首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 409 毫秒
1.
2.
3.
Indole‐3–acetic acid (IAA), an auxin plant hormone, is biosynthesized from tryptophan. The indole‐3–pyruvic acid (IPyA) pathway, involving the tryptophan aminotransferase TAA1 and YUCCA (YUC) enzymes, was recently found to be a major IAA biosynthetic pathway in Arabidopsis. TAA1 catalyzes the conversion of tryptophan to IPyA, and YUC produces IAA from IPyA. Using a chemical biology approach with maize coleoptiles, we identified 5–(4–chlorophenyl)‐4H‐1,2,4–triazole‐3–thiol (yucasin) as a potent inhibitor of IAA biosynthesis in YUC‐expressing coleoptile tips. Enzymatic analysis of recombinant AtYUC1‐His suggested that yucasin strongly inhibited YUC1‐His activity against the substrate IPyA in a competitive manner. Phenotypic analysis of Arabidopsis YUC1 over‐expression lines (35S::YUC1) demonstrated that yucasin acts in IAA biosynthesis catalyzed by YUC. In addition, 35S::YUC1 seedlings showed resistance to yucasin in terms of root growth. A loss‐of‐function mutant of TAA1, sav3–2, was hypersensitive to yucasin in terms of root growth and hypocotyl elongation of etiolated seedlings. Yucasin combined with the TAA1 inhibitor l –kynurenine acted additively in Arabidopsis seedlings, producing a phenotype similar to yucasin‐treated sav3–2 seedlings, indicating the importance of IAA biosynthesis via the IPyA pathway in root growth and leaf vascular development. The present study showed that yucasin is a potent inhibitor of YUC enzymes that offers an effective tool for analyzing the contribution of IAA biosynthesis via the IPyA pathway to plant development and physiological processes.  相似文献   

4.
5.
6.
7.
8.
Hypocotyl growth occurs as a result of an interaction between environmental factors and endogenous phytohormones. In Arabidopsis, high temperature promotes auxin synthesis to increase hypocotyl growth. We previously showed that exogenously provided auxin stimulates expression of the brassinosteroid (BR) biosynthetic gene DWARF4. To determine whether temperature-induced hypocotyl elongation depends on BR biosynthesis, we examined the morphological responses to high temperature and the expression pattern of DWF4pro:GUS in different genetic backgrounds, which are as follows: Ws-2 wild-type, iaa19/msg2, bri1-5, and dwf7-1. In contrast to the wild-type, growth of the three genotypes at 29°C did not significantly increase hypocotyl length; whereas, with the exception of iaa19/msg2, the roots were elongated. These results confirm that BR biosynthesis and signaling pathways are required for hypocotyl growth at high temperature. Furthermore, a GUS histochemical assay revealed that a temperature of 29°C greatly increased DWF4pro:GUS expression in the shoot and root tips compared to a temperature of 22°C. Quantitative measurements of GUS activity in DWF4pro:GUS revealed that growth at 29°C is similar to the level of growth after addition of 100 nM IAA to the medium. Our results suggest that temperature-dependent synthesis of free auxin stimulates BR biosynthesis, particularly via the key biosynthetic gene DWF4, and that the BRs thus synthesized are involved in hypocotyl growth at high temperature.  相似文献   

9.
Qin G  Gu H  Zhao Y  Ma Z  Shi G  Yang Y  Pichersky E  Chen H  Liu M  Chen Z  Qu LJ 《The Plant cell》2005,17(10):2693-2704
Auxin is central to many aspects of plant development; accordingly, plants have evolved several mechanisms to regulate auxin levels, including de novo auxin biosynthesis, degradation, and conjugation to sugars and amino acids. Here, we report the characterization of an Arabidopsis thaliana mutant, IAA carboxyl methyltransferase1-dominant (iamt1-D), which displayed dramatic hyponastic leaf phenotypes caused by increased expression levels of the IAMT1 gene. IAMT1 encodes an indole-3-acetic acid (IAA) carboxyl methyltransferase that converts IAA to methyl-IAA ester (MeIAA) in vitro, suggesting that methylation of IAA plays an important role in regulating plant development and auxin homeostasis. Whereas both exogenous IAA and MeIAA inhibited primary root and hypocotyl elongation, MeIAA was much more potent than IAA in a hypocotyl elongation assay, indicating that IAA activities could be effectively regulated by methylation. IAMT1 was spatially and temporally regulated during the development of both rosette and cauline leaves. Changing expression patterns and/or levels of IAMT1 often led to dramatic leaf curvature phenotypes. In iamt1-D, the decreased expression levels of TCP genes, which are known to regulate leaf curvature, may partially account for the curly leaf phenotype. The identification of IAMT1 and the elucidation of its role in Arabidopsis leaf development have broad implications for auxin-regulated developmental process.  相似文献   

10.
11.
12.
Cheng Y  Dai X  Zhao Y 《The Plant cell》2007,19(8):2430-2439
Auxin plays a key role in embryogenesis and seedling development, but the auxin sources for the two processes are not defined. Here, we demonstrate that auxin synthesized by the YUCCA (YUC) flavin monooxygenases is essential for the establishment of the basal body region during embryogenesis and the formation of embryonic and postembryonic organs. Both YUC1 and YUC4 are expressed in discrete groups of cells throughout embryogenesis, and their expression patterns overlap with those of YUC10 and YUC11 during embryogenesis. The quadruple mutants of yuc1 yuc4 yuc10 yuc11 fail to develop a hypocotyl and a root meristem, a phenotype similar to those of mp and tir1 afb1 afb2 afb3 auxin signaling mutants. We further show that YUC genes play an essential role in the formation of rosette leaves by analyzing combinations of yuc mutants and the polar auxin transport mutants pin1 and aux1. Disruption of YUC1, YUC4, or PIN1 alone does not abolish leaf formation, but the triple mutant yuc1 yuc4 pin1 fails to form leaves and flowers. Furthermore, disruption of auxin influx carrier AUX1 in the quadruple mutant yuc1 yuc2 yuc4 yuc6, but not in wild-type background, phenocopies yuc1 yuc4 pin1, demonstrating that auxin influx is required for plant leaf and flower development. Our data demonstrate that auxin synthesized by the YUC flavin monooxygenases is an essential auxin source for Arabidopsis thaliana embryogenesis and postembryonic organ formation.  相似文献   

13.
We previously reported that exogenous application of auxin to Arabidopsis seedlings resulted in downregulation of indole-3-acetic acid (IAA) biosynthesis genes in a feedback manner. In this study, we investigated the involvement of the SCFTIR1/AFB-mediated signaling pathway in feedback regulation of the indole-3-pyruvic acid-mediated auxin biosynthesis pathway in Arabidopsis. Application of PEO-IAA, an inhibitor of the IAA signal transduction pathway, to wild-type seedlings resulted in increased endogenous IAA levels in roots. Endogenous IAA levels in the auxin-signaling mutants axr2-1, axr3-3, and tir1-1afb1-1afb2-1afb3-1 also increased. Furthermore, YUCCA (YUC) gene expression was repressed in response to auxin treatment, and expression of YUC7 and YUC8 increased in response to PEO-IAA treatment. YUC genes were also induced in auxin-signaling mutants but repressed in TIR1-overexpression lines. These observations suggest that the endogenous IAA levels are regulated by auxin biosynthesis in a feedback manner, and the Aux/IAA and SCFTIR1/AFB-mediated auxin-signaling pathway regulates the expression of YUC genes.  相似文献   

14.
Auxin is a key plant growth regulator that also impacts plant–pathogen interactions. Several lines of evidence suggest that the bacterial plant pathogen Pseudomonas syringae manipulates auxin physiology in Arabidopsis thaliana to promote pathogenesis. Pseudomonas syringae strategies to alter host auxin biology include synthesis of the auxin indole‐3‐acetic acid (IAA) and production of virulence factors that alter auxin responses in host cells. The application of exogenous auxin enhances disease caused by P. syringae strain DC3000. This is hypothesized to result from antagonism between auxin and salicylic acid (SA), a major regulator of plant defenses, but this hypothesis has not been tested in the context of infected plants. We further investigated the role of auxin during pathogenesis by examining the interaction of auxin and SA in the context of infection in plants with elevated endogenous levels of auxin. We demonstrated that elevated IAA biosynthesis in transgenic plants overexpressing the YUCCA 1 (YUC1) auxin biosynthesis gene led to enhanced susceptibility to DC3000. Elevated IAA levels did not interfere significantly with host defenses, as effector‐triggered immunity was active in YUC1‐overexpressing plants, and we observed only minor effects on SA levels and SA‐mediated responses. Furthermore, a plant line carrying both the YUC1‐overexpression transgene and the salicylic acid induction deficient 2 (sid2) mutation, which impairs SA synthesis, exhibited additive effects of enhanced susceptibility from both elevated auxin levels and impaired SA‐mediated defenses. Thus, in IAA overproducing plants, the promotion of pathogen growth occurs independently of suppression of SA‐mediated defenses.  相似文献   

15.
16.
17.
18.
19.
Both blue light (BL) and auxin are essential for phototropism in Arabidopsis thaliana. However, the mechanisms by which light is molecularly linked to auxin during phototropism remain elusive. Here, we report that PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 act downstream of the BL sensor PHOTOTROPIN1 (PHOT1) to negatively modulate phototropism in Arabidopsis. We also reveal that PIF4 and PIF5 negatively regulate auxin signaling. Furthermore, we demonstrate that PIF4 directly activates the expression of the AUXIN/INDOLE-3-ACETIC ACID (IAA) genes IAA19 and IAA29 by binding to the G-box (CACGTG) motifs in their promoters. Our genetic assays demonstrate that IAA19 and IAA29, which physically interact with AUXIN RESPONSE FACTOR7 (ARF7), are sufficient for PIF4 to negatively regulate auxin signaling and phototropism. This study identifies a key step of phototropic signaling in Arabidopsis by showing that PIF4 and PIF5 link light and auxin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号