首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
Aim To test relationships between the richness and composition of vascular plants and birds and attributes of habitat fragments using a model land‐bridge island system, and to investigate whether the effects of fragmentation differ depending on species natural history traits. Location Thousand Island Lake, China. Methods We compiled presence/absence data of vascular plant and bird species through exhaustive surveys of 41 islands. Plant species were assigned to two categories: shade‐intolerant and shade‐tolerant species; bird species were assigned to three categories: edge, interior, and generalist species. We analysed the relationships between island attributes (area, isolation, elevation, shape complexity, and perimeter to area ratio) and species richness using generalized linear models (GLMs). We also investigated patterns of composition in relation to island attributes using ordination (redundancy analysis). Results We found that island area explained a high degree of variation in the species richness of all species groups. The slope of the species–area relationship (z) was 0.16 for all plant species and 0.11 for all bird species. The lowest z‐value was for generalist birds (0.04). The species richness of the three plant species groups was associated with island area per se, while that of all, generalist, and interior birds was explained mainly by elevation, and that of edge bird species was associated primarily with island shape. Patterns of species composition were most strongly related to elevation, island shape complexity, and perimeter to area ratio rather than to island area per se. Species richness had no significant relationship with isolation, but species composition did. We also found differential responses among the species groups to changes in island attributes. Main conclusions Within the Thousand Island Lake system, the effects of fragmentation on both bird and plant species appear to be scale‐dependent and taxon‐specific. The number of plant species occurring on an island is strongly correlated with island area, and the richness of birds and the species composition of plants and birds are associated with variables related to habitat heterogeneity. We conclude that the effects of fragmentation on species diversity and composition depend not only on the degree of habitat loss but also on the specific patterns of habitat fragmentation.  相似文献   

2.
Calcareous grasslands harbour a high biodiversity, but are highly fragmented and endangered in central Europe. We tested the relative importance of habitat area, habitat isolation, and landscape diversity for species richness of vascular plants. Plants were recorded on 31 calcareous grasslands in the vicinity of the city of Göttingen (Germany) and were divided into habitat specialist and generalist species. We expected that habitat specialists were more affected by area and isolation, and habitat generalists more by landscape diversity. In multiple regression analysis, the species richness of habitat specialists (n = 66 species) and habitat generalists (n = 242) increased with habitat area, while habitat isolation or landscape diversity did not have significant effects. Contrary to predictions, habitat specialists were not more affected by reduced habitat area than generalists. This may have been caused by delayed extinction of long-living plant specialists in small grasslands. Additionally, non-specialists may profit more from high habitat heterogeneity in large grasslands compared to habitat specialists. Although habitat isolation and landscape diversity revealed no significant effect on local plant diversity, only an average of 54% of habitat specialists of the total species pool were found within one study site. In conclusion, habitat area was important for plant species conservation, but regional variation between habitats contributed also an important 46% of total species richness.  相似文献   

3.
Over the past half century, ecologists have tried to unravel the factors that drive species richness patterns in ecological communities. One influential theory is island biogeography theory (IBT), which predicts that island or habitat area and isolation are drivers of species richness. However, relatively few studies testing IBT have considered invertebrate or belowground communities, and it is unclear as to whether the predictions made by IBT hold for these communities. Other theories predict that habitat characteristics such as vegetation diversity may be important drivers of invertebrate species richness. To investigate patterns of invertebrate density and species richness across gradients of area, isolation, and vegetation diversity, we used a system of 30 lake islands in the boreal zone of northern Sweden. We assessed density and taxonomic richness of ground‐dwelling spiders, web‐building spiders, beetles, collembolans, mites, and nematodes, for all islands during two consecutive summers. For all invertebrate groups, both density and taxonomic richness were either neutrally or negatively related to island size, and either neutrally or positively related to island isolation. Meanwhile the density and taxonomic richness for several groups was positively related to vegetation diversity (i.e. habitat heterogeneity). In multiple regression analyses, island size was often the single best predictor for both invertebrate density and taxonomic richness, but in some cases island size and isolation in combination explained more variation than each factor considered singly. Contrary to IBT predictions, invertebrate density and richness was never positively related to island size or negatively related to island isolation. Instead, our results suggest that plant diversity (and thus habitat heterogeneity) was the main driver of the patterns that we found, although other factors could have some influence. We conclude that several factors, but not necessarily those predicted as important by IBT, are important in determining invertebrate abundance and species richness in island systems.  相似文献   

4.
Aim We studied the relationship between the size and isolation of islands and bat species richness in a near‐shore archipelago to determine whether communities of vagile mammals conform to predictions of island biogeography theory. We compared patterns of species richness in two subarchipelagos to determine whether area per se or differences in habitat diversity explain variations in bat species richness. Location Islands in the Gulf of California and adjacent coastal habitats on the Baja California peninsula in northwest Mexico. Methods Presence–absence surveys for bats were conducted on 32 islands in the Gulf of California using acoustic and mist‐net surveys. We sampled for bats in coastal habitats of four regions of the Baja peninsula to characterize the source pool of potential colonizing species. We fitted a semi‐log model of species richness and multiple linear regression and used Akaike information criterion model selection to assess the possible influence of log10 area, isolation, and island group (two subarchipelagos) on the species richness of bats. We compared the species richness of bats on islands with greater vegetation densities in the southern gulf (n = 20) with that on drier islands with less vegetation in the northern gulf (n = 12) to investigate the relationship between habitat diversity and the species richness of bats. Results Twelve species of bats were detected on islands in the Gulf of California, and 15 species were detected in coastal habitats on the Baja peninsula. Bat species richness was related to both area and isolation of islands, and was higher in the southern subarchipelago, which has denser vegetation. Log10 area was positively related to bat species richness, which increased by one species for every 5.4‐fold increase in island area. On average, richness declined by one species per 6.25 km increase in isolation from the Baja peninsula. Main conclusions Our results demonstrate that patterns of bat species richness in a near‐shore archipelago are consistent with patterns predicted by the equilibrium theory of island biogeography. Despite their vagility, bats may be more sensitive to moderate levels of isolation than previously expected in near‐shore archipelagos. Differences in vegetation and habitat xericity appear to be associated with richness of bat communities in this desert ecosystem. Although observed patterns of species richness were consistent with those predicted by the equilibrium theory, similar relationships between species richness and size and isolation of islands may arise from patch‐use decision making by individuals (optimal foraging strategies).  相似文献   

5.
Aim We examined phytogeographical patterns of West Indian orchids, and related island area and maximum elevation with orchid species richness and endemism. We expected strong species–area relationships, but that these would differ between low and montane island groups. In so far as maximum island elevation is a surrogate for habitat diversity, we anticipated a strong relationship with maximum elevation and both species richness and endemism for montane islands. Location The West Indies. Methods Our data included 49 islands and 728 species. Islands were classified as either montane (≥ 300 m elevation) or low (< 300 m). Linear and multivariate regression analyses were run to detect relationships between either area or maximum island elevation and species richness or the number of island endemic species. Results For all 49 islands, the species–area relationship was strong, producing a z‐value of 0.47 (slope of the regression line) and explaining 46% of the variation. For 18 relatively homogeneous, low islands we found a non‐significant slope of z = −0.01 that explained only 0.1% of the variation. The 31 montane islands had a highly significant species–area relationship, with z = 0.49 and accounting for 65% of the variation. Species numbers were also strongly related to maximum island elevation. For all islands < 750 km2, we found a small‐island effect, which reduced the species–area relationship to a non‐significant z = 0.16, with only 5% of the variation explained by the model. Species–area relationships for montane islands of at least 750 km2 were strong and significant, but maximum elevation was the best predictor of species richness and accounted for 79% of the variation. The frequency of single‐island endemics was high (42%) but nearly all occurred on just nine montane islands (300 species). The taxonomic distribution of endemics was also skewed, suggesting that seed dispersability, while remarkable in some taxa, is very limited in others. Montane island endemics showed strong species–area and species–elevation relationships. Main conclusions Area and elevation are good predictors of orchid species diversity and endemism in the West Indies, but these associations are driven by the extraordinarily strong relationships of large, montane islands. The species richness of low islands showed no significant relationship with either variable. A small‐island effect exists, but the montane islands had a significant relationship between species diversity and maximum elevation. Thus, patterns of Caribbean orchid diversity are dependent on an interplay between area and topographic diversity.  相似文献   

6.
Understanding how species diversity is related to sampling area and spatial scale is central to ecology and biogeography. Small islands and small sampling units support fewer species than larger ones. However, the factors influencing species richness may not be consistent across scales. Richness at local scales is primarily affected by small‐scale environmental factors, stochasticity and the richness at the island scale. Richness at whole‐island scale, however, is usually strongly related to island area, isolation and habitat diversity. Despite these contrasting drivers at local and island scales, island species–area relationships (SARs) are often constructed based on richness sampled at the local scale. Whether local scale samples adequately predict richness at the island scale and how local scale samples influence the island SAR remains poorly understood. We investigated the effects of different sampling scales on the SAR of trees on 60 small islands in the Raja Ampat archipelago (Indonesia) using standardised transects and a hierarchically nested sampling design. We compared species richness at different grain sizes ranging from single (sub)transects to whole islands and tested whether the shape of the SAR changed with sampling scale. We then determined the importance of island area, isolation, shape and habitat quality at each scale on species richness. We found strong support for scale dependency of the SAR. The SAR changed from exponential shape at local sampling scales to sigmoidal shape at the island scale indicating variation of species richness independent of area for small islands and hence the presence of a small‐island effect. Island area was the most important variable explaining species richness at all scales, but habitat quality was also important at local scales. We conclude that the SAR and drivers of species richness are influenced by sampling scale, and that the sampling design for assessing the island SARs therefore requires careful consideration.  相似文献   

7.
The general dynamic model of oceanic island biogeography describes the evolution of species diversity properties, including species richness (SR), through time. We investigate the hypothesis that SR in organisms with high dispersal capacities is better predicted by island area and elevation (as a surrogate of habitat diversity) than by time elapsed since island emergence and geographic isolation. Linear mixed effect models (LMMs) subjected to information theoretic model selection were employed to describe moss and liverwort SR patterns from 67 oceanic islands across 12 archipelagos. Random effects, which are used to modulate model parameters to take differences among archipelagos into account, included only a random intercept in the best‐fit model for liverworts and in one of the two best‐fit models for mosses. In this case, the other coefficients are constant across archipelagos, and we interpret the intercept as a measure of the intrinsic carrying capacity of islands within each archipelago, independently of their size, age, elevation and geographic isolation. The contribution of area and elevation to the models was substantially higher than that of time, with the least contribution made by measures of geographic isolation. This reinforces the idea that oceanic barriers are not a major impediment for migration in bryophytes and, together with the almost complete absence of in situ insular diversification, explains the comparatively limited importance of time in the models. We hence suggest that time per se has little independent role in explaining bryophyte SR and principally features as a variable accounting for the changing area and topographic complexity during the life‐cycle of oceanic islands. Simple area models reflecting habitat availability and diversity might hence prevail over more complex temporal models reflecting in‐situ speciation and dispersal (time, geographic connectivity) in explaining patterns of biodiversity for exceptionally mobile organisms.  相似文献   

8.
Aim To propose a model (the choros model) for species diversity, which embodies number of species, area and habitat diversity and mathematically unifies area per se and habitat hypotheses. Location Species richness patterns from a broad scale of insular biotas, both from island and mainland ecosystems are analysed. Methods Twenty‐two different data sets from seventeen studies were examined in this work. The r2 values and the Akaike's Information Criterion (AIC) were used in order to compare the quality of fit of the choros model with the Arrhenius species–area model. The classic method of log‐log transformation was applied. Results In twenty of the twenty‐two cases studied, the proposed model gave a better fit than the classic species–area model. The values of z parameter derived from choros model are generally lower than those derived from the classic species–area equation. Main conclusions The choros model can express the effects of area and habitat diversity on species richness, unifying area per se and the habitat hypothesis, which as many authors have noticed are not mutually exclusive but mutually supplementary. The use of habitat diversity depends on the specific determination of the ‘habitat’ term, which has to be defined based on the natural history of the taxon studied. Although the values of the z parameter are reduced, they maintain their biological significance as described by many authors in the last decades. The proposed model can also be considered as a stepping‐stone in our understanding of the small island effect.  相似文献   

9.
Aim To test the performance of the choros model in an archipelago using two measures of environmental heterogeneity. The choros model is a simple, easy‐to‐use mathematical relationship which approaches species richness as a combined function of area and environmental heterogeneity. Location The archipelago of Skyros in the central Aegean Sea (Greece). Methods We surveyed land snails on 12 islands of the archipelago. We informed the choros model with habitat data based on natural history information from the land snail species assemblage. We contrast this with habitat information taken from traditional vegetation classification to study the behaviour of choros with different measures of environmental heterogeneity. R2 values and Akaike's information criterion (AIC) were used to compare the choros model and the Arrhenius species–area model. Path analysis was used to evaluate the variance in species richness explained by area and habitat diversity. Results Forty‐two land snail species were recorded, living in 33 different habitat types. The choros model with habitat types had more explanatory power than the classic species–area model and the choros model using vegetation types. This was true for all islands of the archipelago, as well as for the small islands alone. Combined effects of area and habitat diversity primarily explain species richness in the archipelago, but there is a decline when only small islands are considered. The effects of area are very low both for all the islands of the archipelago, and for the small islands alone. The variance explained by habitat diversity is low for the island group as a whole, but significantly increases for the small islands. Main conclusions The choros model is effective in describing species‐richness patterns of land snails in the Skyros Archipelago, incorporating ecologically relevant information on habitat occupancy and area. The choros model is more effective in explaining richness patterns on small islands. When using traditional vegetation types, the choros model performs worse than the classic species–area relationship, indicating that use of proxies for habitat diversity may be problematic. The slopes for choros and Arrhenius models both assert that, for land snails, the Skyros Archipelago is a portion of a larger biogeographical province. The choros model, informed by ecologically relevant habitat measures, in conjunction with path analysis points to the importance of habitat diversity in island species richness.  相似文献   

10.
Aim To examine the degree to which area, isolation, environmental conditions and time since first settlement explain variation in language richness among islands. Location Pacific islands ranging east–west from Rapa Nui to Indonesia and north–south from Hawaii to New Zealand. Methods We constructed a dataset of 264 Pacific islands that support 1640 languages (c. 24% of the world's languages). We examined possible predictors of language richness using three different types of models: linear regression models, linear mixed models that included random effects for language phylogeny and simultaneous autoregressive models. We tested whether the following variables, alone or in combination, predict language richness: island area and isolation, climate (rainfall, temperature), mean growing season, soil fertility, habitat heterogeneity (elevation, number of ecoregions), time since first human settlement. Results We identified two optimal models (delta Akaike information criterion < 2). One (R2= 0.52) included area, with 86% of remaining variation accounted for by random effects for phylogeny. The other (R2= 0.56) included a spatial component, area and a suite of other variables (of which isolation and settlement scale were significant). Of the hypotheses tested (mean growing season, ecological risk, habitat heterogeneity, climate, time since settlement, area–isolation theory), area–isolation performed best, alone explaining 44% of variation in language richness. Main conclusions Language diversity relates strongly to island area, and, after controlling for area, with variables linked to isolation (e.g. distance to continent, time since settlement). The influence of environmental productivity may be scale and context dependent. Although environmental productivity may shape language diversity patterns at a global scale, it plays little role on Pacific islands. Approximately half the variance in language richness remains unexplained. Unlike other taxa, for which area, isolation and environmental conditions explain up to 90% of variation in richness, human diversity patterns appear to also be influenced by other variables (e.g. economic, political and social factors).  相似文献   

11.
Aim The aim of this study is to explore the interrelationships between island area, species number and habitat diversity in two archipelago areas. Location The study areas, Brunskär and Getskär, are located in an archipelago in south‐western Finland. Methods The study areas, 82 islands in Brunskär and 78 in Getskär, were classified into nine habitat types based on land cover. In the Brunskär area, the flora (351 species) was surveyed separately for each individual habitat on the islands. In the Getskär area, the flora (302 species) was surveyed on a whole‐island basis. We used standard techniques to analyse the species–area relationship on a whole‐island and a habitat level. We also tested our data for the small island effect (SIE) using breakpoint and path analysis models. Results Species richness was significantly associated with both island area and habitat diversity. Vegetated area in particular, defined as island area with the rock habitat subtracted, proved to be a strong predictor of species richness. Species number had a greater association with island area multiplied by the number of habitats than with island area or habitat number separately. The tests for a SIE in the species–area relationship showed the existence of a SIE in one of the island groups. No SIE could be detected for the species–vegetated area relationship in either of the island groups. The strength of the species–area relationship differed considerably between the habitats. Main conclusions The general principles of island biogeography apply well to the 160 islands in this study. Vascular plant diversity for small islands is strongly influenced by physiographic factors. For the small islands with thin and varying soil cover, vegetated area was the most powerful predictor of species richness. The species–area curves of various habitats showed large variations, suggesting that the measurement of habitat areas and establishment of habitat‐based species lists are needed to better understand species richness on islands. We found some evidence of a SIE, but it is debatable whether this is a ‘true’ SIE or a soil cover/habitat characteristics feature.  相似文献   

12.
Understanding speciation on oceanic islands is a major topic in current research on island biogeography. Within this context, it is not an easy task to differentiate between the influence of elevation as an indicator for habitat diversity and island age as an indicator for the time available for diversification. One reason for this is that erosion processes reduce the elevation of islands over time. In addition, the geographic distance to source ecosystems might differ among habitats, which could lead to habitat‐specific reduction of species immigration, niche occupation and diversification. We used the percentage of single island endemic species (pSIE) in five different zonal ecosystems (distributed in altitude) on the Canary Islands as an indicator for diversification. We tested whether diversification increases with altitude due to a greater ecological isolation of high elevation ecosystems on oceanic islands under the assumption of a low elevation source region on the mainland. In addition we tested whether the ‘hump‐shaped’ (unimodal) relationship between pSIE and island age as well as the linear relationship between species richness and pSIE is consistent across spatial scales. We also analyse a potential influence of island area and habitat area. We found that pSIE increases with elevation. The relations between species richness as well as age with pSIE are consistent across scales. We conclude that high elevation ecosystems are ecologically isolated. Surprisingly, the altitudinal belt with the strongest human influences has the highest values of pSIE. We successfully transfer the ‘general dynamic theory of island biogeography’ to the ecosystem scale, which provides multiple opportunities for future studies. With this approach we find that the effects of elevation on diversification can be separated from those of island age.  相似文献   

13.
We investigate how variation in patch area and forest cover quantified for three different spatial scales (buffer size of 500, 1500 and 3000 m radius) affects species richness and functional diversity of bat assemblages in two ecosystems differing in fragment–matrix contrast: a landbridge island system in Panama and a countryside ecosystem in the Brazilian Amazon. Bats were sampled on 11 islands and the adjacent mainland in Panama, and in eight forest fragments and nearby continuous forest in Brazil. Species–area relationships (SAR) were assessed based on Chao1 species richness estimates, and functional diversity–area relationships (FAR) were quantified using Chao1 functional diversity estimates measured as the total branch length of a trait dendrogram. FARs were calculated using three trait sets: considering five species functional traits (FARALL), and trait subsets reflecting ‘diet breadth’ (FARDIET) and ‘dispersal ability’ (FARDISPERSAL). We found that in both study systems, FARALL was less sensitive to habitat loss than SAR, in the sense that an equal reduction in habitat loss led to a disproportionately smaller loss of functional diversity compared to species richness. However, the inhospitable and static aquatic matrix in the island ecosystem resulted in more pronounced species loss with increasing loss of habitat compared to the countryside ecosystem. Moreover, while we found a significant FARDISPERSAL for the island ecosystem in relation to forest cover within 500 m landscape buffers, FARDIET and FARDISPERSAL were not significant for the countryside ecosystem. Our findings highlight that species richness and functional diversity in island and countryside ecosystems scale fundamentally differently with habitat loss, and suggest that key bat ecological functions, such as pollination, seed dispersal and arthropod suppression, may be maintained in fragments despite a reduction in species richness. Our study reinforces the importance of increasing habitat availability for decreasing the chances of losing species richness in smaller fragments.  相似文献   

14.
Davidson RL  Rykken J  Farrell B 《ZooKeys》2011,(147):497-526
As part of an All Taxa Biodiversity Inventory in Boston Harbor Islands national park area, an inventory of carabid beetles on 13 islands was conducted. Intensive sampling on ten of the islands, using an assortment of passive traps and limited hand collecting, resulted in the capture of 6,194 specimens, comprising 128 species. Among these species were seven new state records for Massachusetts (Acupalpus nanellus,Amara aulica,Amara bifrons, Apenes lucidulus, Bradycellus tantillus, Harpalus rubripes and Laemostenus terricola terricola-the last also a new country record; in passing we report also new state records for Harpalus rubripes from New York and Pennsylvania, Amara ovata from Pennsylvania, and the first mainland New York records for Asaphidion curtum). For most islands, there was a clear relationship between species richness and island area. Two islands, however, Calf and Grape, had far more species than their relatively small size would predict. Freshwater marshes on these islands, along with a suite of hygrophilous species, suggested that habitat diversity plays an important role in island species richness. Introduced species (18) comprised 14.0% of the total observed species richness, compared to 5.5% (17 out of 306 species) documented for Rhode Island. We surmise that the higher proportion of introduced species on the islands is, in part, due to a higher proportion of disturbed and open habitats as well as high rates of human traffic. We predict that more active sampling in specialized habitats would bring the total carabid fauna of the Boston Harbor Islands closer to that of Rhode Island or eastern Massachusetts in richness and composition; however, isolation, human disturbance and traffic, and limited habitat diversity all contribute to reducing the species pool on the islands relative to that on the mainland.  相似文献   

15.
Although islands as natural laboratories have held the attention of scientists for centuries, they continue to offer new study questions, especially in the context of the current biodiversity crisis. To date, habitat diversity on islands and spatial configuration of archipelagos have received less attention than classical island area and isolation. Moreover, in the field where experiments are impossible, correlative methods have dominated, despite the call for more mechanistic approaches. We developed an agent‐based computer simulation to study the effect of habitat diversity and archipelago configuration on plant species richness and composition in five archipelagos worldwide (Hawaii, Galapagos, Canary Islands, Cape Verde and Azores) and compared simulated diversity patterns to the empirical data. Habitat diversity proved to be an important factor to achieve realistic simulation results in all five archipelagos, whereas spatial structure of archipelagos was important in more elongated archipelagos. In most cases, simulation results correlate stronger with spermatophyte than with pteridophyte data, which we suggest can be attributed to the different dispersal and evolution rates of the two species groups. Correlation strength between simulated and observed diversity also varied among archipelagos, suggesting that geological and biogeographic histories of archipelagos have affected the species richness and composition on the islands. Our study demonstrates that a relatively simple computer simulation involving just a few essential processes can largely emulate patterns of archipelagic species richness and composition and serve as a powerful additional method to complement empirical approaches.  相似文献   

16.
The introduced tree species Spathodea campanulata (Bignoniaceae) forms novel forests in Puerto Rico, these having emerged after the abandonment of fields in the mid‐20th century and resulting in forests with a new species composition. We assessed bryophyte species richness in these novel forests and sought correlations with geological substrate, past land use, forest edge and patch area, forest structure, elevation, microhabitat diversity, tree species richness, and microclimatic conditions. Transects were established (edge and forest interior) in nine moist forest patches dominated by Spathodea in north‐central Puerto Rico. These Spathodea forest patches ranged from 0.6 to 9 ha. ANOVA, Chi‐square, correlation, and cluster analyses were used in data analyses. We found 57 bryophyte species. There was a significant difference in bryophyte richness among patches. Those on karst exhibited highest bryophyte richness due to microhabitat diversity, past land use, and shorter hydroperiods. Alluvial sites scored lowest in bryophyte species richness, and forest structure was important for bryophyte communities on these sites. Significant differences in temperature, relative humidity, and light intensity were observed between edge and forest interior. These appeared important for establishing bryophyte species cover but not richness and composition. Microhabitat diversity, patch area, and forest age were more related to bryophyte species richness than elevation, exposed edge, and tree species richness, regardless of geologic substrate. Collectively, Spathodea patches were similar to mature forests on the Island with respect to bryophyte species richness and composition. Novel Spathodea forests have conservation value due to their habitat suitability for bryophyte communities.  相似文献   

17.
Disentangling the multiple factors controlling species diversity is a major challenge in ecology. Island biogeography and environmental filtering are two influential theories emphasizing respectively island size and isolation, and the abiotic environment, as key drivers of species richness. However, few attempts have been made to quantify their relative importance and investigate their mechanistic basis. Here, we applied structural equation modelling, a powerful method allowing test of complex hypotheses involving multiple and indirect effects, on an island‐like system of 22 French Guianan neotropical inselbergs covered with rock‐savanna. We separated the effects of size (rock‐savanna area), isolation (density of surrounding inselbergs), environmental filtering (rainfall, altitude) and dispersal filtering (forest‐matrix openness) on the species richness of all plants and of various ecological groups (terrestrial versus epiphytic, small‐scale versus large‐scale dispersal species). We showed that the species richness of all plants and terrestrial species was mainly explained by the size of rock‐savanna vegetation patches, with increasing richness associated with higher rock‐savanna area, while inselberg isolation and forest‐matrix openness had no measurable effect. This size effect was mediated by an increase in terrestrial‐habitat diversity, even after accounting for increased sampling effort. The richness of epiphytic species was mainly explained by environmental filtering, with a positive effect of rainfall and altitude, but also by a positive size effect mediated by enhanced woody‐plant species richness. Inselberg size and environmental filtering both explained the richness of small‐scale and large‐scale dispersal species, but these ecological groups responded in opposite directions to altitude and rainfall, that is positively for large‐scale and negatively for small‐scale dispersal species. Our study revealed both habitat diversity associated with island size and environmental filtering as major drivers of neotropical inselberg plant diversity and showed the importance of plant species growth form and dispersal ability to explain the relative importance of each driver.  相似文献   

18.
Aim Studies on habitat fragmentation of insect communities mostly ignore the impact of the surrounding landscape matrix and treat all species equally. In our study, on habitat fragmentation and the importance of landscape context, we expected that habitat specialists are more affected by area and isolation, and habitat generalists more by landscape context. Location and methods The study was conducted in the vicinity of the city of Göttingen in Germany in the year 2000. We analysed butterfly communities by transect counts on thirty‐two calcareous grasslands differing in size (0.03–5.14 ha), isolation index (2100–86,000/edge‐to‐edge distance 55–1894 m), and landscape diversity (Shannon–Wiener: 0.09–1.56), which is correlated to percentage grassland in the landscape. Results A total of 15,185 butterfly specimens belonging to fifty‐four species are recorded. In multiple regression analysis, the number of habitat specialist (n = 20) and habitat generalist (n = 34) butterfly species increased with habitat area, but z‐values (slopes) of the species–area relationships for specialists (z = 0.399) were significantly steeper compared with generalists (z = 0.096). Generalists, but not specialists, showed a marginally significant increase with landscape diversity. Effects of landscape diversity were scale‐dependent and significant only at the smallest scale (landscape context within a 250 m radius around the habitat). Habitat isolation was not related to specialist and generalist species numbers. In multiple regression analysis the density of specialists increased significantly with habitat area, whereas generalist density increased only marginally. Habitat isolation and landscape diversity did not show any effects. Main conclusions Habitat area was the most important predictor of butterfly community structure and influenced habitat specialists more than habitat generalists. In contrast to our expectations, habitat isolation had no effect as most butterflies could cope with the degree of isolation in our study region. Landscape diversity appeared to be important for generalist butterflies only.  相似文献   

19.
Relatively easy measurable patch characteristics (especially habitat diversity measures) have proven to be valuable indicators of forest plant species richness in forest fragments of relatively undisturbed areas. Urban and suburban forest patches, however, are characterized by a specific landscape ecological context implying that specific processes may influence ecosystem functioning and hence that other abiotic indicators for plant diversity are more appropriate. We studied the relation between functional ecological plant species groups and suburban forest patch characteristics such as patch area, habitat diversity and isolation. Some components of species richness were related to the isolation of the patches. In contrast to previous similar large-scale fragmentation studies in more rural areas, further results stressed the overwhelming importance of patch area relative to habitat variables in determining species richness. This suggests (1) the occurrence of density-dependent species extinction processes in small forest patches; or (2) the existence of external deterministic factors which put a major constraint on species richness in small patches. We tend to support the latter hypothesis and propose forest disturbance and associated black cherry (Prunus serotina Ehrh.) invasion as such a possible external factor. Small forest patches may be more sensitive to disturbance and biological invasion due to various reasons. Hence large forest patches are to be preferred for plant conservation in the suburban area.  相似文献   

20.
Aim To investigate how plant diversity of whole islands (‘gamma’) is related to alpha and beta diversity patterns among sampling plots within each island, thus exploring aspects of diversity patterns across scales. Location Nineteen islands of the Aegean Sea, Greece. Methods Plant species were recorded at both the whole‐island scale and in small 100 m2 plots on each island. Mean plot species richness was considered as a measure of alpha diversity, and six indices of the ‘variation’‐type beta diversity were also applied. In addition, we partitioned beta diversity into a ‘nestedness’ and a ‘replacement’ component, using the total species richness recorded in all plots of each island as a measure of ‘gamma’ diversity. We also applied 10 species–area models to predict the total observed richness of each island from accumulated plot species richness. Results Mean alpha diversity was not significantly correlated with the overall island species richness or island area. The range of plot species richness for each island was significantly correlated with both overall species richness and area. Alpha diversity was not correlated with most indices of beta diversity. The majority of beta diversity indices were correlated with whole‐island species richness, and this was also true for the ‘replacement’ component of beta diversity. The rational function model provided the best prediction of observed island species richness, with Monod’s and the exponential models following closely. Inaccuracy of predictions was positively correlated with the number of plots and with most indices of beta diversity. Main conclusions Diversity at the broader scale (whole islands) is shaped mainly by variation among small local samples (beta diversity), while local alpha diversity is not a good predictor of species diversity at broader scales. In this system, all results support the crucial role of habitat diversity in determining the species–area relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号