首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed models to predict the effect of water velocity on prey capture rates and on optimal foraging velocities of two sympatric juvenile salmonids, coho salmon and steelhead. Mean fish size was ~80 mm, the size of age I+ coho and steelhead during their second summer in Southeast Alaska streams, when size overlap suggests that competition might be strongest. We used experimentally determined prey capture probabilities to estimate the effect of water velocity on gross energy intake rates, and we modeled prey capture costs using experimental data for search and handling times and published models of swimming costs. We used the difference between gross energy intake and prey capture costs to predict velocities at which each species maximized net energy intake rate. Predicted prey capture rates for both species declined from ~75 to 30–40 prey/h with a velocity increase from 0.30 to 0.60 m·s−1. We found little difference between coho and steelhead in predicted optimum foraging velocities (0.29 m·s−1 for coho and 0.30 m·s−1 for steelhead). Although prey capture ability appears to be more important than are prey capture costs in determining optimum foraging velocities, capture costs may be important for models that predict fish growth. Because coho are assumed to pay a greater swimming cost due to a less hydrodynamic body form, we also modeled 10 and 25% increases in hydrodynamic drag to assess the effect of increased prey capture costs. This reduced optimum velocity by 0 and 0.01 m∙s−1, respectively. Habitat segregation among equal-sized coho and steelhead does not appear to be related to the effects of water velocity on their respective foraging abilities.  相似文献   

2.
Habitat use and foraging behavior of two benthic insectivorous gobies, Rhinogobius sp. CO (cobalt type) and Rhinogobius sp. DA (dark type), were examined in relation to their predation effects on local prey density in a small coastal stream in southwestern Shikoku, Japan. Correlations among the foraging range, frequency of foraging attempts and current velocity indicated that individuals using fast-current habitats had small foraging ranges and infrequently made foraging attempts while those in slow currents frequently foraged over large areas. The former and the latter were recognized as ambush and wandering foragers, respectively. Interspecific comparisons of habitat use, foraging behavior and prey preference suggested that Rhinogobius sp. CO selectively forage mobile prey by ambushing in fast currents, whereas Rhinogobius sp. DA randomly forage available prey by wandering in slow-current habitats. A cage experiment was conducted to assess prey immigration rate and the degree of predation effects on local prey density in relation to current velocity. The results of the experiment support, at least in part, our initial predictions: (1) prey immigration rates increase with current velocity and (2) the effects of fish predation on local prey density are reduced as current velocity increases. Overall results illustrated a link between the foraging modes of the stream gobies and their predation effects on local prey density: fish adopt ambush foraging in fast currents, where the decrease in prey density tends to be less, whereas fish actively forage over large areas in slow currents, where the decrease in prey is relatively large.  相似文献   

3.
We examined prey utilization and energy consumption by brown trout, Salmo trutta, in a cold tailwater (Little Red River, Arkansas, USA; LRR) having low biodiversity and low availability of fish as prey. Stomach content analysis and age estimation were performed on thirty brown trout (10 each of three size classes for a total of 710 trout) collected monthly from an upstream and downstream site over a 1-year period. Diet diversity was low at both sites, as 80% and 70% of all prey consumed by upstream and downstream brown trout, respectively, were isopods. Piscivory (<0.5% of individuals sampled) and consumption of terrestrial invertebrates were rare. There was no relation between diet diversity and trout age, and a very small ontogenetic shift in brown trout diet. Second, we investigated brown trout growth rates relative to prey consumption and temperature. Temperatures and availability of prey were less than required for maximal trout growth. However, prey availability limited trout growth directly, but sub-optimal temperatures probably buffered the effect of this reduced energy consumption by reducing metabolic energy expenditures. Brown trout growth was 54.8–57.0% of the maximum predicted by a bioenergetics model. Instantaneous growth rates for age 1 and adult brown trout were slightly higher for those downstream (0.195) versus those upstream (0.152). Although isopods are abundant within this tailwater to serve as a forage base, the displacement of native fish fauna and subsequent lack of establishment of cold-tolerant forage fish species due to the thermal regime of hypolimnetic release from Greers Ferry Reservoir probably serves as a major barrier to brown trout growth.  相似文献   

4.
Many planktivorous fishes forage in currents, where they actively maintain position and visually strike at current-entrained zooplankton. In general, the zooplankton are wafted by the foraging fish at a rate equivalent to the current velocity. From a fish's viewpoint the plankton approach either head-on or offset at varied distances from the fish's position. We present a model that describes the relative motion of particles as they approach and pass a foraging fish at different offset distances, and the rate of change in apparent size as they close on a fish. In addition, a series of experiments of fish feeding on plankton in a flume at increasing current velocities revealed that two basic tactics are utilized. At low current velocities (<10-14 cm s m 1), the fish swims toward the prey, whereas at higher current velocities the fish tends to fall back with the current to capture a prey item. The model and experimental results are discussed in terms of the visual problems associated with the detection and tracking of items in motion.  相似文献   

5.
Schatz GS  McCauley E 《Oecologia》2007,153(4):1021-1030
Mismatches in the elemental composition of herbivores and their resources can impact herbivore growth and reproduction. In aquatic systems, the ratio of elements, such as C, P, and N, is used to characterize the food quality of algal prey. For example, large increases in the C:P ratio of edible algae can decrease rates of growth and reproduction in Daphnia. Current theory emphasizes that Daphnia utilize only assimilation and respiration processes to maintain an optimal elemental composition, yet studies of terrestrial herbivores implicate behavioral processes in coping with local variation in food quality. We tested the ability of juvenile and adult Daphnia to locate regions of high-quality food within a spatial gradient of algal prey differing in C:P ratio, while holding food density constant over space. Both juveniles and adults demonstrated similar behavior by quickly locating (i.e., <10 min) the region of high food quality. Foraging paths were centred on regions of high food quality and these differed significantly from paths of individuals exposed to a homogeneous environment of both food density and food quality. Ingestion rate experiments on algal prey of differing stoichiometric ratio show that individuals can adjust their intake rate over fast behavioral time-scales, and we use these data to examine how individuals choose foraging locations when presented with a spatial gradient that trades off food quality and food quantity. Daphnia reared under low food quality conditions chose to forage in regions of high food quality even though they could attain the same C ingestion rate elsewhere along a spatial gradient. We argue that these aspects of foraging behavior by Daphnia have important implications for how these herbivores manage their elemental composition and our understanding of the dynamics of these herbivore–plant systems in lakes and ponds where spatial variation in food quality is present. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Movements of prey organisms across ecosystem boundaries often subsidize consumer populations in adjacent habitats. Human disturbances such as habitat degradation or non-native species invasions may alter the characteristics or fate of these prey subsidies, but few studies have measured the direct effects of this disruption on the growth and local abundance of predators in recipient habitats. Here we present evidence, obtained from a combined experimental and comparative study in northern Japan, that an invading stream fish usurped the flux of allochthonous prey to a native fish, consequently altering the diet and reducing the growth and abundance of the native species. A large-scale field experiment showed that excluding terrestrial invertebrates that fell into the stream with a mesh greenhouse reduced terrestrial prey in diets of native Dolly Varden charr (Salvelinus malma) by 46–70%, and reduced their growth by 25% over six weeks. However, when nonnative rainbow trout (Oncorhynchus mykiss) were introduced, they monopolized these prey and caused an even greater reduction of terrestrial prey in charr diets of 82–93%, and reduced charr growth by 31% over the same period. Adding both greenhouse and rainbow trout treatments together produced similar results to adding either alone. Results from a comparative field study of six other stream sites in the region corroborated the experimental findings, showing that at invaded sites rainbow trout usurped the terrestrial prey subsidy, causing a more than 75% decrease in the biomass of terrestrial invertebrates in Dolly Varden diets and forcing them to shift their foraging to insects on the stream bottom. Moreover, at sites with even low densities of rainbow trout, biomass of Dolly Varden was more than 75% lower than at sites without rainbow trout. Disruption of resource fluxes between habitats may be a common, but unidentified, consequence of invasions, and an additional mechanism contributing to the loss of native species Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Patch use in time and space for a meso-predator in a risky world   总被引:1,自引:0,他引:1  
Predator–prey studies often assume a three trophic level system where predators forage free from any risk of predation. Since meso-predators themselves are also prospective prey, they too need to trade-off between food and safety. We applied foraging theory to study patch use and habitat selection by a meso-predator, the red fox. We present evidence that foxes use a quitting harvest rate rule when deciding whether or not to abandon a foraging patch, and experience diminishing returns when foraging from a depletable food patch. Furthermore, our data suggest that patch use decisions of red foxes are influenced not just by the availability of food, but also by their perceived risk of predation. Fox behavior was affected by moonlight, with foxes depleting food resources more thoroughly (lower giving-up density) on darker nights compared to moonlit nights. Foxes reduced risk from hyenas by being more active where and when hyena activity was low. While hyenas were least active during moon, and most active during full moon nights, the reverse was true for foxes. Foxes showed twice as much activity during new moon compared to full moon nights, suggesting different costs of predation. Interestingly, resources in patches with cues of another predator (scat of wolf) were depleted to significantly lower levels compared to patches without. Our results emphasize the need for considering risk of predation for intermediate predators, and also shows how patch use theory and experimental food patches can be used for a predator. Taken together, these results may help us better understand trophic interactions.  相似文献   

8.
An optimal foraging model was used to predict prey selection based on both energy maximization and number maximization strategies. The influence of chemical cues and relative abundance on rainbow trout diet selection was examined under laboratory conditions.
In most fish, diet composition was strongly influenced by chemical cues. No fish followed an energy maximization strategy, and selection of prey based on taste persisted despite large caloric penalties associated with these choices. In the absence of chemical cues, diet composition was based on relative abundance of prey (a number maximization strategy). Within the feasible constraints of the optimal foraging model lie a large number of possible diet combinations which would provide sufficient energy for growth and reproduction. This provides a wide scope for feeding flexibility. Response to prey chemical cues may be the basis for observations of individual diet variability in trout.  相似文献   

9.
Summary Mayfly larvae of Paraleptophlebia heteronea (McDunnough) had two antipredator responses to a nocturnal fish predator (Rhinichthys cataractae (Valenciennes)): flight into the drift and retreat into interstitial crevices. Drift rates of Paraleptophlebia abruptly increased by 30 fold when fish were actively foraging in the laboratory streams but, even before fish were removed, drift began returning to control levels because larvae settled to the substrate and moved to areas of low risk beneath stones. This drifting response was used as an immediate escape behavior which likely decreases risk of capture from predators which forage actively at night. Surprisingly, drift most often occurred before contact between predator and prey, and we suggest that in darkness this mayfly may use hydrodynamic pressure waves for predator detection, rather than chemical cues, since fish forage in an upstream direction. Although drifting may represent a cost to mayfly larvae in terms of relocation to a new foraging area with unknown food resources, the immediate mortality risk probably out-weighs the importance of staying within a profitable food patch because larvae can survive starvation for at least 2 d. In addition to drifting, mayflies retreated from upper, exposed substrate surfaces to concealed interstitial crevices immediately after a predator encounter, or subsequent to resettlement on the substrate after predator-induced drift. A latency period was associated with this response and mayflies remained in these concealed locations for at least 3 h after dace foraging ceased. Because this mayfly feeds at night and food levels are significantly lower in field refugia under stones, relative to exposed stone surfaces, predator avoidance activity may limit foraging time and, ultimately, reduce the food intake of this stream mayfly.  相似文献   

10.
The foraging responses of 1–2-day-old naïve female Platygaster demades to odors of apple and pear foliage and host insect eggs were measured. The host origin of P. demades had no effect on the parasitoids’ longevity, host preference, or foraging behavior. Four distinct behaviors related to oviposition were identified. In choice experiments, more female parasitoids responded to apple foliage with no midge eggs than to midge eggs alone. In a Y-tube olfactometer, parasitoids preferred the plant cues to clean air, and responded equally to both apple and pear odors. The results indicate that P. demades utilizes plant cues to locate the habitat of its host and then searches for host eggs to parasitize.  相似文献   

11.
Winter habitat use and activity patterns of juvenile Atlantic salmon and brown trout were analysed in a comparative study between Passive Integrated Transponder (PIT) technology, radio telemetry and underwater observation by snorkelling. Two study periods were conducted in Stoney River, Newfoundland, Canada. During Study period I, 49 juvenile Atlantic salmon (fork length: 11.0–18.0 cm) and 7 brown trout (11.0–17.3 cm) were tagged with PIT tags and/or radio transmitters in late winter of 2004. During Study period II, 18 juvenile Atlantic salmon (fork length: 12.0–18.4 cm) and 23 brown trout (10.9–20.8 cm) were tagged and tracked twice a day at 10:00 h and 22:00 h on five consecutive days in late winter of 2005. From the 56 fish released during Study period I, on average 19.6 ± 6.0% of the PIT tagged fish and 99.3 ± 2.2% of the radio tagged fish were relocated during any given survey. Over the Study period II, 39% of fish emigrated from the study site. PIT technology had an efficiency of 39.2 ± 14.1% to detect the remaining fish. In contrast, radio telemetry relocated on average 96.9 ± 6.5% of the tagged fish whereas by snorkelling on average only 4.1 ± 5.6% of the tagged fish were observed. PIT telemetry may however be more efficient in smaller, less heterogeneous streams. The advantage of PIT technology over radio telemetry is clearly that it is relatively less costly permitting higher numbers of individuals to be tagged and there is no limit in the operational life of the transponder. In winter, juvenile salmonids preferred low flow velocity and no preferences were observed for any specific water depth over the range of available water depths. Fish selected preferentially boulder habitat over other substrates in the environment. Habitat utilisation did not differ between day and night. The use of winter preference indices may be important for future habitat modelling.  相似文献   

12.
Group foraging has been suggested as an important factor for the evolution of sociality. However, visual cues are predominantly used to gain information about group members'' foraging success in diurnally foraging animals such as birds, where group foraging has been studied most intensively. By contrast, nocturnal animals, such as bats, would have to rely on other cues or signals to coordinate foraging. We investigated the role of echolocation calls as inadvertently produced cues for social foraging in the insectivorous bat Noctilio albiventris. Females of this species live in small groups, forage over water bodies for swarming insects and have an extremely short daily activity period. We predicted and confirmed that (i) free-ranging bats are attracted by playbacks of echolocation calls produced during prey capture, and that (ii) bats of the same social unit forage together to benefit from passive information transfer via the change in group members'' echolocation calls upon finding prey. Network analysis of high-resolution automated radio telemetry confirmed that group members flew within the predicted maximum hearing distance 94±6 per cent of the time. Thus, echolocation calls also serve as intraspecific communication cues. Sociality appears to allow for more effective group foraging strategies via eavesdropping on acoustical cues of group members in nocturnal mammals.  相似文献   

13.
Synopsis We studied vertical distribution, substrate preference and food choice of brown trout, Salmo trutta, from benthic gillnet catches at four littoral sampling locations in a Norwegian hydroelectric reservoir. The sampling locations had different bottom substrates; at one location the bottom substrate consisted of sand, while at the other three, substrates consisted of stones ranging 2–5 cm, 10–30 cm and 30–150 cm in diameter, respectively. Small-sized (< 160 cm) and intermediate-size (164–269 mm) brown trout were mainly caught close to the bottom (0–0.5 m above). Small-sized brown trout were caught in the highest frequency at the location with substrate consisting of 10–30 cm large stones. Intermediate-sized brown trout were also caught in highest frequency at this location, but were also caught in a high frequency at the location with sandy substrate. In contrast, the catches of large-sized ( 270 mm) brown trout did not vary with distance from the bottom or with substrate coarseness. The most important food items for the brown trout were aquatic insects, surface insects, Eurycercus lamellatus and crustacean zooplankton, mainly Daphnia longispina, Bythotrephes longimanus, and Holopedium gibberum. In accordance with the differences in vertical distribution, benthic food was more important to small than to large brown trout. We argue that small brown trout stayed close to the bottom to reduce aggressive behaviour from larger specimens, and that small brown trout were therefore more dependent on benthic food items. We also argue that the observed differences in substrate preference between the size groups of brown trout is explained by variation in access to shelter, visual isolation between individuals and benthic feeding conditions between locations.  相似文献   

14.
Top-predators can suppress mesopredator behaviour through risk effects. However, there is limited understanding of whether such behavioural suppression can dampen the lethal and sub-lethal effects of mesopredators on bottom level prey. Here, we document a field experiment that examines whether the presence of top-predator cues (visual and chemical stimuli from a coral trout) can cascade to indirectly influence the behaviour and survival of juvenile fish prey of different species (Pomacentrus amboinensis and P. chrysurus) and size (small = 1.18 cm SL versus large = 1.32 cm SL). Results showed that habitat patches exposed to top-predator cues received fewer visits and foraging attacks from mesopredators, leading to higher space use (~ 46%), feeding rate (~ 95%) and survival (~ 67%) from juvenile fish prey. Survival was always higher for individuals of P. amboinensis and of large-size, independent of the presence or absence of top-predator cues. Our data indicate that predation risk from the top-predator indirectly favoured the persistence and behaviour of juvenile fishes by promoting risk-averse behavioural responses in mesopredators. This study underscores the behavioural mechanisms by which risk effects can cascade through the food web and highlights the consequences that harvesting top-predators may have on the replenishment of bottom prey populations.  相似文献   

15.
Synopsis We investigated the ability of two congeneric species of sunfish to learn to forage on a novel prey item in feeding arenas containing structured habitats. Eight bluegill sunfish and eight pumpkinseed sunfish were given the opportunity to forage on whiteworms daily for 10 days. Each day, several behavioural measures were recorded for each fish. Both species of sunfish learned to feed over the 10-day period but the bluegill sunfish learned to feed more quickly than the pumpkinseed sunfish. Pumpkinseeds, however, attained a higher level of foraging efficiency. The differences in learning and foraging efficiency were related to body morphology.  相似文献   

16.
Avian population dynamics are influenced by the availability of spatiotemporally variable prey resources, but the conditions producing abundant and accessible prey are not always clear. In the Florida Everglades, wading birds nest in the dry season when receding water levels concentrate prey and facilitate improved foraging efficiency. White Ibis (Eudocimus albus) feed extensively on crayfish in sloughs, and previous studies have demonstrated that crayfish move downgradient from higher elevation, heavily vegetated ridge habitats into adjacent less‐vegetated sloughs when ridges are almost dry. Most White Ibis foraging is thought to occur in sloughs with relatively shallow water (< 19 cm), but crayfish move and their densities peak when water in sloughs is deeper (~ 21–32 cm). We conducted an observational study of White Ibis foraging in drying wetlands to determine if White Ibis restricted their foraging to shallow water or if they foraged in relatively deep water when crayfish were migrating. In a series of large drying wetlands, we used time‐lapse imagery to quantify White Ibis foraging activity over 61 d from February to April 2017 and we also quantified crayfish biomass density in sloughs. Crayfish biomass density peaked when ridges were almost dry. Most White Ibis foraging occurred over 2–3 d when ridges were almost dry and water in sloughs averaged ≥ 29 cm deep. White Ibis selected slough edges for foraging, suggesting that they were capturing crayfish migrating between habitats. Our results point to a new mechanism of prey exploitation driven by inter‐habitat prey flux when ridge habitat dries. Although the results of previous studies suggest that White Ibis will not forage on fish in deeper water (> 25 cm), we found that White Ibis will forage on crayfish in water at those depths. Maintenance of habitat elevational differences and hydro‐patterns that promote crayfish production will be necessary to promote this predator–prey interaction in the ridge‐slough landscape of the Everglades.  相似文献   

17.
Pine siskins (Carduelis pinus) frequently forage at known high quality food supplies such as backyard feeders. In this field study, pine siskins visited backyard feeders of differing colour and spatial position. The three feeders contained varying amounts of food in a ratio of 3:2:1. The birds quickly distributed their visits in this ratio to the three feeders. During unbaited tests, two feeders on a given day had their positions swapped. The siskins appeared to primarily use both large-scale spatial or distal cues when foraging as well as local colour cues.  相似文献   

18.
Predators use a variety of information sources to locate potential prey, and likewise prey animals use numerous sources of information to detect and avoid becoming the meal of a potential predator. In freshwater environments, chemosensory cues often play a crucial role in such predator/prey interactions. The importance of chemosensory information to teleost fish in marine environments is not well understood. Here, we tested whether coral reef fish predators are attracted to damage-released chemical cues from already wounded prey in order to find patches of prey and minimize their own costs of obtaining food. Furthermore, we tested if these chemical cues would convey information about status of the prey. Using y-maze experiments, we found that predatory dottybacks, Pseudochromis fuscus, were more attracted to skin extracts of damselfish, Pomacentrus amboinensis, prey that were in good condition compared to prey in poor body condition. Moreover, in both the laboratory and field, we found that predators could differentiate between skin extracts from prey based on prey size, showing a greater attraction to extracts made from prey that were the appropriate size to consume. This suggests that predators are not attracted to any general substance released from an injured prey fish instead being capable of detecting and distinguishing relatively small differences in the chemical composition of the skin of their prey. These results have implications for understanding predator foraging strategies and highlights that chemical cues play a complex role in predator–prey interactions in marine fish.  相似文献   

19.
Synopsis Fishes producing high-frequency wavelike electrical discharges maintain a relatively rigid body axis and swim forwards and backwards with equal ease. Using stop-action videotape filming we have observed the gymnotiform Apteronotus albifrons feeding on zooplankton and oligochaete annelids. Here it is reported that reverse swimming is characteristic of two foraging behaviors: searching for prey and assessing it. In assessing a potential prey item, fish typically scan it from tail to head by swimming backwards, then ingest it after a short forward lunge. A scan in the opposite direction-from head to tail by forward swimming-would have the prey located near the tail and out of position for the final lunge. Food choice experiments indicate that these electrosensing fish feed equally well, and take larger rather than smaller zooplankton, under light and dark conditions. Furthermore, electric fish take normal (light) colored and darkened prey (Daphnia) in a 50: 50 ratio under both dark and light conditions. These results are consistent with the interpretation that electrosensory cues are being used to detect zooplankton and other prey. Together, our observations support Lissmann's (1958, 1974) and Lissmann & Machin's (1958) assertion that backwards swimming is a component of a locomotory pattern guided by the constraints produced by an active electrical sense.  相似文献   

20.
A visual foraging model (VFM) used light-dependent reaction distance and capture success functions to link observed prey fish abundance and distribution to predation rates and the foraging performance of piscivorous cutthroat trout Oncorhynchus clarki in Lake Washington (WA, U.S.A.). Total prey density did not correlate with predation potential estimated by the foraging model for cutthroat trout because prey were rarely distributed in optically favourable conditions for detection. Predictions of the depth-specific distribution and timing of cutthroat trout foraging were qualitatively similar to diel stomach fullness patterns observed in field samples. Nocturnal foraging accounted for 34–64% of all prey fish consumption in simulations for 2002 and 2003. Urban light contamination increased the access of nocturnally foraging cutthroat trout to vertically migrating prey fishes. These results suggest that VFMs are useful tools for converting observed prey fish density into predictions of predator consumptions and behavioural responses of predators to environmental change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号