首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The rates of hydrolysis of N alpha-benzoyl-p-guanidino-L-phenylalaninamide (Bz-GPA-NH2) and N alpha-substituted p-nitroanilides (pNA) of GPA (benzyloxycarbonyl(Z)-GPA-pNA, benzoyl(Bz)-GPA-pNA and acetyl(Ac)-GPA-pNA) by bovine and porcine trypsins were compared with those of arginine (Arg) substrates. The amide type substrates of GPA were hydrolyzed as fast as those of Arg by the two enzymes with much the same kcat/Km values, though significant differences were found between the kcat and Km values of GPA derivatives and those of Arg derivatives. The kinetic behavior of porcine trypsin toward GPA substrates was almost the same as that of the bovine enzyme. The ratio of the kcat value for Bz-GPA-OEt to that for Bz-GPA-NH2 was much larger than that for the ester to amide substrates of arginine, suggesting that the conformational change of the active site of trypsin induced by a benzene ring in the side chain of Bz-GPA-OEt specifically increases the velocity of the deacylation process of the ester substrate. Remarkably low values of both kcat and Km were found for the tryptic hydrolysis of Z-GPA-pNA and Ac-GPA-pNA, as well as on that of Bz-GPA-pNA (Tsunematsu, H., et al. (1983) J. Biochem. 94, 123-128). Z-GPA-pNA is the best substrate for the two trypsins among the three N alpha-substituted anilide substrates of GPA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Trypsin catalyzed hydrolysis of seven new chromogenic arginine substrates, N alpha-benzyloxycarbonyl-L-arginine-3-nitro-5X-anilide (X = H, CF3, SO2CH3, F, Cl, Br and I) were studied. These substrates are suitable for studying electronic effects on trypsin activity. The Km and kcat values for the hydrolysis of each substrate were determined and found to differ significantly for the various substrates. The Hammett plot of the catalytic rate constants gave a straight line with a negative rho value (-0.82) thus indicating that electron withdrawing substituents retard the trypsin catalyzed hydrolysis of the new anilide substrates.  相似文献   

3.
The activities of highly purified human enterokinase (enteropeptidase, EC 3.4.21.9) and bovine trypsin were tested against three synthetic substrates alpha-N-Benzoyl-L-arginine ethyl ester HCl, alpha-N-Benzoyl-DL-arginine-p-nitroanilide HCl and alpha-N-Benzoyl-DL-arginine-2-naphthylamide HCl. There was no detectable hydrolysis of these substrates by enterokinase whereas the kinetic parameters obtained for trypsin were in close agreement with those previously described by other workers. The values for Km and kcat were dependent on the Ca2+ concentration. Hydrolysis of glycine-tetra-L-aspartyl-L-lysyl-2-naphthylamide (Gly(Asp)4-Lys-Nap) by these protease was also studied. Enterokinase-catalysed hydrolysis obeyed simple steady-state kinetics and values for Km of 0.525 mM and 0.28 mM and for kcat of 21.5 s-1 and 28.3 s-1 were obtained in 0.1 mM and 10 mM Ca2+, respectively. Trypsin-catalysed hydrolysis was complex and the response to Ca2+ was sigmoidal partly due to the lability of trypsin at low Ca2+ concentrations. A sensitive specific assay for enterokinase was developed and applied to the measurement of the enzyme in serum; interference by nonspecific arylamidases was eliminated by the addition of Zn2+.  相似文献   

4.
The dysthrombin, Thrombin Quick, is chromatographically separable into two components designated Thrombin Quick I and Thrombin Quick II. Thrombin Quick II lacks observable catalytic activity toward thrombin substrates. The steady-state kinetics of hydrolysis of benzoylarginine ethyl ester and Tos-Gly-Pro-Arg-p-nitroanilide by Thrombin Quick I are equivalent to those of thrombin. These results, in addition to binding studies with the active site titrant N2-(5-dimethylaminonaphthalene-1-sulfonyl)arginine N-(3-ethyl-1,5-pentanediyl)amide, indicate that binding interactions at the catalytic site of Thrombin Quick I are unaltered. Thrombin Quick I is inhibited by anti-thrombin III at the same rate as thrombin. Steady-state kinetic parameters for the release of fibrinopeptide A indicate defects in both kcat and Km for Thrombin Quick I with kcat/Km equal to 0.012 of the value for thrombin, corresponding to the relative fibrinogen clotting activity of 0.013. The results are interpreted as indicating a defect in Thrombin Quick I at a binding site, external to the catalytic site, which is essential for determining specificity toward fibrinogen. The defect in kcat may result secondarily from small perturbations in the steric relationship of the catalytic triad residues. The rate of hydrolysis by Thrombin Quick I of the protein substrates bovine prothrombin and bovine protein C (in the absence of cofactors) is about one-third of that observed for thrombin, indicating that hydrolysis of these substrates by thrombin involves different specificity determinants than does the hydrolysis of fibrinogen.  相似文献   

5.
The allosteric effect of salt on human mast cell tryptase   总被引:1,自引:0,他引:1  
The inhibitory effect of potassium chloride and ammonium sulphate on purified human skin tryptase and bovine trypsin was studied enzyme-kinetically, using Z-Gly-Pro-Arg-pNA, Z-Gly-Pro-Arg-AMC, benzoyl-L-arginine ethyl ester (BAEE) and tosyl-L-arginine methyl ester (TAME) as substrates. With increasing salt concentrations, the curve of reaction velocity vs. substrate concentration changed from hyperbolic to sigmoidal when anilide substrates (Z-Gly-Pro-Arg-pNA or -AMC) were used. Only the Km value increased, while the Vmax value remained unchanged. The trend was similar with BAEE or TAME as the substrates. However, the effect of salt on the hydrolysis of these ester substrates was not as strong as on the hydrolysis of anilide substrates, and sigmoidal kinetics were not observed even at the highest KCl concentration (0.7 M) used. Heparin, used as a stabilizer, had no influence on this phenomenon, but it did slightly decrease the apparent Km and Vmax values in low-salt conditions. By comparison, trypsin was not as strongly affected by salt as tryptase, and the inhibition type was mixed competitive and non-competitive. The present results indicate that the salt acts on tryptase as an allosteric effector, and this should be carefully considered when enzyme kinetic parameters and enzyme activity of skin tryptase are measured.  相似文献   

6.
The pH dependence of kcat/Km for the papain-catalyzed hydrolysis of ethyl hippurate, N-alpha-benzoyl-L-citrulline methyl ester, and the p-nitroanilide, amide, and ethyl ester derivatives of N-alpha-benzoyl-L-arginine was determined below pH 6.4. The value of kcat/Km was observed to be modulated by two acid ionizations rather than a single ionization as previously believed. For the five substrates studied, the average pK values for the two ionizations are 3.78 +/- 0.2 and 3.95 +/- 0.1 at T/2 0.3, 25 degrees C. The observation that similar pK values were obtained with different substrates was taken as evidence that the kinetically determined pK values are close in value to true macroscopic ionization constants for ionization of groups on the free enzyme.  相似文献   

7.
Kinetic constants for the hydrolysis by porcine tissue beta-kallikrein B and by bovine trypsin of a number of peptides related to the sequence of kininogen (also one containing a P2 glycine residue instead of phenylalanine) and of a series of corresponding arginyl peptide esters with various apolar P2 residues have been determined under strictly comparative conditions. kcat and kcat/Km values for the hydrolysis of the Arg-Ser bonds of the peptides by trypsin are conspicuously high. kcat for the best of the peptide substrates, Ac-Phe-Arg-Ser-Val-NH2, even reaches kcat for the corresponding methyl ester, indicating rate-limiting deacylation also in the hydrolysis of a peptide bond by this enzyme. kcat/Km for the hydrolysis of the peptide esters with different nonpolar L-amino acids in P2 is remarkably constant (range 1.7), as it is for the pair of the above pentapeptides with P2 glycine or phenylalanine. kcat for the ester substrates varies fivefold, however, being greatest for the P2 glycine compounds. Obviously, an increased potential of a P2 residue for interactions with the enzyme lowers the rate of deacylation. In contrast to results obtained with chymotrypsin and pancreatic elastase, trypsin is well able to tolerate a P3 proline residue. In the hydrolysis of peptide esters, tissue kallikrein is definitely superior to trypsin. Conversely, peptide bonds are hydrolyzed less efficiently by tissue kallikrein and the acylation reaction is rate-limiting. The influence of the length of peptide substrates is similar in both enzymes and indicates an extension of the substrate recognition site from subsite S3 to at least S'3 of tissue kallikrein and the importance of a hydrogen bond between the P3 carbonyl group and Gly-216 of the enzymes. Tissue kallikrein also tolerates a P3 proline residue well. In sharp contrast to the behaviour of trypsin is the very strong influence of the P2 residue in tissue-kallikrein-catalyzed reactions. kcat/Km varies 75-fold in the series of the dipeptide esters with nonpolar L-amino acid residues in P2, a P2 glycine residue furnishing the worst and phenylalanine the best substrate, whereas this exchange in the pentapeptides changes kcat/Km as much as 730-fold. This behaviour, together with the high value of kcat/Km for Ac-Phe-Arg-OMe of 3.75 X 10(7) M-1 s-1, suggests rate-limiting binding (k1) in the hydrolysis of the best ester substrates.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Bovine pancreatic trypsin was treated with ethylene glycol bis(succinic acid N-hydroxysuccinimide ester). Approximately 8 of 14 lysines per trypsin molecule were modified. This derivative (EG trypsin) was more stable than native between 30 degrees and 70 degrees C: T50 values were 59 degrees C and 46 degrees C, respective. EG trypsin's half-life of 25 min at 55 degrees C was fivefold greater than native's. EG trypsin had a decreased rate of autolysis and retained more activity in aqueous mixtures of 1,4-dioxan, dimethylformamide, dimethylsulfoxide, and acetonitrile. EG trypsin had lower Km values for both amide and ester substrates; its kcat values for two amides (benzoyl-L-arginine p-nitroanilide and benzyloxycarbonyl glycyl-glycyl-arginyl-7-amino-4-methyl coumarin) increased, whereas its kcat value for an ester (thiobenzoyl benzoyloxycarbonyl-L-lysinate) decreased slightly. The specific activity (kcat/Km) of EG trypsin was increased for both amide and ester substrates. EG trypsin gave higher yields and reaction rates than native in kinetically controlled synthesis of benzoyl argininyl-leucinamide in acetonitrile and in t-butanol. Highest peptide yields occurred with EG trypsin in 95% acetonitrile, where 90% of the substrate was converted to product. No peptide synthesis occurred in 95% DMF with either form of trypsin.  相似文献   

9.
The chemical synthesis of N-alpha-benzyloxycarbonyl-L-lysine p-nitroanilide (Z-Lys-pNA) is described in detail. The pH-dependence of the catalytic parameters kcat,' Km and kcat./Km for the papain-catalysed hydrolysis of Z-Lys-pNA are determined. kcat. and Km are pH-independent between pH 5 and pH 7.42, but the pH-dependence of kcat./Km is bell-shaped, decreasing at high and low pH values with pKa values of 7.97 and 4.40 respectively. The catalytic parameters and their pH-dependence are shown to be similar to those reported for other anilide substrates and it is concluded that the Km value of 0.01 mM previously reported [Angelides & Fink (1979) Biochemistry 18, 2355-2369] is incorrect. The possibility of accumulating a tetrahedral intermediate during the papain-catalysed hydrolysis of Z-Lys-pNA is discussed.  相似文献   

10.
Hydrolyses catalyzed by bovine pancreatic trypsin and porcine pancreatic kallikrein were studied using synthetic peptide substrates of the type E chi-L chi 2-L chi 1 decreases Y and E chi-L chi 3-L chi 2-L chi 1 decreases Y with L chi 1 = Arg defining the hydrolysis position (indicated by the arrow). The leaving moiety Y was -OCH3, -NH-C6H4-p-NO2 and -Ala-NH2. Insight into interactions occurring between the active site of the enzymes and the acyl moiety of the substrates was gained by studying the influence on hydrolysis rate of structural variation of residues L chi 2 and L chi 3. Parallel analyses of the hydrolyses of the ester, anilide, and peptide substrates having the same acyl moiety considerably facilitated the interpretation of the kinetic data. Trypsin, but not kallikrein, displayed high reactivity even with relatively short substrates. Ac-Ala-Arg-Ala-NH2, for example, was a better substrate for trypsin than for kallikrein by a factor of 1.3 X 10(4) in terms of kcat and 5.9 X 10(4) in terms of kcat/Km. Reactivity differences of such magnitude were related to two main differences in enzyme-substrate interactions: the interaction of the arginine side chain of the substrate with the specificity pocket of the enzyme is optimal for trypsin but poor for kallikrein and the number of hydrogen bonds formed by the enzyme with the backbone section of the substrate on both sides of the specific residue is larger in the case of trypsin. The latter difference is found to be related to the structure of amino-acid residue 192 which is glutamine in trypsin and methionine in kallikrein.  相似文献   

11.
A series of dipeptide derivatives of Rhodamine, each containing an arginine residue in the P1 position and one of ten representative benzyloxycarbonyl (Cbz)-blocked amino acids in the P2 position, has been synthesized, purified and characterized as substrates for serine proteinases. These substrates are easily prepared with high yields. Cleavage of a single amide bond converts the non-fluorescent bisamide substrate into a highly fluorescent monoamide product. Macroscopic kinetic constants for the interaction of these substrates with bovine trypsin, human and dog plasmin, and human thrombin are reported. Certain of these substrates exhibit extremely large specificity constants. For example, the kcat./Km for bovine trypsin with bis-(N-benzyloxycarbonylglycyl-argininamido)-Rhodamine [(Cbz-Gly-Arg-NH)2-Rhodamine] is 1 670 000 M-1 X S-1. Certain of these substrates are also highly selective. For example, the most specific substrate for human plasmin, (Cbz-Phe-Arg-NH2)-Rhodamine, is not hydrolysed by human thrombin, and the most specific substrate for human thrombin, (Cbz-Pro-Arg-NH)2-Rhodamine, is one of the least specific substrates for human plasmin. Comparison of the kinetic constants for hydrolysis of the dipeptide substrates with that of the single amino acid derivative, (Cbz-Arg-NH)2-Rhodamine, indicates that selection of the proper amino acid residue in the P2 position can effect large increases in substrate specificity. This occurs primarily as a result of an increase in kcat. as opposed to a decrease in Km and, in certain cases, is accompanied by a large increase in selectivity. Because of their high degree of sensitivity and selectivity, these Rhodamine-based dipeptide compounds should be extremely useful substrates for studying serine proteinases.  相似文献   

12.
A serine proteinase (ycaB) from the yeast Candida albicans A.T.C.C. 10261 was purified to near homogeneity. The enzyme was almost indistinguishable from yeast proteinase B (EC 3.4.21.48), and an Mr of 30,000 for the proteinase was determined by SDS/polyacrylamide-gel electrophoresis. The initial site of hydrolysis of the oxidized B-chain of insulin, by the purified proteinase, was the Leu-Tyr peptide bond. The preferential degradation at this site, analysed further with N-blocked amino acid ester and amide substrates, demonstrated that the specificity of the proteinase is determined by an extended substrate-binding site, consisting of at least three subsites (S1, S2 and S'1). The best p-nitrophenyl ester substrates were benzyloxycarbonyl-Tyr p-nitrophenyl ester (kcat./Km 3,536,000 M-1 X S-1), benzyloxycarbonyl-Leu p-nitrophenyl ester (kcat./Km 2,250,000 M-1 X S-1) and benzyloxycarbonyl-Phe p-nitrophenyl ester (kcat./Km 1,000,000 M-1 X S-1) consistent with a preference for aliphatic or aromatic amino acids at subsite S1. The specificity for benzyloxycarbonyl-Tyr p-nitrophenyl ester probably reflects the binding of the p-nitrophenyl group in subsite S'1. The presence of S2 was demonstrated by comparison of the proteolytic coefficients (kcat./Km) for benzyloxycarbonyl-Ala p-nitrophenyl ester (825,000 M-1 X S-1) and t-butyloxycarbonyl-Ala p-nitrophenyl ester (333,000 M-1 X S-1). Cell-free extracts contain a heat-stable inhibitor of the proteinase.  相似文献   

13.
The effect of aqueous methanol cryosolvents on the catalytic and structural properties of bovine trypsin has been investigated. The low freezing points and low viscosities of methanol-based cryosolvents are desirable for a variety of cryoenzymological experiments. Increasing concentrations of methanol caused increases in the values of kcat and Km for the hydrolysis of N alpha-benzyloxycarbonyl-L-lysine p-nitrophenyl ester at 0 degrees C and a small increase in Ki for inhibition by benzamidine. Based on product analysis the increase in kcat with increasing methanol concentration at pH* 4.0 and 6.5 can be completely accounted for by nucleophilic competition of methanol for the acyl enzyme intermediate. This observation indicates that deacylation is the rate-limiting step under these conditions. The effect of increasing methanol concentration on kcat/Km for the above ester substrate and N alpha-benzoyl-L-arginine p-nitroanilide was similar. Incubation experiments indicated that trypsin was quite stable in 70% methanol at 0 degrees C and below. The Arrhenius plot for the catalytic reaction in 70% methanol was linear over the 0 to -40 degrees C range, indicating no change in rate-determining step nor temperature-induced structural perturbation. No evidence for structural effects induced by methanol or temperature were detected by monitoring the intrinsic fluorescence and absorbance. We conclude that aqueous methanol cryosolvents are satisfactory for cryosolvent studies of trypsin.  相似文献   

14.
A serine protease shown to be trypsin was purified from the pyloric caeca of Atlantic cod (Gadus morhua), and resolved into three differently charged species by chromatofocusing (pI 6.6, 6.2 and 5.5). All three trypsins had similar molecular mass of 24.2 kDa. N-terminal amino acid sequence analysis of cod trypsin showed considerable similarity with other known trypsins, particularly with dogfish and some mammalian trypsins. The apparent Km values determined at 25 degrees C for the predominant form of Atlantic cod trypsin towards p-tosyl-L-arginine methyl ester and N-benzoyl-L-arginine p-nitroanilide were 29 microM and 77 microM respectively, which are notably lower values than those determined for bovine trypsin (46 microM and 650 microM respectively). The difference was particularly striking when the amidase activity of the enzymes was compared. Furthermore, the kcat values determined for the Atlantic cold trypsins were consistently higher than the values determined for bovine trypsin. The higher catalytic efficiency (kcat/Km) of Atlantic cod trypsin as compared to bovine trypsin may reflect an evolutionary adaptation of the poikilothermic species to low environmental temperatures.  相似文献   

15.
The substituent dependence for kcat/Km of trypsin anilide hydrolysis is consistent with a rate-limiting general acid-base catalysed breakdown of a tetrahedral intermediate. The formation and disappearance of this intermediate during the hydrolysis of alpha-N-acetyl-L-lysin p-nitroanilide is observed in stopped-flow experiments.  相似文献   

16.
Initial rates of peptide-bond synthesis catalyzed by poly(ethylene glycol)-modified chymotrypsin in benzene were determined using high-performance liquid chromatography. Enzymatic synthesis of N-benzoyl-L-tyrosyl-L-phenylalanine amide from N-benzoyl-L-tyrosine ethyl ester and L-phenylalanine amide was found to obey Michaelis-Menten kinetics an to be consistent with a ping-pong mechanism modified by a hydrolytic branch. The catalytic activity of modified chymotrypsin was dependent on both water concentration and type of organic solvent, the highest synthesis rate being obtained in toluene. Since the chymotrypsin specificity in the organic phase was actually altered, the enzyme's apparent kinetic parameters were determined for different substrates and compared to those obtained with other serine proteases in benzene. Both N-benzoyl-L-tyrosine ethyl ester and N-alpha-benzoyl-L-lysine methyl ester were comparable acyl donors in benzene and the (kcat/Km)app value of modified chymotrypsin was only 10-fold smaller than that obtained with poly(ethylene glycol)-modified trypsin in the synthesis of N-alpha-benzoyl-L-lysyl-L-phenylalanine amide. The change in chymotrypsin specificity was also confirmed through the binding of trypsin inhibitors in benzene. The overall results suggest that hydrophobic bonding between the enzyme and its substrate should not be taken into account during catalysis in the organic phase. In general, if hydrophobic interactions are involved in the binding of substrates to the active site in aqueous media, the replacement of water by hydrophobic solvents will induce some change in enzyme specificity. Moreover, secondary residues of enzyme-binding sites may also exert a significant influence on specificity since, as observed in this study, chymotrypsin exhibited high affinity for cationic substrates and cationic inhibitors as well in apolar solvents.  相似文献   

17.
Limited proteolysis of carboxypeptidase A from bovine pancreas with subtilisin Carlsberg generates a stable intermediate, carboxypeptidase S, whose esterase and peptidase activities are increased and decreased, respectively, under standard assay conditions. Carboxypeptidase S was isolated by affinity chromatography. Sequence analysis shows that it is cleaved solely at the Ala154-Gly155 bond. Its enzymatic properties were determined under stopped-flow conditions with Dns-Gly-Ala-Phe and its ester analogue Dns-Gly-Ala-OPhe. For both substrates, the Km values are increased 30-40-fold. The kcat value for peptide hydrolysis is virtually unaffected whereas that for ester hydrolysis is increased 10-fold. The magnitude of the Km effect is equivalent to a loss of 9 kJ/mol of binding energy and likely reflects a disruption of the network of hydrogen bonds that links Tyr-248 and Arg-145 to the backbone carbonyls of Ala-154 and Gly-155. The difference in kcat effects for the two substrate classes is related to differences in the chemical nature of the rate-determining step. Product release is rate determining for catalytic hydrolysis of ester substrates, and hence, the increase in kcat indicates that dissociation of products is facilitated as a result of the Ala154-Gly155 bond scission. The changes in enzymatic activity accompanying limited proteolysis are due to conformational alterations in the vicinity of the active center of the molecule. The affinity of a monoclonal antibody, mAb 100, directed toward the antigenic determinant located between residues 209 and 218 in carboxypeptidase A is diminished considerably for carboxypeptidase S.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Phenylthiazolones (PTAs) of arginine and its homologs and analogs, homoarginine, norarginine (alpha-amino-gamma-guanidinobutyric acid), canavanine, and gamma-hydroxyarginine, were prepared. A steady-state kinetic analysis of the trypsin [EC 3.4.21.4]-catalyzed hydrolysis reactions was carried out and the kinetic parameters for these internal thioesters were compared with those for normal linear ester substrates. PTA-gamma-hydroxyarginine was so labile that hydrolysis by the enzyme could not be followed. PTA-arginine has a specificity constant (Kcat/Km) comparable to that for the Nalpha-unblocked arginine ester substrate, though the value is about 0.1% of that for a specific ester substrate, Nalpha-tosylarginine methyl ester. PTA derivatives of canavanine and homoarginine were hydrolyzed with Kcat/Km walues of the same order of magnitude as that for PTA-arginine. However, PTA-noraginine was much less susceptible to tryptic hydrolysis that PTA-homoarginine, while the linear esters of norarginine are known to be more susceptible than those of homoarginine.  相似文献   

19.
An enzyme, isolated from the pancreas of the eel Anguilla japonica and designated as anionic trypsin 1, had a molecular weight of 26,000 and an isoelectric point of 5.5. The amino acid composition of the enzyme was similar to that of bovine cationic trypsin as well as anionic trypsins from other species of fish. The enzyme was stable at pH 6 to 9 in the presence of calcium ions. Km and kcat values of the enzyme for N-tosyl-L-arginine methyl ester and N-tosyl-L-lysine methyl ester were quite similar to those of catfish anionic and bovine cationic trypsins.  相似文献   

20.
An anionic trypsin from pyloric caeca of chum salmon (Oncorhynchus keta) was purified by ammonium sulfate and acetone fractionation followed by affinity chromatography, gel-filtration, and DEAE-anion exchange chromatography. The apparent molecular mass was about 24 kDa as determined by SDS-PAGE. The anionic chum salmon trypsin was moderately active toward esterase substrates such as tosyl-L-arginine methyl ester and tosyl-L-lysine methyl ester. Its amidase activity for benzoyl-L-arginine p-nitroanilide was comparative to those of bovine and Streptomyces griseus trypsins. Kinetic characteristics of anionic chum salmon, bovine, and Streptomyces griseus trypsins toward inverse substrate (p-amidinophenyl ester) were compared. Inverse substrate behaved as a specific substrate for anionic chum salmon trypsin with specific binding, efficient acylation, and relatively slow deacylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号