首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spot blotch caused by Bipolaris sorokiniana is a major disease of wheat in warm and humid wheat growing regions of the world including south Asian countries such as India, Nepal and Bangladesh. The CIMMYT bread wheat line Saar which carries the leaf tip necrosis (LTN)-associated rust resistance genes Lr34 and Lr46 has exhibited a low level of spot blotch disease in field trials conducted in Asia and South America. One hundred and fourteen recombinant inbred lines (RILs) of Avocet (Susceptible) × Saar, were evaluated along with parents in two dates of sowing in India for 3 years (2007–2008 to 2009–2010) to identify quantitative trait loci (QTL) associated with spot blotch resistance, and to determine the potential association of Lr34 and Lr46 with resistance to this disease. Lr34 was found to constitute the main locus for spot blotch resistance, and explained as much as 55 % of the phenotypic variation in the mean disease data across the six environments. Based on the large effect, the spot blotch resistance at this locus has been given the gene designation Sb1. Two further, minor QTL were detected in the sub-population of RILs not containing Lr34. The first of these was located about 40 cM distal to Lr34 on 7DS, and the other corresponded to Lr46 on 1BL. A major implication for wheat breeding is that Lr34 and Lr46, which are widely used in wheat breeding to improve resistance to rust diseases and powdery mildew, also have a beneficial effect on spot blotch.  相似文献   

2.
Breeding for durable disease resistance is challenging, yet essential to improve crops for sustainable agriculture. The wheat Lr34 gene is one of the few cloned, durable resistance genes in plants. It encodes an ATP binding cassette transporter and has been a source of resistance against biotrophic pathogens, such as leaf rust (Puccinina triticina), for over 100 years. As endogenous Lr34 confers quantitative resistance, we wanted to determine the effects of transgenic Lr34 with specific reference to how expression levels affect resistance. Transgenic Lr34 wheat lines were made in two different, susceptible genetic backgrounds. We found that the introduction of the Lr34 resistance allele was sufficient to provide comparable levels of leaf rust resistance as the endogenous Lr34 gene. As with the endogenous gene, we observed resistance in seedlings after cold treatment and in flag leaves of adult plants, as well as Lr34‐associated leaf tip necrosis. The transgene‐based Lr34 resistance did not involve a hypersensitive response, altered callose deposition or up‐regulation of PR genes. Higher expression levels compared to endogenous Lr34 were observed in the transgenic lines both at seedling as well as adult stage and some improvement of resistance was seen in the flag leaf. Interestingly, in one genetic background the transgenic Lr34‐based resistance resulted in improved seedling resistance without cold treatment. These data indicate that functional variability in Lr34‐based resistance can be created using a transgenic approach.  相似文献   

3.
本研究旨在明确小麦农家品种中可能含有的抗叶锈病基因,为抗源的选择和利用提供理论依据。以15个小麦农家品种、感病对照品种郑州5389和36个含有已知抗叶锈病基因的载体品种为材料,苗期接种19个具有鉴别力的叶锈菌生理小种进行基因推导,同时利用12个与抗叶锈病基因紧密连锁的分子标记进行分析。为明确其成株期抗性,分别于2016-2017年和2017-2018年在河北保定对小麦农家品种、感病对照品种郑州5389与慢锈品种SAAR进行田间接种,调查并记录田间严重度及普遍率。基因推导和分子标记检测结果显示,在15个小麦农家品种中共检测到7个抗叶锈病基因,其中部分品种还有多个抗性基因,如红狗豆含有Lr1和Lr46;黄花麦含有Lr13和Lr34;大白麦含有Lr14b和Lr26;洋麦含有Lr37和Lr46;成都光头含有Lr34和Lr46;墨脱麦和西山扁穗含有Lr26和Lr46。部分品种含有1个成株期慢叶锈病抗性基因,如同家坝小麦、武都白茧儿、边巴春麦-6、白花麦含有Lr34;红抢麦、白扁穗和白火麦含有Lr46。这些携带有效抗叶锈病基因的农家品种,可为小麦抗叶锈病育种提供抗源。  相似文献   

4.
The wheat gene Lr34 confers durable and partial field resistance against the obligate biotrophic, pathogenic rust fungi and powdery mildew in adult wheat plants. The resistant Lr34 allele evolved after wheat domestication through two gain‐of‐function mutations in an ATP‐binding cassette transporter gene. An Lr34‐like fungal disease resistance with a similar broad‐spectrum specificity and durability has not been described in other cereals. Here, we transformed the resistant Lr34 allele into the japonica rice cultivar Nipponbare. Transgenic rice plants expressing Lr34 showed increased resistance against multiple isolates of the hemibiotrophic pathogen Magnaporthe oryzae, the causal agent of rice blast disease. Host cell invasion during the biotrophic growth phase of rice blast was delayed in Lr34‐expressing rice plants, resulting in smaller necrotic lesions on leaves. Lines with Lr34 also developed a typical, senescence‐based leaf tip necrosis (LTN) phenotype. Development of LTN during early seedling growth had a negative impact on formation of axillary shoots and spikelets in some transgenic lines. One transgenic line developed LTN only at adult plant stage which was correlated with lower Lr34 expression levels at seedling stage. This line showed normal tiller formation and more importantly, disease resistance in this particular line was not compromised. Interestingly, Lr34 in rice is effective against a hemibiotrophic pathogen with a lifestyle and infection strategy that is different from obligate biotrophic rusts and mildew fungi. Lr34 might therefore be used as a source in rice breeding to improve broad‐spectrum disease resistance against the most devastating fungal disease of rice.  相似文献   

5.
The non‐durable nature of hypersensitive (race‐specific) resistance has stimulated scientists to search for other options such as race‐non‐specific resistance to provide long‐lasting protection against plant diseases. Adult plant resistance gene complex Lr34/Yr18 confers a dual race‐non‐specific type of resistance to wheat against stripe rust (Puccinia striiformis f. sp. tritici) and leaf rust (P. triticina Eriks). This study was conducted to evaluate 59 spring bread wheat (Triticum aestivum L.) genotypes for the presence of the Lr34/Yr18‐linked csLV34 allele using STS marker csLV34 and to determine the effect of this gene complex on the components of partial resistance in wheat to leaf/stripe rust. Lr34/Yr18‐linked csLV34 allele was detected only in 12 genotypes, namely Iqbal 2000, NR‐281, NR 354, NR 363, NR 364, NR 366, NR 367, NR 370, NR 376, 4thEBWYT 509, 4thEBWYT 510 and 4thEBWYT 518. Eleven genotypes showing the amplified Lr34/Yr18‐linked allele were further studied for the assessment of the effect of Lr34/Yr18 on components of partial resistance along with nine genotypes lacking this gene complex. Both stripe and leaf rusts were studied separately. The components of partial resistance including latency period (LP) and infection frequency (IF) were studied on primary leaf (seedling stage), fourth leaf and fully expanded young flag leaf (adult plant stage). Both the stripe and leaf rust fungi showed a prolonged LP and reduced IF on genotypes carrying Lr34/Yr18 gene complex. Generally, a longer LP was associated with a reduced IF at all growth stages. Although significant effect of Lr34/Yr18 gene complex on LP and IF was observed almost at all three growth stages, the effect was more pronounced at flag leaf. This suggested that Lr34/Yr18 gene complex is more effective at later stages of plant growth.  相似文献   

6.
Resistance based on slow-rusting genes has proven to be a useful strategy to develop wheat cultivars with durable resistance to rust diseases in wheat. However this type of resistance is often difficult to incorporate into a single genetic background due to the polygenic and additive nature of the genes involved. Therefore, markers, both molecular and phenotypic, are useful tools to facilitate the use of this type of resistance in wheat breeding programs. We have used field assays to score for both leaf and yellow rust in an Avocet-YrA × Attila population that segregates for several slow-rusting leaf and yellow rust resistance genes. This population was analyzed with the AFLP technique and the slow-rusting resistance locus Lr46/Yr29 was identified. A common set of AFLP and SSR markers linked to the Lr46/Yr29 locus was identified and validated in other recombinant inbred families developed from single chromosome recombinant populations that segregated for Lr46. These populations segregated for leaf tip necrosis (LTN) in the field, a trait that had previously been associated with Lr34/Yr18. We show that LTN is also pleiotropic or closely linked to the Lr46/Yr29 locus and suggest that a new Ltn gene designation should be given to this locus, in addition to the one that already exists for Lr34/Yr18. Coincidentally, members of a small gene family encoding β-1 proteasome subunits located on group 1L and 7S chromosomes implicated in plant defense were linked to the Lr34/Yr18 and Lr46/Yr29 loci.  相似文献   

7.
Evidence exists that certain genes for resistance to leaf rust in wheat, e.g. Lr13 and Lr34 , may interact with other genes to condition higher levels of resistance than that conferred by each gene individually. In this study, the hypothesis that Lr12 and Lr13 , both genes for adult plant resistance to Puccinia recondita Roberge ex. Desmaz f. sp. tritici Eriks. and Henn., interact to confer an improved level of resistance, was investigated using fluorescence and phase-contrast microscopy. Flag leaf segments of monogenic and digenic Thatcher lines, sampled 64 and 240 h post-inoculation, were stained with Uvitex 2B and screened, using fluorescence microscopy, for development of infection structures or host response. To study cell wall appositions, specimens were stained with trypan blue and a solution of picric acid in methyl salicylate. Aborted penetration, consisting of nonpenetrating appressoria and aborted substomatal vesicles, showed that inhibition of fungal growth in wheat lines containing Lr12 and/or Lr13 was activated, to a certain degree, before haustoria were formed. At 240 h after inoculation colony size indicated that fungal colonies in the Lr gene combination lines were generally smaller than in the parents, but not necessarily smaller than those in a line with Lr13 only. Host cell necrosis was more frequently associated with infection sites, specifically of pathotype UVPrt2, in the combination lines than in the parents. The morphology of cell wall appositions varied considerably from a narrow, luminous zone slightly wider in the centre, to a thick central part opposite the haustorium mother cell, sharply decreasing towards both ends. Histological assessments could, however, not conclusively prove pronounced resistance enhancement or unconventional resistance mechanisms due to combining the genes Lr12 and Lr13 .  相似文献   

8.
Effect of gene Lr34 in the enhancement of resistance to leaf rust of wheat   总被引:1,自引:0,他引:1  
Summary Leaf rust resistance gene Lr34 is present in many wheat cultivars throughout the world that have shown durable resistance to leaf rust. Fourteen pair-wise combinations of Lr34 and seedling leaf rust resistance genes were developed by intercrossing near isogenic Thatcher lines. In both seedling and adult plant tests homozygous paired combinations of specific resistance genes with Lr34 had enhanced resistance relative to either parent to different numbers of isolates that were avirulent to the additional resistance genes. The TcLr34, 18 line also expressed enhanced resistance to specific isolates virulent to Lr18 in seedling and adult plant stages. In rust nursery tests, homozygous lines were more resistant than either parent, if the additional leaf rust gene conditioned an effective of resistance when present singly. The ability of Lr34 to interact with other genes conditioning effective resistance may contribute to the durability of leaf rust resistance in cultivars with Lr34. Contribution 1453 Agriculture Canada  相似文献   

9.
The incorporation of effective and durable disease resistance is an important breeding objective for wheat improvement. The leaf rust resistance gene Lr34 and stripe rust resistance gene Yr18 are effective at the adult plant stage and have provided moderate levels of durable resistance to leaf rust caused by Puccinia triticina Eriks. and to stripe rust caused by Puccinia striiformis Westend. f. sp. tritici. These genes have not been separated by recombination and map to chromosome 7DS in wheat. In a population of 110 F7 lines derived from a Thatcher × Thatcher isogenic line with Lr34/Yr18, field resistance to leaf rust conferred by Lr34 and to stripe rust resistance conferred by Yr18 cosegregated with adult plant resistance to powdery mildew caused by Blumeria graminis (DC) EO Speer f. sp. tritici. Lr34 and Yr18 were previously shown to be associated with enhanced stem rust resistance and tolerance to barley yellow dwarf virus infection. This chromosomal region in wheat has now been linked with resistance to five different pathogens. The Lr34/Yr18 phenotypes and associated powdery mildew resistance were mapped to a single locus flanked by microsatellite loci Xgwm1220 and Xgwm295 on chromosome 7DS.  相似文献   

10.
The locus Lr34/Yr18 plays an important role in conferring resistance to a number of fungal diseases and is thus an important component of global wheat breeding efforts. We investigated the differences in disease response and agronomic traits of the ‘CDC Teal’ × ‘CDC Go’ spring wheat population of 187 recombinant inbred lines (RILs) in relation to the presence/absence of the rust resistance gene Lr34/Yr18. Lines carrying the resistant allele of Lr34/Yr18 were taller, matured earlier, and yielded less grain with lower test weights than lines without Lr34/Yr18. Lines with or without the resistant allele of Lr34/Yr18 did not differ for grain protein content, SDS sedimentation volume, and for resistance to leaf spotting and common bunt. Lines with Lr34/Yr18 exhibited lower leaf and stripe rust infection than lines without it. We selected superior lines from the population based on high yield, protein content, SDS sedimentation, and the presence of the resistant allele of Lr34/Yr18 and grew them with continued selection in replicated yield trials over nine site-years. We attempted to combine Lr34/Yr18 with high yield, protein content, and SDS sedimentation suitable for the Canadian western red spring wheat class. Our results suggested that the population size we used was not large enough to obtain recombinants with high yield potential, high grain protein, and acceptable quality attributes. Moreover, selection for Lr34/Yr18 resulted in the elimination of lines with high yield potential. We therefore suggest using a population size of at least 310 to increase the potential of pooling Lr34/Yr18 with high grain yield and desirable agronomic and end-use quality attributes.  相似文献   

11.
The Indian bread wheat cultivar HD2009 has maintained its partial resistance to leaf rust and stripe rust in India since its release in 1976. To examine the nature, number and mode of inheritance of its genes for partial leaf rust and stripe rust resistance, this cultivar was crossed with cultivar WL711, which is susceptible to leaf rust and stripe rust. The F1, F2, F3 and F5 generations from this cross were assessed separately for adult plant disease severity under artificial epidemic of race 77-5 of leaf rust and race 46S119 of stripe rust. Segregation for rust reaction in the F2, F3 and F5 generations indicated that resistance to each of these rust diseases is based on 2 genes, each with additive effects. Although the leaf rust resistance of HD2009 is similar in expression to that conferred by the gene Lr34, but unlike the wheats carrying this gene, cultivar HD2009 did not show leaf tip necrosis, a morphological marker believed to be tightly linked to the leaf rust resistance gene Lr34. Thus, the non-hypersensitive resistance of HD2009 was ascribed to genes other than Lr34.  相似文献   

12.
The ability of the wheat Lr34 multipathogen resistance gene (Lr34res) to function across a wide taxonomic boundary was investigated in transgenic Sorghum bicolor. Increased resistance to sorghum rust and anthracnose disease symptoms following infection with the biotrophic pathogen Puccinia purpurea and the hemibiotroph Colletotrichum sublineolum, respectively, occurred in transgenic plants expressing the Lr34res ABC transporter. Transgenic sorghum lines that highly expressed the wheat Lr34res gene exhibited immunity to sorghum rust compared to the low‐expressing single copy Lr34res genotype that conferred partial resistance. Pathogen‐induced pigmentation mediated by flavonoid phytoalexins was evident on transgenic sorghum leaves following P. purpurea infection within 24–72 h, which paralleled Lr34res gene expression. Elevated expression of flavone synthase II, flavanone 4‐reductase and dihydroflavonol reductase genes which control the biosynthesis of flavonoid phytoalexins characterized the highly expressing Lr34res transgenic lines 24‐h post‐inoculation with P. purpurea. Metabolite analysis of mesocotyls infected with C. sublineolum showed increased levels of 3‐deoxyanthocyanidin metabolites were associated with Lr34res expression, concomitant with reduced symptoms of anthracnose.  相似文献   

13.
14.
15.
Maize (corn) is one of the most widely grown cereal crops globally. Fungal diseases of maize cause significant economic damage by reducing maize yields and by increasing input costs for disease management. The most sustainable control of maize diseases is through the release and planting of maize cultivars with durable disease resistance. The wheat gene Lr34 provides durable and partial field resistance against multiple fungal diseases of wheat, including three wheat rust pathogens and wheat powdery mildew. Because of its unique qualities, Lr34 became a cornerstone in many wheat disease resistance programmes. The Lr34 resistance is encoded by a rare variant of an ATP‐binding cassette (ABC) transporter that evolved after wheat domestication. An Lr34‐like disease resistance phenotype has not been reported in other cereal species, including maize. Here, we transformed the Lr34 resistance gene into the maize hybrid Hi‐II. Lr34‐expressing maize plants showed increased resistance against the biotrophic fungal disease common rust and the hemi‐biotrophic disease northern corn leaf blight. Furthermore, the Lr34‐expressing maize plants developed a late leaf tip necrosis phenotype, without negative impact on plant growth. With this and previous reports, it could be shown that Lr34 is effective against various biotrophic and hemi‐biotrophic diseases that collectively parasitize all major cereal crop species.  相似文献   

16.
The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad‐spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field‐grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome‐encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up‐regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress‐response genes were up‐regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad‐spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat.  相似文献   

17.
To investigate biochemical aspects of resistance conferred by the Lr35 gene for adult-plant resistance in wheat ( Triticum aestivum L.) to leaf rust, pathogen development was related to intercellular protein composition and β -1,3-glucanase (EC 3.2.1.39) activities at three growth stages in infected and uninfected resistant (RL6082 [Thatcher/ Lr35 ]) and susceptible (Thatcher) plants. Leaf rust symptoms produced by pathotype UVPrt9 of Puccinia recondita f. sp. tritici showed that resistance conferred by Lr35 was most effective at the flag leaf stage. Furthermore, fluorescence microscopy indicated that resistance was strongly associated with hypersensitive cell death of invaded tissue. According to polypeptide profiles, intercellular proteins with molecular masses of 35, 33, 31 and 26 kDa were constitutively present at higher levels in resistant than in susceptible plants at the flag leaf stage. Four intercellular proteins (35, 33, 32 and 31 kDa) serologically related to β -1,3-glucanase were present in resistant and susceptible genotypes during all stages of plant growth. Resistance was associated with high constitutive levels of β -1,3-glucanase activity. Susceptibility on the other hand was associated with low constitutive levels of β -1,3-glucanase, while high levels were induced by infection during more advanced stages of colonization. Our results suggest that β -1,3-glucanase is involved in the defense response controlled by the Lr35 gene.  相似文献   

18.
Powdery mildew, caused by Blumeria graminis f. sp. tritici is a major disease of wheat (Triticum aestivum L.) that can be controlled by resistance breeding. The CIMMYT bread wheat line Saar is known for its good level of partial and race non-specific resistance, and the aim of this study was to map QTLs for resistance to powdery mildew in a population of 113 recombinant inbred lines from a cross between Saar and the susceptible line Avocet. The population was tested over 2 years in field trials at two locations in southeastern Norway and once in Beijing, China. SSR markers were screened for association with powdery mildew resistance in a bulked segregant analysis, and linkage maps were created based on selected SSR markers and supplemented with DArT genotyping. The most important QTLs for powdery mildew resistance derived from Saar were located on chromosomes 7DS and 1BL and corresponded to the adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29. A major QTL was also located on 4BL with resistance contributed by Avocet. Additional QTLs were detected at 3AS and 5AL in the Norwegian testing environments and at 5BS in Beijing. The population was also tested for leaf rust (caused by Puccinia triticina) and stripe rust (caused by P. striiformis f. sp. tritici) resistance and leaf tip necrosis in Mexico. QTLs for these traits were detected on 7DS and 1BL at the same positions as the QTLs for powdery mildew resistance, and confirmed the presence of Lr34/Yr18 and Lr46/Yr29 in Saar. The powdery mildew resistance gene at the Lr34/Yr18 locus has recently been named Pm38. The powdery mildew resistance gene at the Lr46/Yr29 locus is designated as Pm39.  相似文献   

19.
It is known that few wheat cultivars maintain their resistance to rust diseases for a long period of time, particularly when crop populations become genetically more uniform. A number of genetically diverse, so far unexploited, sources of rust resistance in the natural as well as mutagenized population of wheat cultivars were identified. Several of these genes were placed in agronomically superior well-adapted backgrounds so that they could be used as pre-breeding stocks for introducing genetic diversity for resistance in a crop population. Some of these stocks when employed as parents in several cross combinations in a breeding programme have generated a number of promising cultivars with diversity for resistance.Many presently grown wheats in India, near-isogenic lines each with Lr14b, Lr14ab, Lr30 and certain international cultivars were identified as possessing diverse sources of adult plant resistance (APR) to leaf rust. Prolonged leaf rust resistance in some of the Indian cultivars was attributed to the likely presence of Lr34 either alone or in combination with other APR components. Tests of allelism carried out in certain cultivars that continue to show adequate levels of field resistance confirm the presence of Lr34, which explains the role that this gene has played in imparting durability for resistance to leaf rust. Also, Lr34 in combination with other APR components increases the levels of resistance, which suggests that combination of certain APR components should be another important strategy for breeding cultivars conferring durable and adequate levels of resistance. A new adult plant leaf rust resistance source that seems to be associated with durability in Arjun has been postulated. Likewise, cultivars possessing Sr2 in combination with certain other specific genes have maintained resistance to stem rust.Further, non-specific resistances that were transferred across widely different genotypes into two of the popular Indian wheats provided easily usable materials to the national breeding programmes for imparting durable resistance to stripe rust.  相似文献   

20.
The distribution of alleles at the Lr34 locus associated with leaf rust resistance among winter common wheat (Triticum aestivum L.) cultivars of Ukrainian breeding was studied. Co-dominant molecular-genetic marker cssfr5 was used for detection of the allelic condition of the Lr34 locus. The cultivars with detected allele Lr34(+) were identified as potentially "resistant" and the cultivars in which detected allele Lr34(-) were identified as potentially "susceptible". The collection of the cultivars (81 ones), created in the main plant breeding centers of Ukraine was analyzed. The allele Lr34(+) was identified in 44% cultivars. Results were compared with the data about the distribution of the Lr34(+) in cultivars created in different countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号