivars confirm its potential as a new resource for barley breeders, and make the SBCC a valuable tool for the study of adaptation in barley. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.

Key message

The recessive labile locus mapped on chromosome 5HL causes irregular spikelet fertility and controls floret development as well as row-type in barley.

Abstract

The labile-barley displays a variable number of fertile spikelets at each rachis internode (0–3 fertile spikelets/rachis internode) which is intermediate between that observed in two- or six-rowed types. Previous re-sequencing of Vrs1 in 219 labile-barley (Hordeum vulgare L. convar. labile) accessions showed that all carried a six-rowed specific allele. We therefore hypothesized that this seemingly random reduction in spikelet fertility is most likely caused by the labile (lab) locus, which we aimed to phenotypically and genetically define. Here, we report a detailed phenotypic analysis of spikelet fertility in labile-barleys in comparison to two- and six-rowed genotypes using scanning electron microscopy analysis. We found that the first visible morphological deviation occurred during the stamen primordium stage, when we regularly observed the appearance of arrested central floral primordia in labile but not in two- or six-rowed barleys. At late stamen and early awn primordium stages, lateral florets in two-rowed and only some in labile-barley showed retarded development and reduction in size compared with fully fertile lateral florets in six-rowed barley. We used two F2 mapping populations to generate whole genome genetic linkage maps and ultimately locate the lab locus as a recessive Mendelian trait to a 4.5–5.8 cM interval at approximately 80 cM on chromosome 5HL. Our results will help identifying the role of the lab gene in relation to other spikelet fertility factors in barley.  相似文献   

14.

Background

There is growing evidence for the prevalence of copy number variation (CNV) and its role in phenotypic variation in many eukaryotic species. Here we use array comparative genomic hybridization to explore the extent of this type of structural variation in domesticated barley cultivars and wild barleys.

Results

A collection of 14 barley genotypes including eight cultivars and six wild barleys were used for comparative genomic hybridization. CNV affects 14.9% of all the sequences that were assessed. Higher levels of CNV diversity are present in the wild accessions relative to cultivated barley. CNVs are enriched near the ends of all chromosomes except 4H, which exhibits the lowest frequency of CNVs. CNV affects 9.5% of the coding sequences represented on the array and the genes affected by CNV are enriched for sequences annotated as disease-resistance proteins and protein kinases. Sequence-based comparisons of CNV between cultivars Barke and Morex provided evidence that DNA repair mechanisms of double-strand breaks via single-stranded annealing and synthesis-dependent strand annealing play an important role in the origin of CNV in barley.

Conclusions

We present the first catalog of CNVs in a diploid Triticeae species, which opens the door for future genome diversity research in a tribe that comprises the economically important cereal species wheat, barley, and rye. Our findings constitute a valuable resource for the identification of CNV affecting genes of agronomic importance. We also identify potential mechanisms that can generate variation in copy number in plant genomes.  相似文献   

15.
-Amylases are the key enzymes involved in the hydrolysis of starch in plants. The polymerase chain reaction (PCR) was used to detect polymorphisms in the length of amplified sequences between the annealing sites of two primers derived from published -amy1 gene sequences in barley. These two primers (Bsw1 and Bsw7), flanking the promoter region and the first exon, amplified two PCR fragments in barley. One of the amplified products, with the expected length of 820 bp, appeared together with another shorter PCR band of around 750 bp. This 750-bp fragment seems to be derived from an -amylase gene not reported previously. Both of the PCR products could be amplified from the two-rowed barley varieties tested, including cv Himalaya from which the sequence information was obtained. Five of the six-rowed barley varieties also have the two PCR fragments whereas another two have only the long fragment. These two fragments seem to be unique to barley, neither of them could be amplified from other cereals; for example, wheat, rye or sorghum. These two -amylase fragments were mapped to the long arm of 6H, the location of the -amy1 genes, using wheat-barley addition lines. Amplification of genomic DNA from wild barley accessions with primers Bsw1 and Bsw7 indicated that both of the fragments could be present, or the long and short fragments could be present alone. The results also demonstrated that the genes specifying these two fragments could be independent from each other in barley. The conserved banding pattern of these two fragments in the two-rowed barley varieties implies that artificial selection from these genes may have played an important role in the evolution of cultivated barley from wild barley.  相似文献   

16.
Electrophoresis in starch gel was used to study the polymorphism of hordeins controlled by loci Hrd A, Hrd B, and Hrd F in 89 accessions of the local barleys from South Arabia (Yemen). Overall, 36 alleles were detected for locus Hrd A; 48 alleles, for Hrd B; and 5 alleles, for Hrd F. The existence of the blocks of hordein components controlled by loci Hrd A and Hrd B was demonstrated. Calculation of genetic distances allows us to conclude that the barley populations from Yemen and Ethiopia are more similar compared with the populations from Egypt. This confirms the hypothesis of Bakhteev on the origin of Ethiopian barleys.  相似文献   

17.
Abstract A comparison was made of the content of total and some individual fatty acids in grains of nine barley varieties grown at six sites in Belgium. The varieties represented six- and two-rowed winter types and two-rowed spring types. The results showed that the winter types contain more linolenic acid (C18 : 3) than spring types and that six-rowed barleys have less total fatty acids than two-rowed barleys, due mainly to a low concentration of palmitic (C16:0), oleic (CI8 : 1) and linoleic (C18 : 2) acids. Analysis of variance showed that fatty acid content is affected by both the genotype and the environment and multiple regression analysis suggested that weather conditions before and after flowering affected lipid composition.  相似文献   

18.
The ITS region of the ribosomal RNA genes from two and six-rowed cultivated barley (Hordeum vulgare subsp. distichon and H. v. subsp. hexastichon, respectively), and its two and six-rowed wild relatives (H. v. subsp. spontaneum and H. v. subsp. agriocrithon, respectively) was isolated and sequenced. The entire ITS region is 598 bp in the two-rowed taxa (H. v. subsp. distichon and H. v. subsp. spontaneum) and 599 bp in the six-rowed ones (agriochriton and hexastichon). The ITS1 is 217 bp in the six-rowed barleys (H. v. subsp. agriochriton and H. v. subsp. hexastichon) and 218 bp in the two-rowed barleys (H. v. subsp. distichon and H. v. subsp. spontaneum). The 5.8S region is 163 bp in all studied H. vulgare taxa. The ITS2 region is 217 bp in the two-rowed barleys (H. v. subsp. distichon and H. v. subsp. spontaneum) and 219 bp in the six rowed ones (H. v. subsp. hexastichon and H. v. subsp. agriochriton). The ITS sequence data of the studied taxa and that of three other wild Hordeum species (H. murinum, H. marinum and H. chilense) were aligned and a phylogeny tree was reconstructed using the Lasergene Program. H. v. subsp. spontaneum was appeared as the ancestor of all other H. vulgare taxa.  相似文献   

19.

Key message

Analyses of registration trials of winter barley suggested that yield and yield stability can be enhanced by developing hybrid instead of line varieties.

Abstract

Yield stability is central to cope with the expected increased frequency of extreme weather conditions. The objectives of our study were to (1) examine the dimensioning of field trials needed to precisely portray yield stability of individual winter barley (Hordeum vulgare L.) genotypes, (2) compare grain yield performance and yield stability of two-rowed lines with those of six-rowed lines and hybrids, and (3) investigate the association of various agronomic traits with yield stability. Static and dynamic yield stability as well as grain yield performance was determined in five series of 3-year registration trials of winter barley in Germany. Each series included 4 or 5 six-rowed hybrids, 40–46 six-rowed inbred lines, as well as 42–49 two-rowed inbred lines. The genotypes were evaluated in 10–45 environments, i.e. year-by-location combinations. We found that precise assessment of yield stability of individual genotypes requires phenotyping in at least 40 test environments. Therefore, selection for yield stability is not usually feasible since the required number of test environments exceeds the common capacity of barley breeding programs. Also, indirect improvement of yield stability by means of agronomic traits seemed not possible since there was no constant association of any agronomic trait with yield stability. We found that compared with line varieties, hybrids showed on average higher grain yield performance combined with high dynamic yield stability. In conclusion, breeding hybrid instead of line varieties may be a promising way to develop high yielding and yield stable varieties.  相似文献   

20.
采用6对啤酒大麦的麦芽浸提和糖化力紧密连锁引物对103份采自贵州的野生大麦材料进行SSR标记。结果表明,贵州野生大麦麦芽品质性状存在丰富的变异,6对SSR引物共检测出38个等位变异,每个位点平均6.33个等位变异,其中GMS001位点对贵州野生大麦基因组DNA变异检测最有效。UPGMA聚类图显示,该6对与麦芽品质紧密连锁的SSR引物对区分野生大麦在贵州不同的资源产地和棱性是有效的,表现为遵义地区野生大麦遗传多样性丰富,而来自贵州凯里地区的野生大麦资源遗传多样性狭窄。麦芽品质性状标记结果表明贵州野生六棱大麦较四棱大麦的遗传差异更显著,表明进行贵州啤酒大麦人工育种的亲本应在亲缘关系较远的六棱大麦之间选择。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号