首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Species richness patterns along altitudinal gradients are well-documented ecological phenomena, yet very little data are available on how environmental filtering processes influence the composition and traits of butterfly assemblages at high altitudes. We have studied the diversity patterns of butterfly species at 34 sites along an altitudinal gradient ranging from 600 to 2,000 m a.s.l. in the National Park Berchtesgaden (Germany) and analysed traits of butterfly assemblages associated with dispersal capacity, reproductive strategies and developmental time from lowlands to highlands, including phylogenetic analyses. We found a linear decline in butterfly species richness along the altitudinal gradient, but the phylogenetic relatedness of the butterfly assemblages did not increase with altitude. Compared to butterfly assemblages at lower altitudes, those at higher altitudes were composed of species with larger wings (on average 9 %) which laid an average of 68 % more eggs. In contrast, egg maturation time in butterfly assemblages decreased by about 22 % along the altitudinal gradient. Further, butterfly assemblages at higher altitudes were increasingly dominated by less widespread species. Based on our abundance data, but not on data in the literature, population density increased with altitude, suggesting a reversed density–distribution relationship, with higher population densities of habitat specialists in harsh environments. In conclusion, our data provide evidence for significant shifts in the composition of butterfly assemblages and for the dominance of different traits along the altitudinal gradient. In our study, these changes were mainly driven by environmental factors, whereas phylogenetic filtering played a minor role along the studied altitudinal range.  相似文献   

2.
放牧干扰梯度下川西亚高山植物群落的组合机理   总被引:2,自引:1,他引:1       下载免费PDF全文
为了阐明放牧干扰对川西亚高山区域植物群落的组合过程以及群落结构的影响, 研究了放牧干扰梯度下的功能群均匀度和群落谱系结构的变化趋势。结果显示: 在干扰较轻的阔叶林与针叶林样地, 部分样方的功能群均匀度显著高于无效模型, 随着干扰梯度的增强, 功能群均匀度呈线性下降, 样方平均值从0.930降至0.840, 其高于无效模型的次数也逐渐降低, 干扰程度较大的草甸中出现部分样方的功能群均匀度显著低于无效模型。随着干扰程度的增强, 群落的谱系结构指数也呈逐渐上升趋势, 净关联指数平均值由-0.634逐渐增加至2.360, 邻近类群指数由-0.158上升至2.179。草甸与低矮灌丛受干扰较为严重, 其大部分样方的谱系结构指数显著高于随机群落, 表明干扰群落的谱系结构呈聚集分布。功能群均匀度与谱系结构的变化趋势一致, 表明生境筛滤效应与种间竞争作用的平衡决定着群落的组合过程。干扰降低了竞争作用, 促进了少数耐干扰功能群的优势地位, 造成功能群均匀度下降, 同时通过生境筛滤作用, 使群落的谱系结构呈现出聚集分布; 而未干扰的群落中由于竞争作用的效应, 功能群均匀度较高, 谱系结构也更加分散。研究区域植物群落的功能群均匀度与物种丰富度呈负相关, 表明物种间特别是相似物种间的竞争限制了群落的物种多样性。研究结果说明, 生态位分化和物种间的相互竞争在物种共存与群落组合中具有重要作用。  相似文献   

3.
The study of diversity gradients due to elevation dates back to the foundation of biogeography and ecology. Although elevation-driven patterns of plant diversity have been reported for centuries, uncertainty still exists about the assembly rules that drive these patterns. In this study, we revealed the causal factor of community assemblies for the diversity of tree and herb species along an elevation. To this end, we applied an integrated method using both functional traits and phylogeny, called the mean pairwise functional-phylogenetic distance, to understand the assembly rules for woody and herbaceous species communities along an elevation gradient. At higher elevation sites, woody and herbaceous communities were comprised of species having similar traits. The phylogenetic trends for woody species were consistent with the functional trends; closely related species co-occurred more frequently than expected at higher elevations. Phylogenetic trends for herb species were opposite to the functional trends; species with similar traits but having a random phylogenetic distribution co-occurred at higher elevations. We suggest that the community assembly rules for woody and herb species vary with elevation; and functional constraints due to environmental filtering at higher elevation act as assembly rules along gradients in both woody and herbaceous communities, even though their phylogenetic backgrounds differ.  相似文献   

4.
The relative importance of environmental filtering, biotic interactions and neutral processes in community assembly remains an openly debated question and one that is increasingly addressed using phylogenetic approaches. Closely related species may occur together more frequently than expected (phylogenetic clustering) if environmental filtering operates on traits with significant phylogenetic signal. Recent studies show that phylogenetic clustering tends to increase with spatial scale, presumably because greater environmental variation is encompassed at larger spatial scales, providing opportunities for species to sort across environmental gradients. However, if environmental filtering is the cause of species sorting along environmental gradients, then environmental variation rather than spatial scale per se should drive the processes governing community assembly. Using species abundance and light availability data from a long‐term experiment in Minnesota oak savanna understory communities, we explicitly test the hypothesis that greater environmental variation results in greater phylogenetic clustering when spatial scale is held constant. Concordant with previous studies, we found that phylogenetic community structure varied with spatial extent. At the landscape scale (~1000 ha), communities were phylogenetically clustered. At the local scale (0.375ha), phylogenetic community structure varied among plots. As hypothesized, plots encompassing the greatest environmental variation in light availability exhibited the strongest phylogenetic clustering. We also found strong correlations between species functional traits, particularly specific leaf area (SLA) and perimeter per area (PA), and species light availability niche. There was also a phylogenetic signal in both functional traits and species light availability niche, providing a mechanistic explanation for phylogenetic clustering in relation to light availability. We conclude that the pattern of increased phylogenetic clustering with increased environmental variation is a consequence of environmental filtering acting on phylogenetically conserved functional traits. These results indicate that the importance of environmental filtering in community assembly depends not on spatial scale per se, but on the steepness of the environmental gradient.  相似文献   

5.
森林群落的构建即多样性维持机制是当今生态学研究的热点问题。然而, 当前群落构建和群落多样性的研究多在间接梯度上进行, 而在水、热等影响物种在区域内定植的关键且直接的环境梯度上研究群落构建和多样性模式则鲜有报道。结合环境因子, 基于物种组成和谱系方法探讨不同群落的分布成因, 有助于解释群落构建过程中的关键问题。该研究基于华北森林群落调查数据和环境数据, 涉及7个省市区的29个以壳斗科、桦木科为优势种的群落, 探讨了直接环境梯度上的群落构建和多样性模式, 同时用典范对应分析研究了不同群落分布的环境解释。结果发现, 相似的群落具有相似的生境偏好, 相似的生境条件会形成物种组成相同或相似的群落。环境热量主导了本区域的谱系关系, 在年平均气温较低的地区, 群落构建主要表现为生境过滤的模式。此外, 随着年降水量的增加, 生境过滤作用逐渐增加。在温度梯度上, 谱系多样性表现为钟形模式, 而降水量的增加能导致谱系多样性的增加。  相似文献   

6.
A central goal in ecology is to develop theories that explain the diversity and distribution of species. The evolutionary history of species and their functional traits may provide mechanistic links between community assembly and the environment. Such links may be hierarchically structured such that the strength of environmental filtering decreases in a step‐wise manner from regional conditions through landscape heterogeneity to local habitat conditions. We sampled the wild bee species assemblages in power‐line strips transecting forests in south‐eastern Norway. We used altitude, landscape diversity surrounding sites and plant species composition, together with total plant cover as proxies for regional, landscape and local environmental filters, respectively. The species richness and abundance of wild bees decreased with altitude. The reduction in species richness and abundance was accompanied by a phylogenetic clustering of wild bee individuals. Furthermore, regional filters followed by local filters best explained the structure of the functional species composition. Sites at high altitudes and sites with Ericaceae‐dominated plant communities tended to have larger bees and a higher proportion of social and spring‐emerging bees. When Bombus species were excluded from the analysis, the proportion of pollen specialists increased with the dominance of Ericaceae. Furthermore, we also found that the taxonomic, phylogenetic and functional compositional turnover between sites was higher in the northern region than in the southern part of the study region. Altogether, these results suggest that regional filters drive the species richness and abundance in trait‐groups whereas local filters have more descrete sorting effects. We conclude that the model of multi‐level environmental filters provides a good conceptual model for community ecology. We suggest that future studies should focus on the relationship between the biogeographical history of species and their current distribution, and on the assumption that closely related species do indeed compete more intensely than distantly related species.  相似文献   

7.
Questions: Do growth forms and vascular plant richness follow similar patterns along an altitudinal gradient? What are the driving mechanisms that structure richness patterns at the landscape scale? Location: Southwest Ethiopian highlands. Methods: Floristic and environmental data were collected from 74 plots, each covering 400 m2. The plots were distributed along altitudinal gradients. Boosted regression trees were used to derive the patterns of richness distribution along altitudinal gradients. Results: Total vascular plant richness did not show any strong response to altitude. Contrasting patterns of richness were observed for several growth forms. Woody, graminoid and climber species richness showed a unimodal structure. However, each of these morphological groups had a peak of richness at different altitudes: graminoid species attained maximum importance at a lower elevations, followed by climbers and finally woody species at higher elevations. Fern species richness increased monotonically towards higher altitudes, but herbaceous richness had a dented structure at mid‐altitudes. Soil sand fraction, silt, slope and organic matter were found to contribute a considerable amount of the predicted variance of richness for total vascular plants and growth forms. Main Conclusions: Hump‐shaped species richness patterns were observed for several growth forms. A mid‐altitudinal richness peak was the result of a combination of climate‐related water–energy dynamics, species–area relationships and local environmental factors, which have direct effects on plant physiological performance. However, altitude represents the composite gradient of several environmental variables that were interrelated. Thus, considering multiple gradients would provide a better picture of richness and the potential mechanisms responsible for the distribution of biodiversity in high‐mountain regions of the tropics.  相似文献   

8.
Integrating multiple facets of biodiversity to describe spatial and temporal distribution patterns is one way of revealing the mechanisms driving community assembly. We assessed the species, functional, and phylogenetic composition and structure of passerine bird communities along an elevational gradient both in wintering and breeding seasons in the Ailao Mountains, southwest China, in order to identify the dominant ecological processes structuring the communities and how these processes change with elevation and season. Our research confirms that the highest taxonomic diversity, and distinct community composition, was found in the moist evergreen broadleaf forest at high elevation in both seasons. Environmental filtering was the dominant force at high elevations with relatively cold and wet climatic conditions, while the observed value of mean pairwise functional and phylogenetic distances of low elevation was constantly higher than expectation in two seasons, suggested interspecific competition could play the key role at low elevations, perhaps because of relative rich resource result from complex vegetation structure and human‐induced disturbance. Across all elevations, there was a trend of decreasing intensity of environmental filtering whereas increasing interspecific competition from wintering season to breeding season. This was likely due to the increased resource availability but reproduction‐associated competition in the summer months. In general, there is a clear justification for conservation efforts to protect entire elevational gradients in the Ailao Mountains, given the distinct taxonomic, functional, and phylogenetic compositions and also elevational migration pattern in passerine bird communities.  相似文献   

9.
10.
Aims While using phylogenetic and functional approaches to test the mechanisms of community assembly, functional traits often act as the proxy of niches. However, there is little detailed knowledge regarding the correlation between functional traits of tree species and their niches in local communities. We suggest that the co-varying correlation between functional traits and niches should be the premise for using phylogenetic and functional approaches to test mechanisms of community assembly. Using functional traits, phylogenetic and environmental data, this study aims to answer the questions: (i) within local communities, do functional traits of co-occurring species co-vary with their environmental niches at the species level? and (ii) what is the key ecological process underlying community assembly in Xishuangbanna and Ailaoshan forest dynamic plots (FDPs)?Methods We measured seven functional traits of 229 and 36 common species in Xishuangbanna and Ailaoshan FDPs in tropical and subtropical China, respectively. We also quantified the environmental niches for these species based on conditional probability. We then analyzed the correlations between functional traits and environmental niches using phylogenetic independent contrasts. After examining phylogenetic signals of functional traits using Pagel's λ, we quantified the phylogenetic and functional dispersion along environmental gradients within local tree communities.Important findings For target species, functional traits do co-vary with environmental niches at the species level in both of the FDPs, supporting that functional traits can be used as a proxy for local-scale environmental niches. Functional traits show significant phylogenetic signals in both of the FDPs. We found that the phylogenetic and functional dispersion were significantly clustered along topographical gradients in the Ailaoshan FDP but overdispersion in the Xishuangbanna FDP. These patterns of phylogenetic and functional dispersion suggest that environmental filtering plays a key role in structuring local tree assemblages in Ailaoshan FDP, while competition exclusion plays a key role in Xishuangbanna FDP.  相似文献   

11.
Brody Sandel 《Ecography》2018,41(5):837-844
Phylogenetic diversity indices are widely used to characterize the structure and diversity of ecological communities. Most indices are based on a metric that is expected to vary with species richness, so they are standardized to remove this richness‐dependence. With this standardization, values of 0 are consistent with random phylogenetic structure, while phylogenetic clustering is associated with either negative or positive values (depending on the index). One common interpretation of phylogenetic clustering is that it indicates some combination of environmental and biological filtering that restricts the species that can be present in a community. Increasingly, studies are comparing phylogenetic indices along environmental gradients to infer differences in the factors structuring communities. This comparison implicitly assumes that index values are comparable among communities with different numbers of species. Using a set of simulations, I show here that this assumption is incorrect. Holding the strength of filtering constant, communities composed of more species show larger absolute index values. This problem is most pronounced when the environmental filter favors a moderate‐sized clade strongly over others and when using the net relatedness index (NRI) to measure clustering. This bias potentially casts doubt on studies studying phylogenetic index patterns along gradients where richness also varies. Fortunately, the arising generality that more stressful environments have lower species richness and stronger clustering is opposite to this bias and therefore robust. I also show that a simple rarefaction can remove the richness‐dependence of these indices, at the expense of increased error.  相似文献   

12.
Understanding the imprint of environmental filtering on community assembly along environmental gradients is a key objective of trait‐gradient analyses. Depending on local constraints, this filtering generally entails that species departing from an optimum trait value have lower abundances in the community. The community‐weighted mean (CWM) and variance (CWV) of trait values are then expected to depict the optimum and intensity of filtering, respectively. However, the trait distribution within the regional species pool and its limits can also affect local CWM and CWV values apart from the effect of environmental filtering. The regional trait range limits are more likely to be reached in communities at the extremes of environmental gradients. Analogous to the mid‐domain effect in biogeography, decreasing CWV values in extreme environments can then represent the influence of regional trait range limits rather than stronger filtering in the local environment. We name this effect the ‘trait‐gradient boundary effect’ (TGBE). First, we use a community assembly framework to build simulated communities along a gradient from a species pool and environmental filtering with either constant or varying intensity while accounting for immigration processes. We demonstrate the significant influence of TGBE, in parallel to environmental filtering, on CWM and CWV at the extremes of the environmental gradient. We provide a statistical tool based on Approximate Bayesian Computation to decipher the respective influence of local environmental filtering and regional trait range limits. Second, as a case study, we reanalyze the functional composition of alpine plant communities distributed along a gradient of snow cover duration. We show that leaf trait convergence found in communities at the extremes of the gradient reflect an influence of trait range limits rather than stronger environmental filtering. These findings challenge correlative trait–environment relationships and call for more explicitly identifying the mechanisms responsible of trait convergence/divergence along environmental gradients.  相似文献   

13.
14.
The observation of non‐random phylogenetic distribution of traits in communities provides evidence for niche‐based community assembly. Environment may influence the phylogenetic structure of communities because traits determining how species respond to prevailing conditions can be phylogenetically conserved. In this study, we investigate the variation of butterfly species richness and of phylogenetic α‐ and β‐diversities along temperature and plant species richness gradients. Our study indicates that butterfly richness is independently positively correlated to temperature and plant species richness in the study area. However, the variation of phylogenetic α‐ and β‐diversities is only correlated to temperature. The significant phylogenetic clustering at high elevation suggests that cold temperature filters butterfly lineages, leading to communities mostly composed of closely related species adapted to those climatic conditions. These results suggest that in colder and more severe conditions at high elevations deterministic processes and not purely stochastic events drive the assemblage of butterfly communities.  相似文献   

15.
Phylogenetic information provides insight into the ecological and evolutionary processes that organize species assemblages. We compared patterns of phylogenetic diversity among macromycete and woody plant communities along a steep elevational gradient in eastern Mexico to better understand the evolutionary processes that structure their communities. Macrofungi and trees were counted and identified in eight sites from 100 to 3500 m asl, and sequence data retrieved from GenBank for the same or closely related species were used to reconstruct their phylogenies. Patterns of species richness and phylogenetic diversity were similar for both macrofungi and trees, but macromycete richness and diversity peaked at mid‐elevations, whereas woody plant richness and diversity did not show significant trends with elevation. Phylogenetic similarity among sites was low for both groups and decreased as elevational distance between sites increased. Macromycete communities displayed phylogenetic overdispersion at low elevations and phylogenetic clustering at high elevations; the latter is consistent with environmental filtering at high elevation sites. Woody plants generally exhibited phylogenetic clustering, consistent with the potential importance of environmental filtering throughout the elevational gradient.  相似文献   

16.
Aims Studies integrating phylogenetic history and large-scale community assembly are few, and many questions remain unanswered. Here, we use a global coastal dune plant data set to uncover the important factors in community assembly across scales from the local filtering processes to the global long-term diversification and dispersal dynamics. Coastal dune plant communities occur worldwide under a wide range of climatic and geologic conditions as well as in all biogeographic regions. However, global patterns in the phylogenetic composition of coastal dune plant communities have not previously been studied.Methods The data set comprised vegetation data from 18463 plots in New Zealand, South Africa, South America, North America and Europe. The phylogenetic tree comprised 2241 plant species from 149 families. We calculated phylogenetic clustering (Net Relatedness Index, NRI, and Nearest Taxon Index, NTI) of regional dune floras to estimate the amount of in situ diversification relative to the global dune species pool and evaluated the relative importance of land and climate barriers for these diversification patterns by geographic analyses of phylogenetic similarity. We then tested whether dune plant communities exhibit similar patterns of phylogenetic structure within regions. Finally, we calculated NRI for local communities relative to the regional species pool and tested for an association with functional traits (plant height and seed mass) thought to vary along sea–inland gradients.Important findings Regional species pools were phylogenetically clustered relative to the global pool, indicating regional diversification. NTI showed stronger clustering than NRI pointing to the importance of especially recent diversifications within regions. The species pools grouped phylogenetically into two clusters on either side of the tropics suggesting greater dispersal rates within hemispheres than between hemispheres. Local NRI plot values confirmed that most communities were also phylogenetically clustered within regions. NRI values decreased with increasing plant height and seed mass, indicating greater phylogenetic clustering in communities with short maximum height and good dispersers prone to wind and tidal disturbance as well as salt spray, consistent with environmental filtering along sea–inland gradients. Height and seed mass both showed significant phylogenetic signal, and NRI tended to correlate negatively with both at the plot level. Low NRI plots tended to represent coastal scrub and forest, whereas high NRI plots tended to represent herb-dominated vegetation. We conclude that regional diversification processes play a role in dune plant community assembly, with convergence in local phylogenetic community structure and local variation in community structure probably reflecting consistent coastal-inland gradients. Our study contributes to a better understanding of the globally distributed dynamic coastal ecosystems and the structuring factors working on dune plant communities across spatial scales and regions.  相似文献   

17.
? Altitudinal gradients strongly affect the diversity of plants and animals, yet little is known about the altitudinal effects on the distribution of microorganisms, including ectomycorrhizal fungi. ? By combining morphological and molecular identification methods, we addressed the relative effects of altitude, temperature, precipitation, host community and soil nutrient concentrations on species richness and community composition of ectomycorrhizal fungi in one of the last remaining temperate old-growth forests in Eurasia. ? Molecular analyses revealed 367 species of ectomycorrhizal fungi along three altitudinal transects. Species richness declined monotonically with increasing altitude. Host species and altitude were the main drivers of the ectomycorrhizal fungal community composition at both the local and regional scales. The mean annual temperature and precipitation were strongly correlated with altitude and accounted for the observed patterns of richness and community. ? The decline of ectomycorrhizal fungal richness with increasing altitude is consistent with the general altitudinal richness patterns of macroorganisms. Low environmental energy reduces the competitive ability of rare species and thus has a negative effect on the richness of ectomycorrhizal fungi. Because of multicollinearity with altitude, the direct effects of climatic variables and their seasonality warrant further investigation at the regional and continental scales.  相似文献   

18.
山脉是生物多样性研究的热点地区,以往关于山脉的研究多集中于地上植物和脊椎动物,无脊椎动物相关的研究明显滞后。跳虫(Collembola)是土壤无脊椎动物的主要类群之一,在分解有机质、疏松和活化土壤过程中发挥着重要的作用。以跳虫为研究对象,采用梯度格局法,在长白山北坡自海拔800 m至1700 m,每隔150 m进行凋落物层和土壤层样品的采集,对比分析了土壤层和凋落物层的群落组成与群落结构,采用4个物种多样性指数(丰富度指数、Pielou均匀度指数、Shannon-Weiner多样性指数和Simpson多样性指数)和4个功能多样性指数(功能丰富度FRic指数、功能均匀度FEve指数、二次熵Rao''s Q指数和功能离散FEiv指数),探讨了多样性沿海拔梯度的分布格局。共获得跳虫5542头,隶属于12科42属83种,其中等节跳科为绝对优势类群(相对密度>50%)。非度量多维尺度分析结果表明,凋落物层和土壤层的跳虫群落结构差异显著,长角跳科、鳞跳科和疣跳科物种多分布于凋落物层,而棘跳科物种多分布于土壤层。线性或二次回归模型结果表明,在凋落物层跳虫的丰富度指数,Shannon-Weiner多样性指数和Simpson多样性指数沿海拔梯度的变化呈增加格局;但在土壤层跳虫物种多样性指数沿海拔梯度的变化无明显趋势。在凋落物层,跳虫的功能丰富度指数和功能离散度Rao''s Q指数随海拔梯度的变化呈现单峰分布格局;在土壤层,跳虫的功能丰富度指数随海拔梯度的变化也呈现单峰分布格局,但其他功能多样性指数沿海拔梯度的变化无明显趋势。研究表明凋落物层和土壤层跳虫的群落组成,群落结构及多样性存在显著差异,跳虫的物种多样性指数和功能多样性指数对海拔梯度变化的响应不同,未来在探讨土壤动物沿海拔梯度的分布格局及其物种共存机制时,应综合考量垂直分层(凋落物层和土壤层)和多个度量维度(物种多样性和功能多样性)。  相似文献   

19.
向琳  陈芳清  官守鹏  王玉兵  吕坤 《生态学报》2019,39(21):8144-8155
研究植物群落功能多样性沿环境梯度的变化可以揭示功能多样性与生态系统功能间的关系及维持机制。以井冈山地区鹿角杜鹃(Rhododendron latoucheae)群落为研究对象,通过调查不同海拔梯度群落灌木层植物的物种组成与结构特征,研究了该群落类型灌木层植物的物种多样性、功能多样性、环境因子的特征及其相互之间的关系。结果表明:1)群落类型灌木层植物物种多样性和功能多样性沿海拔梯度呈现不同的变化趋势。物种多样性指数均随着海拔的升高呈减小趋势,而功能多样性指数的变化却较为复杂。其中FRic、FEveFDis随着海拔的升高显著减小,FDivRao却随海拔的升高而增加;2)群落中物种多样性和功能多样性呈现复杂的相关性。FRic、FEve与丰富度指数呈显著正相关,而Rao、FDis、FDivSimpson优势度指数呈线性相关关系,且具有显著相关性;3)群落所分布的坡位及土壤氮与磷含量等环境因子对灌木植物的功能多样性有着重要的影响。鹿角杜鹃群落灌木层植物的物种多样性和功能多样性的相互关系及其对环境变化的响应共同决定了群落的生态系统功能。  相似文献   

20.
Models applying space-for-time substitution, including those projecting ecological responses to climate change, generally assume an elevational and latitudinal equivalence that is rarely tested. However, a mismatch may lead to different capacities for providing climatic refuge to dispersing species. We compiled community data on zooplankton, ectothermic animals that form the consumer basis of most aquatic food webs, from over 1200 mountain lakes and ponds across western North America to assess biodiversity along geographic temperature gradients spanning nearly 3750 m elevation and 30° latitude. Species richness, phylogenetic relationships, and functional diversity all showed contrasting responses across gradients, with richness metrics plateauing at low elevations but exhibiting intermediate latitudinal maxima. The nonmonotonic/hump-shaped diversity trends with latitude emerged from geographic interactions, including weaker latitudinal relationships at higher elevations (i.e. in alpine lakes) linked to different underlying drivers. Here, divergent patterns of phylogenetic and functional trait dispersion indicate shifting roles of environmental filters and limiting similarity in the assembly of communities with increasing elevation and latitude. We further tested whether gradients showed common responses to warmer temperatures and found that mean annual (but not seasonal) temperatures predicted elevational richness patterns but failed to capture consistent trends with latitude, meaning that predictions of how climate change will influence diversity also differ between gradients. Contrasting responses to elevation- and latitude-driven warming suggest different limits on climatic refugia and likely greater barriers to northward range expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号