首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adventitious roots of Primula acaulis Jacq. are characterized by broad cortex and narrow stele during the primary development. Secondary thickening of roots occurs through limited cambial growth together with secondary dilatation growth of the persisting cortex. Close to the root tip, at a distance of ca. 4 mm from the apex, Casparian bands (state I of endodermal development) within endodermal cells develop synchronously. During late, asynchronous deposition of suberin lamellae (state II of endodermal development), a positional effect is clearly expressed - suberization starts in the cells opposite to the phloem sectors of the vascular cylinder at a distance of 30 – 40 mm from the root tip. The formation of secondary walls in endodermis (state III of endodermal development) correlates with the beginning of secondary growth of the root at a distance of ca. 60 mm. Endodermis is the only cortical layer of primrose, where not only cell enlargement but also renewed cell division participate in the secondary dilatation growth. The original endodermal cells additionally divide anticlinally only once. Newly-formed radial walls acquire a typical endodermal character by forming Casparian bands and deposition of suberin lamellae. A network of endodermal Casparian bands of equal density develops during the root thickening by the tangential expansion of cells and by the formation of new radial walls with characteristic wall modifications. These data are important since little attention has been paid up till now to the density of endodermal network as a generally significant structural and functional trait of the root. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Adventitious roots of marsh-grown Pontederia cordata were examined to determine cortical development and structure. The innermost layer of the ground meristem forms the endodermis and aerenchymatous cortex. The outermost layer of the early ground meristem undergoes a precise pattern of oblique and periclinal cell divisions to produce a single or double layer of prohypodermis with an anchor cell for each radial file of aerenchyma cells. At maturity, endodermal cell walls are modified only by narrow Casparian bands. The central regions of the ground meristem become proaerenchyma and exhibit asymmetric cell division and expansion. They produce an aerenchymatous zone with barrel-shaped large cells and irregularly shaped small cells traversing the aerenchyma horizontally along radii; some crystalliferous cells with raphides are present in the aerenchyma. The walls of the hypodermis are modified early by polyphenols. The outermost layer of the hypodermis later matures into an exodermis with Casparian bands that are impermeable to berberine, an apoplastic tracer dye. The nonexodermal layer(s) of the hypodermis has suberin-modified walls. Radial files of aerenchyma are usually connected by narrow protuberances near their midpoints, the aerenchyma lacunae having been produced by expansion of cells along walls lining intercellular spaces. We are terming this type of aerenchyma development, which is neither schizogenous nor lysigenous, "differential expansion."  相似文献   

3.
The development and regulation of aerenchyma in waterlogged conditions were studied in the seminal roots of wheat. Evans blue staining and the first cell death position indicated that the cortical cell death began at the root mid-cortex cells in flooding conditions. Continuous waterlogging treatment caused the spread of cell death from the mid-cortex to the neighboring cells and well-developed aerenchyma was formed after 72 h. Meanwhile, the formation of radial oxygen loss barrier was observed in the exodermis owing to the induction of Casparian bands and lignin deposition. Analysis of aerenchyma along the wheat root revealed that aerenchyma formed at 10 mm from the root tip, significantly increased toward the center of the roots, and decreased toward the basal region of the root. In situ detection of radial oxygen species (ROS) showed that ROS accumulation started in the mid-cortex cells, where cell death began indicating that cell death was probably accompanied by ROS production. Further waterlogging treatments resulted in the accumulation of ROS in the cortical cells, which were the zone for aerenchyma development. Accumulation and distribution of H2O2 at the subcellular level were revealed by ultracytochemical localization, which further verified the involvement of ROS in the cortical cell death process (i.e., aerenchyma formation). Furthermore, gene expression analysis indicated that ROS production might be the result of up-regulation of genes encoding for ROS-producing enzymes and the down-regulation of genes encoding for ROS-detoxifying enzymes. These results suggest that aerenchyma development in wheat roots starts in the mid-cortex cells and its formation is regulated by ROS.  相似文献   

4.
To mark the apoplastic pathway of ions in the root of the dicotyledonous plant Lepidium sativum we used the heavy element lanthanum, which can be identified by analytical electron microscopy (EELS and ESI). In the front root tip, the primary walls of all meristematic cells contained lanthanum. 10-15 mm behind the root apex, lanthanum was found in the cortex cell walls up to the endodermis, but not in the stele. 20-25 mm from the tip, lanthanum was accumulated in the radial cell walls of the hypodermis, which, however, is not a complete diffusion barrier for ions, so that traces of lanthanum also were found in the cortex cell walls up to the endodermis. This study provides evidence for the presence of two apolastic diffusion barriers in the region of highest water uptake in cress roots.  相似文献   

5.
Summary Suberin lamellae and a tertiary cellulose wall in endodermal cells are deposited much closer to the tip of apple roots than of annual roots. Casparian strips and lignified thickenings differentiate in the anticlinal walls of all endodermal andphi layer cells respectively, 4–5 mm from the root tip. 16 mm from the root tip and only in the endodermis opposite the phloem poles, suberin lamellae are laid down on the inner surface of the cell walls, followed 35 mm from the root tip by an additional cellulosic layer. Coincidentally with this last development, the suberin and cellulose layers detach from the outer tangential walls and the cytoplasm fragments. 85 mm from the root tip the xylem pole endodermis (50% of the endodermis) develops similarly, but does not collapse. 100–150 mm from the root tip, the surface colour of the root changes from white to brown, a phellogen develops from the pericycle and sloughing of the cortex begins. A few secondary xylem elements are visible at this stage.Plasmodesmata traverse the suberin and cellulose layers of the endodermis, but their greater frequency in the outer tangential and radial walls of thephi layer when compared with the endodermis suggests that this layer may regulate the inflow of water and nutrients to the stele.  相似文献   

6.
The aerenchyma differentiation in cable roots, pneumatophores, anchor roots, and feeding roots of the mangrove plant, Avicennia marina (Verbenaceae) was analyzed using a light microscope and scanning electron microscope. In all types, cortex cells were arranged in longitudinal columns extending from the endodermis to the epidermis. No cells in the cortex had intercellular spaces at the root tip (0–150 m), and aerenchyma started developing at 200 m from the root apex. The aerenchyma formation was due to cell separation (schizogeny) rather than cell lysis. The cell separation occurred between the longitudinal cell columns, forming long intercellular spaces along the root axis. During aerenchyma formation, the cortex cells enlarged longitudinally by 1.8–3.9 times and widened horizontally by 2.2–2.9 times. As a result, the aerenchyma had a pronounced tubular structure that was radially long, elliptical or oval in cross section and that ran parallel to the root axis. The tube had tapering ends, as did vessel elements, although there were no perforated plates. The interconnection between neighboring tubes was made by abundant small pores or canals that were schizogenous intercellular spaces between the wall cells. All aerenchyma tubes in the root were interconnected by these small pores serving as a gas pathway.  相似文献   

7.
Aerenchyma formation in roots of maize during sulphate starvation   总被引:6,自引:0,他引:6  
Young maize ( Zea mays L., Poaceae) plants were grown in a complete, well-oxygenated nutrient solution and then deprived of their external source of sulphate. This treatment induced the formation of aerenchyma in roots. In addition to the effect of sulphate starvation on root anatomy, the presence and location of superoxide anions and hydrogen peroxide, and changes in calcium and pH were examined. By day 6 of sulphate deprivation, aerenchyma started to form in the roots of plants and the first aerenchymatous spaces were apparent in the middle of the cortex. S-starvation also induced thickening of the cell walls of the endodermis. Active oxygen species appeared in groups of intact mid-cortex cells. Formation of superoxide anion and hydrogen peroxide was found in degenerating cells of the mid-cortex. Very few nuclei in the cortex of S-starved roots fluoresced, being shrunken and near to the cell wall. By day 12 of S-deprivation, a fully developed aerenchyma was apparent and there were only a few 'chains' of cells bridging hypodermis to endodermis and stele of roots. Cell walls of endodermis of S-starved roots increased 68% in thickness. Intensive fluorescence in the cell walls of the endodermal, hypodermal and to a lesser extent of epidermal cells was observed due to the formation of active oxygen species, while there was no fluorescence in the cortical cells. There was a higher Ca concentration in the cells walls of the endodermis and epidermis, compared to the rest of the S-starved root tissues. A higher pH was observed, mainly in the cell walls of the hypodermis and to a lesser extent in the cell walls of the endodermis. Superoxide anion and hydrogen peroxide was found in degenerating cells of the root cortex. There was no fluorescence of nuclei in the cortex of S-starved roots.  相似文献   

8.
Aerenchyma gas spaces are important for plants that grow in flooded and anaerobic sites or habitats, because these gas spaces provide an internal pathway for oxygen transport. The objective of this study is to characterize the development of aerenchyma gas spaces and observe the porosity in roots of Sonneratia alba. Tissue at different developmental stages was collected from four root types, i.e. cable root, pneumatophore, feeding root and anchor root, of S. alba. In S. alba, gas space is schizogenously produced in all root types, and increases in volume from the root meristem to mature root tissues. The aerenchyma formation takes place immediately, or 3–5 mm behind the root apex. At first, cortical cells are relatively round in cross sections (near the root apex); they then become two kinds of cells, rounded and armed, which combine together, forming intercellular spaces behind the root apex. The average dimensions of cortical cells increased more than 1.3 times in the vertical direction and over 3.3 times in the horizontal direction. At maturity, aerenchyma gas spaces are long tuberous structures without diaphragms and with numerous small pores on the lateral walls. Within the aerenchyma, many sclereids grow intrusively. Root porosity in all root types ranged from 0–60%. Pneumatophores and cable roots had the highest aerenchyma area (50–60%).  相似文献   

9.
During a study of the diffusivity of sulphorhodamine G in the cortical apoplast of maize roots widely discrepant rates were found between different samples. In roots which had developed large aerenchyma spaces, the diffusion in some regions was very fast, indistinguishable from the rate in water. In other regions the rate was as much as 100 times slower. Examination of frozen intact roots with the cryo-scanning electron microscope showed the presence of liquid filling some of the aerenchyma spaces, while other spaces of the same root contained air. X-ray microanalysis of the liquid (for oxygen) showed that the liquid was water with few detectable ions. Similar liquid was present in small intercellular spaces within the spoke-like radial files of cells between the large spaces, or between remnants of collapsed cell walls at the edges of the large spaces. It is proposed that regions of roots with high diffusivity are those in which some of the aerenchyma spaces are filled with water. In seeking the origin of this liquid, the progress of aerenchyma formation could be followed in the frozen tissues. The first change observed in a group of contiguous cells was a loss of vacuolar solutes and of cell turgor. Next the walls broke apart and collapsed back onto the surrounding turgid cells leaving a volume of ion-poor liquid. The liquid was probably not that found in some aerenchyma spaces of the mature roots, because the final stage of space formation was a loss of the liquid, leaving an air filled cavity surrounded by a composite lining formed from the collapsed walls of the broken cells. It is likely that the liquid in the spaces of mature aerenchyma is exuded from the remaining living cortical cells at times when the root turgor is high. This would be consistent with several recent studies which have shown periodic exudation of water from the surface of turgid roots. The spasmodic occurrence of root cortex tissue with enhanced diffusivity would have important implications for the transport of nutrient ions across the root.Abbreviations CSEM cryo-scanning electron microscope - EDX energy dispersive X-ray microanalysis - SR-G sulphorhodamine G  相似文献   

10.
Adventitious roots of intact Phragmites plantlets were securedhorizontally 2–3 mm below the surface of an oxygen-depletedfluid agar across which oxygen-free nitrogen was gently streamedto create a constant oxygen sink; the leafy shoot was fullyexposed to air. Radial oxygen profiles through rhizosphere androot at different distances from the apex were obtained polarographicallyusing Clark-type bevelled microelectrodes servo-driven in stepsof 10 µm (root) or 10–50 µm (rhizosphere).The pattern of radial oxygen loss (ROL) typical of wetland plants,viz. high at the apex and declining sharply sub-apically, wasrelated to synergism between ROL, and oxygen consumption andincreasing impedance to diffusion within the epidermal/hypodermalcylinder rather than to a surface resistance. The smallest oxygendeficit (2 kPa) to develop across the 80 µm thick epidermal/hypodermalcylinder was within the apical 10 mm and was consistent withtissue oxygen diffusivities similar to water. At 100 mm fromthe apex, consumption and impedance had increased the deficitto about 15 kPa and reduced ROL almost to zero. The developingimpedance within the epidermal/hypodermal cylinder was leastin cell layers immediately adjoining the cortex and increasedmost in the hypodermal cell layer abutting the epidermis. Thesub-apical decline in ROL appeared to coincide with the appearanceof aerenchyma in the cortex but thin walled ‘passage areas’(windows) in the hypodermal/epidermal cylinder persisted locallyand remained leaky to oxygen to some degree. It is through thesewindows that lateral roots emerge and the cortex in line withthe windows remains non-aerenchymatous. The radial and longitudinaloxygen profiles were consistent with modelling predictions.The shapes of the stelar oxygen profiles were consistent witha higher oxygen demand in the outer region (viz. pericycle,phloem, protoxylem and early metaxylem cylinder) than in theinner core (late metaxylem cylinder and medulla), but the deficitswere relatively small (  相似文献   

11.
BACKGROUND AND AIMS: Aerenchyma formation is thought to be one of the important morphological adaptations to hypoxic stress. Although sponge gourd is an annual vegetable upland crop, in response to flooding the hypocotyl and newly formed adventitious roots create aerenchyma that is neither schizogenous nor lysigenous, but is produced by radial elongation of cortical cells. The aim of this study is to characterize the morphological changes in flooded tissues and the pattern of cortical aerenchyma formation, and to analyse the relative amount of aerenchyma formed. METHODS: Plants were harvested at 16 d after the flooding treatment was initiated. The root system was observed, and sections of fresh materials (hypocotyl, tap root and adventitious root) were viewed with a light or fluorescence microscope. Distributions of porosity along adventitious roots were estimated by a pycnometer method. KEY RESULTS: Under flooded conditions, a considerable part of the root system consisted of new adventitious roots which soon emerged and grew quickly over the soil surface. The outer cortical cells of these roots and those of the hypocotyl elongated radially and contributed to the development of large intercellular spaces. The elongated cortical cells of adventitious roots were clearly T-shaped, and occurred regularly in mesh-like lacunate structures. In these positions, slits were formed in the epidermis. In the roots, the enlargement of the gas space system began close to the apex in the cortical cell layers immediately beneath the epidermis. The porosity along these roots was 11-45 %. In non-flooded plants, adventitious roots were not formed and no aerenchyma developed in the hypocotyl or tap root. CONCLUSIONS: Sponge gourd aerenchyma is produced by the unique radial elongation of cells that make the expansigeny. These morphological changes seem to enhance flooding tolerance by promoting tissue gas exchange, and sponge gourd might thereby adapt to flooding stress.  相似文献   

12.
The relationship between ethylene production, 1-aminocyclopropane-l-carboxylic acid (ACC) concentration and aerenchyma formation (ethylene-promoted cavitation of the cortex) was studied using nodal roots of maize (Zea mays L. cv. LG11) subjected to various O2 treatments. Ethylene evolution was 7–8 fold faster in roots grown at 3 kPa O2 than in those from aerated solution (21 kPa O2), and transferring roots from aerated solution to 3 kPa O2 enhanced ethylene synthesis within less than 2 h. Ethylene production and ACC accumulation were closely correlated in different zones of hypoxic roots, regardless of whether O2 was furnished to the roots through aerenchyma or external solution. Both ethylene production and ACC concentrations (fresh weight basis) were more than 10-fold greater in the distal 0–10 mm than in the fully expanded zone of roots at 3 kPa O2. Aerenchyma formation occurred in the apical 20 mm of these roots. Roots transferred from air to anoxia accumulated less than 0. 1 nmol ACC (mg protein)-1 for the first 1.75 h; no ethylene was produced in this time. The subsequent rise in ACC levels shows that ACC can reach high concentrations even in the absence of O2, presumably due to a de-repression of ACC synthase. The hypothesis was therefore tested that anoxia in the apical region of the root caused enhanced synthesis of ACC, which was transported to more mature regions (10–20 mm behind the apex), where ethylene could be produced and aerenchyma formation stimulated. Surprisingly, exposure of intact root tips to anoxia inhibited aerenchyma formation in the mature root axis. High osmotic pressures around the growing region or excision of apices had the same effect, demonstrating that a growing apex is required for high rates of aerenchyma formation in the adjacent tissue.  相似文献   

13.
The relative contribution of the apoplastic and cell-to-cell paths to the overall hydraulic conductivity of the outer part of rice roots (LpOPR) was estimated using a pressure perfusion technique for 30-d-old rice plants (lowland cultivar, IR64, and upland cultivar, Azucena). The technique was based on the perfusion of aerenchyma of root segments from two different zones (20-50 mm and 50-100 mm from the root apex) with aerated nutrient solution using precise pump rates. The outer part of roots (OPR) comprised an outermost rhizodermis, an exodermis, sclerenchyma fibre cells, and the innermost unmodified cortical cell layer. No root anatomical differences were observed for the two cultivars used. Development of apoplastic barriers such as Casparian bands and suberin lamellae in the exodermis were highly variable. On average, matured apoplastic barriers were observed at around 50-70 mm from the root apex. Lignification of the exodermis was completed earlier than that of sclerenchyma cells. Radial water flow across the OPR was impeded either by partially blocking off the porous apoplast with China ink particles (diameter 50 nm) or by closing water channels (aquaporins) in cell membranes with 50 micro M HgCl2. The reduction of LpOPR was relatively larger in the presence of an apoplastic blockage with ink ( approximately 30%) than in the presence of the water channel blocker ( approximately 10%) suggesting a relatively larger apoplastic water flow. The reflection coefficient of the OPR (sigmasOPR) for mannitol significantly increased during both treatments. It was larger when pores of the apoplast were closed, but absolute values were low (overall range of sigmasOPR=0.1-0.4), which also suggested a large contribution of the non-selective, apoplastic path to overall water flow. The strongest evidence in favour of a predominantly apoplastic water transport came from the comparison between diffusional (PdOPR, measured with heavy water, HDO) and osmotic water permeability (PfOPR) or hydraulic conductivity (LpOPR). PfOPR was larger by a factor of 600-1400 compared with P(dOPR). The development of OPR along roots resulted in a decrease of PdOPR by a factor of three (segments taken at 20-50 and 50-100 mm from root apex, respectively). Heat-killing of living cells resulted in an increase of PdOPR for both immature (20-50 mm) and mature (50-100 mm) root segments by a factor of two. Even though both pathways (apoplast and cell-to-cell) contributed to the overall water flow, the findings indicate predominantly apoplastic water flow across the OPR, even in the presence of apoplastic barriers. Low diffusional water permeabilities may suggest a low rate of oxygen diffusion across the OPR from aerenchyma to the outer anaerobic soil medium (low PO2OPR). To date, there are no data on PO2OPR. Provisional data of radial oxygen losses (ROL) across the OPR suggest that, unlike water, rice roots efficiently retain oxygen within the aerenchyma. This ability strongly increases as roots/OPR develop.  相似文献   

14.
The stress of low oxygen concentrations in a waterlogged environment is minimized in some plants that produce aerenchyma, a tissue characterized by prominent intercellular spaces. It is produced by the predictable collapse of root cortex cells, indicating a programmed cell death (PCD) and facilitates gas diffusion between root and the aerial environment. The objective of this study was to characterize the cellular changes take place during aerenchyma formation in root of rice that accompany PCD. Scanning electron microscopy and transmission electron microscopy were used for cellular analysis of roots. Aerenchyma development was observed in both aerobic and flooded conditions. Structural changes in membranes and organelles were examined during development of root cortex cells to compare with previous examples of PCD. There was an initial collapse which started at a specific position in the mid cortex, indicating loss of turgor, and the cytoplasm became more electron dense. These cells were distinct in shape from those located towards the periphery. Mitochondria and endoplasmic reticulum appeared normal at this early stage though the tonoplast lost its integrity. Subsequently it underwent further degeneration while the plasmalemma retracted from the cell wall followed by death of neighboring cells followed a radial path. However, pycnosis of the nucleus, blebbing of plasma membrane and production of apoptotic bodies were not found which in turn indicated nonapoptotic PCD during aerenchyma formation in rice.  相似文献   

15.
As a system to study the regulation of growth anisotropy, we studied thinning of the primary root of maize (Zea mays L.) occurring developmentally or induced by water stress. Seedlings were transplanted into vermiculite at a water potential of approximately -0.03 MPa (well-watered) or -1.6 MPa (water-stressed). The diameter of roots in both treatments decreased with time after transplanting; the water-stressed roots became substantially thinner than well-watered roots at steady state, showing that root thinning is a genuine response to water stress. To analyze the thinning responses we quantified cell numbers and the spatial profiles of longitudinal, radial, and tangential expansion rates separately for the cortex and stele. The results showed that there was no zone of isotropic expansion and the degree of anisotropy varied greatly with position and treatment. Thinning over time in well-watered roots was caused by rates of radial and tangential expansion being too low to maintain the shape of the root. In response to low water potential, cell number in both tissues was unchanged radially but increased tangentially, which shows that thinning was caused wholly by reduced cell expansion. Water stress substantially decreased rates of tangential and radial expansion in both the stele and cortex, but only in the apical 5 mm of the root; basal to this, rates were similar in well-watered and water-stressed roots. By contrast, as in previous studies, longitudinal expansion was identical between the treatments in the apical 3 mm but in water-stressed roots was inhibited at more basal locations. The results show that expansion in longitudinal and radial directions can be regulated independently.  相似文献   

16.
菰(Zizania latifolia)是一种多年生挺水植物,为了探讨该植物根、茎和叶的解剖结构、组织化学及其质外体屏障的通透性生理。该文利用光学显微镜和荧光显微镜,对菰的根、茎、叶进行了解剖学和组织化学研究。结果表明:(1)菰不定根解剖结构由外而内分别为表皮、外皮层、单层细胞的厚壁机械组织层、皮层、内皮层和维管柱;茎结构由外而内分别为角质层、表皮、周缘厚壁机械组织层、皮层、具维管束的厚壁组织层和髓腔。叶鞘具有表皮和具维管束皮层,叶片具有表皮,叶肉和维管束。(2)不定根具有位于内侧的内皮层及其邻近栓质化细胞和外侧的外皮层组成的屏障结构;茎具内侧厚壁机械组织层,外侧的角质层和周缘厚壁机械组织层组成的屏障结构,屏障结构的细胞壁具凯氏带、木栓质和木质素沉积的组织化学特点,叶表面具有角质层。(3)菰通气组织包括根中通气组织,茎、叶皮层的通气组织和髓腔。(4)菰的屏障结构和解剖结构是其适应湿地环境的重要特征,但其茎周缘厚壁层和厚壁组织层较薄。由此推测,菰适应湿地环境,但在旱生环境中分布有一定的局限性。  相似文献   

17.
王晨  李龙  倪细炉  李健 《西北植物学报》2018,38(7):1279-1287
通气组织(aerenchyma)是植物薄壁组织内一些气室或腔隙的集合,对于水生及湿地植物体内的气体运输至关重要。该实验以沉水植物穿叶眼子菜为材料,利用石蜡切片技术,通过对茎的纵切面及横切面结构进行观察,从时间和空间上分析其茎、叶通气组织的发生过程。结果表明:(1)穿叶眼子菜的茎结构包括表皮、皮层及维管柱,通气组织发达,存在于内皮层与表皮之间;茎通气组织由距茎尖约0.6mm处开始形成,并成熟于约2.4mm处。(2)穿叶眼子菜的叶由表皮、皮层薄壁细胞及维管柱组成,其通气组织形成于靠近茎尖的第2~3片新生叶且仅形成于主叶脉。(3)穿叶眼子菜的茎和叶通气组织的发育过程相似,起初为排列致密的细胞团,然后由皮层细胞的分裂产生小的细胞间隙,随后的腔隙膨大过程涉及细胞的生长分裂及细胞降解,最终形成发达的通气组织。(4)穿叶眼子菜的通气组织发育过程可划分为实心期、形成期、膨大期、成熟期四个时期;不同时期茎通气组织的发达程度差异很大,实心期、形成期、膨大期和成熟期的孔隙度分别为0.54%、10.90%、27.61%和57.58%;但节处通气组织不发达,成熟期的节处孔隙度仅为3.62%。  相似文献   

18.
以不同盐度下生长的互花米草(Spartina alterniflora)为材料,采用常规石蜡切片法对其根的横切结构进行显微观察,比较不同盐度下互花米草根结构的特点及变化规律,研究互花米草根对盐浸环境的适应性。观察结果显示:(1)互花米草根只有初生结构;(2)成熟根的表皮细胞基本毁坏、脱落;(3)互花米草根具有发达的外皮层和皮层通气组织,内皮层细胞壁五面加厚明显,且随盐度的升高呈先增大后减小的趋势;(4)维管柱中央被机械组织所填充,中柱鞘细胞壁也出现加厚现象。互花米草根的结构体现了其对盐浸环境的适应性特征。  相似文献   

19.
Structural features of the mature root cortex and its apoplasticpermeability to dyes have been determined for two dicotyledonouswetland plants of differing habitats: Nymphaea odorata, growingrooted in water and mud, and Caltha palustris, growing in temporalwetlands among cattails. In mature roots, movement of the apoplasticdyes, berberine and safranin, into the roots was blocked atthe hypodermis, indicating the presence of an exodermis. A hypodermiswith an exodermis, i.e. Casparian bands in the outermost uniseriatelayer plus suberin lamellae, is present in both species. InN. odorata, hypodermal walls are further modified with cellulosicsecondary walls. Roots of N. odorata and C. palustris have anendodermis with Casparian bands only. A honeycomb aerenchymais produced by differential expansion in N. odorata and includesastrosclereids and diaphragms, while roots of C. palustris haveno aerenchyma, but some irregular lacunae are found in old roots.These aspects of cortex structure are related to an open meristemorganization, with unusual patterns of cell divisions in certainground meristem cells (called semi-regular hexagon cells) ofN. odorata. The correlation between aerenchyma pattern and hypodermalstructure appears to be related to habitat differences.Copyright2000 Annals of Botany Company Caltha palustris, Nymphaea odorata, root development, cortex, endodermis, aerenchyma, exodermis, hypodermis, permeability, wetland plants  相似文献   

20.
濒危药用植物桃儿七根的显微结构及其菌根真菌分布研究   总被引:1,自引:0,他引:1  
本文研究了桃儿七Sinopodophyllum hexandrum根的显微结构及其真菌分布。结果表明,桃儿七的根为根状茎,节状,不定根形成的须根系发达。根的结构主要由表皮、皮层、维管柱三部分构成,其中,皮层所占比例最大,超过80%。根的木质部有四原型和五原型两种类型,五原型较为常见;四原型的根和五原型的根在皮层细胞形态上存在一定差异。在桃儿七的不定根和其上的侧根观察到真菌菌丝分布,其数量和种类与根的直径有关,在不定根较细(先端)的部位真菌以暗色有隔内生真菌(DSE真菌)为主,侵染率为77.9%;而较粗根中真菌菌丝为无隔菌丝为主,分布很少且仅存在于皮层细胞的一至二层,不侵染皮层深部和维管柱。不定根侧根中真菌以丛枝菌根真菌为主,丛枝菌根常常占据大部分的皮层细胞,侵染率高达90%以上。桃儿七根中没有发现根毛存在,因此,侧根中共生的丛枝菌根真菌可能是桃儿七养分和水分吸收的主要途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号