首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Doris Godde  Heidrun Dannehl 《Planta》1994,195(2):291-300
To test wether chlorosis is induced by photoinhibitory damage to photosystem II (PSII), onset of chlorosis and loss of PSII function were compared in young spinach (Spinaciae oleracea L.) plants suffering under a combined magnesium and sulphur deficiency. Loss of chlorophyll already occurred after the first week of deficiency and preceded any permanent functional inhibition of the photosynthetic apparatus. Permanent disturbancies of photosynthetic electron transport measured in isolated thylakoids and of PSII function, determined via the ratio of variable fluorescence to maximal fluorescence, Fv/Fm, could be detected only after the second week of deficiency. After the third week, the plants had lost about 60% of their chlorophyll; even so, fluorescence data indicated that 85% of the existing PSII was still capable of initiating photosynthetic electron transport. However, quenching analysis of steady-state fluorescence showed an early increase in non-photochemical quenching and in down-regulated PSII centres with low steady-state quantum efficiency. Together with the down-regulation of PSII centres, a 1.4-fold increase in D1-protein synthesis, measured as incorporation of [14C]leucine, could be observed at the end of the first week before any loss of D1 protein, chlorophyll or photosynthetic activity could be detected. Immunological determiation by Western-blotting did not show a change in D1-protein content; thus, at this time, D1 protein was not only faster synthesised but was also faster degraded than before the imposition of mineral deficiency. The increased turnover was high enough to prevent any loss or functional inhibition of PSII. After 3 weeks, D1-protein synthesis on a chlorophyll basis was further stimulated by a factor of 2. However, this was not enough to prevent a net loss of D1 protein of about 70%, showing that the D1-protein was now degraded faster than it was synthesised. Immunological determination and electron-transport measurements showed that together with the loss of D1 protein the other polypetides of PSII were also degraded, resulting in a specific loss of PSII centres. The degradation of PSII centres prevented a large accumulation of damaged PSII centres. We assume that the decrease in PSII centres initiates the breakdown of the other thylakoid proteins.Abbreviations Fo yield of intrinsic fluorescence when all PSII centres are open in the dark - Fm yield of maximal fluorescence when all reaction centres are closed - Fm fluorescence yield when all reaction centres are closed under steady-state conditions - Fv yield of variable fluorescence, (difference between Fo and Fm) - F yield of variable fluorescence under steady-state conditions, difference between Fm and Ft, the fluorescence yield under steady-state conditions - PFD photon flux density - QA primary quinone acceptor of PSII - QB secondary quinone acceptor of PSII - qp photochemical quenching - qn non-photochemical quenching This work was supported by grants from the Bundesminister für Forschung und Technologie and the German Israeli Foundation. The authors thank Prof. I. Ohad (Department of Biological Chemistry, Hebrew University, Jerusalem, Israel) for fruitful discussions.  相似文献   

2.
After seven weeks of a combined magnesium and sulphur deficiency, spinach (Spinacea oleracea L.) plants showed a substantial accumulation of inactivated photosystem II (PSII) centres as indicated by a 40% decrease of the chlorophyll (Chl) fluorescence parameter Fv/Fm (Fv being the yield of variable fluorescence and Fm the yield of maximal fluorescence when all reaction centres are closed) together with a severe loss of leaf Chl content of 75%. The responses of the photosynthetic apparatus were examined when the deficient plants were transferred back to a rich nutrient medium. During the first 24 h of the recovery phase, thylakoid protein synthesis measured as incorporation of [14C]leucine per unit of Chl increased substantially. The synthesis rate of the D1 reaction-centre polypeptide of PSII, which in the deficient plants was reduced to 50% of the non-deficient control, was stimulated eight- to ninefold. D1-protein content, which in the deficient plants was reduced to 40% of the non-deficient control, started to increase 2 d later. Thus, D1-protein degradation was also enhanced. The increased D1-protein turnover led to a rapid repair of the existing PSII centres as indicated by the rise of Fv/Fm. It was completed at day 7 of the recovery phase. At day 2 of the recovery phase, the synthesis of other thylakoid proteins such as the D2 protein, cytochrome b 559, CP 47 and the 33-kDa polypeptide of the water-splitting system, became stimulated. This process resulted in an accumulation of new PSII centres. During the first week, formation of new PSII centres was not associated with an increase in leaf Chl content. The Chl content of the recovering leaves only started to increase when the ratio of PSII polypeptides versus LHCII (light-harvesting complex of PSII), which was substantially diminished in the deficient plants, became comparable to that of the control. The recovery process was accompanied by substantial changes in thylakoid protein phosphorylation. Their relevance to thylakoid protein turnover and stability is discussed.Abbreviations Chl chlorophyll - cyt cytochrome - Fo yield of intrinsic fluorescence when all PSII centres are open in the dark - Fm yield of maximal fluorescence when all reaction centres are closed - Fm fluorescence yield when all reaction centres are closed (after a saturating flash) under steady-state conditions - Fv yield of variable fluorescence, (difference between Foand Fm) - F yield of variable fluorescence under steady state conditions - LHC light-harvesting complex - PQ plastoquinone - QA primary quinone acceptor of PSII - QB secondary quinone acceptor of PSII - qP photochemical quenching - qn non-photochemical quenching The authors like to thank Dipl. Biol. Britta Untereiser for determining the chlorophyll fluorescence quenching factors. This work was supported by grants from the Bundesminister für Forschung und Technologie, the Project Europäisches Forschungszentrum and the German Israeli Foundation in cooperation with Prof. I. Ohad, Hebrew University, Jerusalem, Israel.  相似文献   

3.
Photochemical efficiencies of photosystem I (PSI) and photosystem II (PSII) were studied in dry thalli of the lichen Hypogymnia physodes and during their re-hydration. In dry thalli, PSII reaction centers are photochemically inactive, as evidenced by the absence of variable chlorophyll (Chl) fluorescence, whereas the primary electron donor of PSI, P700, exhibits irreversible oxidation under continuous light. Upon application of multiple- and, particularly, single-turnover pulses in dry lichen, P700 oxidation partially reversed, which indicated recombination between P700+ and the reduced acceptor FX of PSI. Re-wetting of air-dried H. physodes initiated the gradual restoration of reversible light-induced redox reactions in both PSII and PSI, but the recovery was faster in PSI. Two slow components of P700+ reduction occurred after irradiation of partially and completely hydrated thalli with strong white light. In contrast, no slow component was found in the kinetics of re-oxidation of QA, the reduced primary acceptor of PSII, after exposure of such thalli to white light. This finding indicated the inability of PSII in H. physodes to provide the reduction of the plastoquinone pool to significant levels. It is concluded that slow alternative electron transport routes may contribute to the energetics of photosynthesis to a larger extent in H. physodes than in higher plants.Abbreviations A0 and A1 Primary acceptor chlorophyll and secondary electron acceptor phylloquinone - Chl a Chlorophyll a - Fm Maximal level of chlorophyll fluorescence when all PSII centers are closed - Fo Minimal level of fluorescence when all PSII centers are open after dark adaptation - FR Far-red - Fv Variable fluorescence (=FmFo) - FX, FA, and FB Iron–sulfur centers - MT pulse Multiple-turnover pulse - PS Photosystem - P700 Reaction center chlorophyll of PSI - QA Primary quinone acceptor of PSII - QB Secondary quinone acceptor of PSII - ST pulse Single-turnover pulse  相似文献   

4.
Based on the electron-transport properties on the reducing side of the reaction center, photosystem II (PS II) in green plants and algae occurs in two distinct forms. Centers with efficient electron-transport from QA to plastoquinone (QB-reducing) account for 75% of the total PS II in the thylakoid membrane. Centers that are photochemically competent but unable to transfer electrons from QA to QB (QB-nonreducing) account for the remaining 25% of total PS II and do not participate in plastoquinone reduction. In Dunaliella salina, the pool size of QB-nonreducing centers changes transiently when the light regime is perturbed during cell growth. In cells grown under moderate illumination intensity (500 E m-2s-1), dark incubation induces an increase (half-time 45 min) in the QB-nonreducing pool size from 25% to 35% of the total PS II. Subsequent illumination of these cells restores the steady-state concentration of QB-nonreducing centers to 25%. In cells grown under low illumination intensity (30 µE m–2s–1), dark incubation elicits no change in the relative concentration of QB-nonreducing centers. However, a transfer of low-light grown cells to moderate light induces a rapid (half-time 10 min) decrease in the QB-nonreducing pool size and a concomitant increase in the QB-reducing pool size. These and other results are explained in terms of a pool of QB-nonreducing centers existing in a steady-state relationship with QB-reducing centers and with a photochemically silent form of PS II in the thylakoid membrane of D. salina. It is proposed that QB-nonreducing centers are an intermediate stage in the process of damage and repair of PS II. It is further proposed that cells regulate the inflow and outflow of centers from the QB-nonreducing pool to maintain a constant pool size of QB-nonreducing centers in the thylakoid membrane.Abbreviations Chl chlorophyll - PS photosystem - QA primary quinone electron acceptor of PS II - QB secondary quinone electron acceptor of PS II - LHC light harvesting complex - Fo non-variable fluorescence yield - Fpl intermediate fluorescence yield plateau level - Fmax maximum fluorescence yield - Fi mitial fluorescence yield increase from Fo to Fpl(Fpl-Fo) - Fv total variable fluorescence yield (Fmax-Fo) - DCMU dichlorophenyl-dimethylurea  相似文献   

5.
Chlorophyll fluorescence is routinely taken as a quantifiable measure of the redox state of the primary quinone acceptor QA of PSII. The variable fluorescence in thylakoids increases in a single turnover flash (STF) from its low dark level F o towards a maximum F mSTF when QA becomes reduced. We found, using twin single turnover flashes (TTFs) that the fluorescence increase induced by the first twin-partner is followed by a 20–30% increase when the second partner is applied within 20–100 μs after the first one. The amplitude of the twin response shows a period-of-four oscillation associated with the 4-step oxidation of water in the Kok cycle (S states) and originates from two different trapped states with a life time of 0.2–0.4 and 2–5 ms, respectively. The oscillation is supplemented with a binary oscillation associated with the two-electron gate mechanism at the PSII acceptor side. The F(t) response in high frequency flash trains (1–4 kHz) shows (i) in the first 3–4 flashes a transient overshoot 20–30% above the F mSTF = 3*F o level reached in the 1st flash with a partial decline towards a dip D in the next 2–3 ms, independent of the flash frequency, and (ii) a frequency independent rise to F m = 5*F o in the 3–60 ms time range. The initial overshoot is interpreted to be due to electron trapping in the S0 fraction with QB-nonreducing centers and the dip to the subsequent recovery accompanying the reoxidation of the double reduced acceptor pair in these RCs after trapping. The rise after the overshoot is, in agreement with earlier findings, interpreted to indicate a photo-electrochemical control of the chlorophyll fluorescence yield of PSII. It is anticipated that the double exciton and electron trapping property of PSII is advantageous for the plant. It serves to alleviate the depression of electron transport in single reduced QB-nonreducing RCs, associated with electrochemically coupled proton transport, by an increased electron trapping efficiency in these centers.  相似文献   

6.
The role of D1-protein in photoinhibition was examined. Photoinhibition of spinach thylakoids at 20°C caused considerable degradation of D1-protein and a parallel loss of variable fluorescence, QB-independent electron flow and QB-dependent electron flow. The breakdown of D1-protein as well as the loss of variable fluorescence and QB-independent electron flow were largely prevented when thylakoids were photoinhibited at 0°C. The QB-dependent electron flow markedly decreased under the same conditions. This inactivation may represent the primary event in photoinhibition and could be the result of some modification at the QB-site of D1-protein. Evidence for this comes from fluorescence relaxation kinetics following photoinhibition at 0°C which indicate a partial inactivation of QA --reoxidation. These results support the idea of D1-protein breakdown during photoinhibition as a two step process consisting of an initial inactivation at the QB-site of the protein followed by its degradation. The latter is accompanied by the loss of PS II-reaction centre function.Abbreviations Asc ascorbate - p-BQ 1, 4-benzoquinone - DAD diaminodurene - DPC diphenylcarbazide - DQH2 duroquinole - Fecy ferricyanide - MV methylviologen - QA primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II - SiMo silicomolybdate  相似文献   

7.
Alhagi sparsifolia Shap. is exposed to a high-irradiance environment as the main vegetation found in the forelands of the Taklamakan Desert. We investigated chlorophyll a fluorescence emission of A. sparsifolia seedlings grown under ambient (HL) and shade (LL) conditions. Our results indicated that the fluorescence intensity in the leaves was significantly higher for LL-grown plants than that under HL. High values of the maximum quantum yield of PSII for primary photochemistry (φPo) and the quantum yield that an electron moves further than QA - (φEo) in the plants under LL conditions suggested that the electron flow from QA - (primary quinone electron acceptors of PSII) to QB (secondary quinone acceptor of PSII) or QB - was enhanced at LL compared to natural HL conditions. The efficiency/probability with which an electron from the intersystem electron carriers was transferred to reduce end electron acceptors at the PSI acceptor side and the quantum yield for the reduction of end electron acceptors at the PSI acceptor side were opposite to φPo, and φEo. Thus, we concluded that the electron transport on the donor side of PSII was blocked under LL conditions, while acceptor side was inhibited at the HL conditions. The PSII activity of electron transport in the plants grown in shade was enhanced, while the energy transport from PSII to PSI was blocked compared to the plants grown at HL conditions. Furthermore, PSII activity under HL was seriously affected in midday, while the plants grown in shade enhanced their energy transport.  相似文献   

8.
Fluorescence induction of isolated spinach chloroplasts was measured by using weak continuous light. It is found that the kinetics of the initial phase of fluorescence induction as well as the initial fluorescence level Fj are influenced by the number of preilluminating flashes, and shows damped period 4 oscillation. Evidence is given to show that it is correlated with the S-state transitions of oxygen evolution. Based on the previous observations that the S states can modulate the fluorescence yield of Photosystem II, a simulating calculation suggests that, in addition to the Photosystem II centers inactive in the plastoquinone reduction, the S-state transitions can also make a contribution to the intial phase of fluorescence induction.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - F0 non-variable fluorescence level emitted when all PS II centers are open - Fi initial fluorescence level immediately after shutter open - Fpt intermediate plateau fluorescence level - Fm maximum fluorescence level emitted when all PS II centers are closed - PS II Photosystem II - QA primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II  相似文献   

9.
A newly-developed field-portable multi-flash kinetic fluorimeter for measuring the kinetics of the microsecond to millisecond reactions of the oxidizing and reducing sides of photosystem 2 in leaves of intact plants is described and demonstrated. The instrumental technique is a refinement of that employed in the double-flash kinetic fluorimeter (Joliot 1974 Biochim Biophys Acta 357: 439–448) where a low-intensity short-duration light pulse is used to measure the fluorescence yield changes following saturating single-turnover light pulses. The present instrument uses a rapid series of short-duration (2 s) pulses to resolve a complete microsecond to millisecond time-scale kinetic trace of fluorescence yield changes after each actinic flash. Differential optics, using a matrix of optical fibers, allow very high sensitivity (noise levels about 0.05% Fmax) thus eliminating the need for signal averaging, and greatly reducing the intensity of light required to make a measurement. Consequently, the measuring pulses have much less actinic effect and an entire multi-point trace (seven points) excites less than 1% of the reaction centers in a leaf. In addition, bu combining the actinic and measuring pulse light in the optical fiber network, the tail of the actinic flash can be compensated for, allowing measurements of events as rapidly as 20 s after the actinic flash. This resolution makes practical the routine measurement of the microsecond turnover kinetics of the oxygen evolving complex in leaves of intact plants in the field. The instrument is demonstrated by observing flash number dependency and inhibitor sensitivity of the induction and decay kinetics of flash-induced fluorescence transients in leaves of intact plants. From these traces the period-two oscillations associated with the turnover of the two-electron gate and the period-four oscillations associated with the turnover of the oxygen evolving complex can be observed. Applications of the instrument to extending our knowledge of chloroplast function to the whole plant, the effects on plants of environmental stress, herbicides, etc, and possible applications to screening of mutants are discussed.Abbreviations DCMU 3-(3,4-Dichlorophenol)-1,1-dimethylurea - PS 2 photosystem 2 - PS 1 photosystem 1 - P680 primary electron donor of the PS 2 reaction center - QA primary acceptor quinone of PS 2 - QB secondary acceptor quinone of PS 2 - CCCP carbonyl cyanide-m-chlorophenylhydrazone - Yz donor to P680 + - F0 level of fluorescence with all PS 2 centers open - Fmax maximum level of fluorescence with all PS 2 centers closed - P680QA Open reaction centers with P680 reduced and QA oxidized (low fluorescence) - P680QA - Closed reaction centers, in which P680 is reduced (high fluorescence) - P680 +QA - Closed reaction centers, in which P680 is oxidized (low fluorescence)  相似文献   

10.
Although it is generally assumed that the plastoquinone pool of thylakoid membranes in leaves of higher plants is rapidly oxidized upon darkening, this is often not the case. A multiflash kinetic fluorimeter was used to monitor the redox state of the plastoquinone pool in leaves. It was found that in many species of plants, particularly those using the NAD-malic enzyme C4 system of photosynthesis, the pool actually became more reduced following a light to dark transition. In some Amaranthus species, plastoquinone remained reduced in the dark for several hours. Far red light, which preferentially drives Photosystem I turnover, could effectively oxidize the plastoquinone pool. Plastoquinone was re-reduced in the dark within a few seconds when far red illumination was removed. The underlying mechanism of the dark reduction of the plastoquinone pool is still uncertain but may involve chlororespiratory activity.Abbreviations apparent Fo observed fluorescence yield after dark adaptation - Fm maximum fluorescence when all QA is fully reduced - Fo minimum fluorescence yield when QA is fully oxidized and non-photochemical quenching is fully relaxed - Fs steady state fluorescence yield - PPFD photosynthetic photon flux density - PQ plastoquinone - QA primary quinone acceptor of the Photosystem II reaction center - QB secondary quinone acceptor to the Photosystem II reaction center - F Fm minus Fs  相似文献   

11.
Wen  Xiaogang  Yang  Zhipan  Ding  Shunhua  Yang  Huixia  Zhang  Lixin  Lu  Congming  Lu  Qingtao 《Photosynthesis research》2021,150(1-3):159-177

Deg1 protease functions in protease and chaperone of PSII complex components, but few works were performed to study the effects of Deg1 on electron transport activities on the donor and acceptor side of PSII and its correlation with the photoprotection of PSII during photoinhibition. Therefore, we performed systematic and comprehensive investigations of electron transfers on the donor and acceptor sides of photosystem II (PSII) in the Deg1-reduced transgenic lines deg1-2 and deg1-4. Both the maximal quantum efficiency of PSII photochemistry (Fv/Fm) and the actual PSII efficiency (ΦPSII) decreased significantly in the transgenic plants. Increases in nonphotochemical quenching (NPQ) and the dissipated energy flux per reaction center (DI0/RC) were also shown in the transgenic plants. Along with the decreased D1, CP47, and CP43 content, these results suggested photoinhibition under growth light conditions in transgenic plants. Decreased Deg1 caused inhibition of electron transfer on the PSII reducing side, leading to a decline in the number of QB-reducing centers and accumulation of QB-nonreducing centers. The Tm of the Q band shifted from 5.7 °C in the wild-type plant to 10.4 °C and 14.2 °C in the deg1-2 and deg1-4 plants, respectively, indicating an increase in the stability of S2QA¯ in transgenic plants. PSIIα in the transgenic plants largely reduced, while PSIIβ and PSIIγ increased with the decline in the Deg1 levels in transgenic plants suggesting PSIIα centers gradually converted into PSIIβ and PSIIγ centers in the transgenic plants. Besides, the connectivity of PSIIα and PSIIβ was downregulated in transgenic plants. Our results reveal that downregulation of Deg1 protein levels induced photoinhibition in transgenic plants, leading to loss of PSII activities on both the donor and acceptor sides in transgenic plants. These results give a new insight into the regulation role of Deg1 in PSII electron transport.

  相似文献   

12.
A fraction (usually in the range of 10–25%) of PS II centers is unable to transfer electrons from the primary quinone acceptor QA to the secondary acceptor QB. These centers are inactive with respect to O2 evolution since their reopening after photochemical charge separation to the S2OA - state involves predominantly a back reaction to S1QA in the few seconds time range (slower phases are also occurring). Several properties of these centers are analyzed by fluorescence and absorption change experiments. The initial rise phase Fo-Fpl of fluorescence induction under weak illumination reflects both the closure of inactive centers and the modulation of the fluorescence yield by the S-states of the oxygen-evolving system: We estimate typical relative amplitudes of these contributions as, respectively, 65 and 35% of the Fo-Fpl amplitude. The half-rise time of this phase is significantly shorter than for the fluorescence induction in the presence of DCMU (in which all centers are involved). This finding is shown to be consistent with inactive centers sharing the same light-harvesting antenna as normal centers, a view which is also supported by comparing the dependence of the fluorescence yield on the amount of closed active or inactive centers estimated through absorption changes. It is argued that the exponential kinetics of the Fo-Fpl phase does not indicate absence of excitation energy transfer between the antennas of inactive and active centers. We show that the acceptor dichlorobenzoquinone does not restore electron transfer in inactive centers, in disagreement with previous suggestions. We confirm, however, the enhancement of steady-state electron flow caused by this quinone and suggest that it acts by relieving a blocking step involved in the reoxidation of a fraction of the plastoquinone pool. Part of the discrepancies between the present results and those from previous literature may arise from the confusion of inactive centers characterized on a single turnover basis and PS II centers that become blocked under steady-state conditions because of deficient reoxidation of their secondary acceptors.Abbreviations DCBQ 2,6-dichloro-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMQ 2,5-dimethyl-p-benzoquinone - PS photosystem  相似文献   

13.
Zhu XG  Govindjee  Baker NR  deSturler E  Ort DO  Long SP 《Planta》2005,223(1):114-133
Chlorophyll a fluorescence induction (FI) is widely used as a probe for studying photosynthesis. On illumination, fluorescence emission rises from an initial level O to a maximum P through transient steps, termed J and I. FI kinetics reflect the overall performance of photosystem II (PSII). Although FI kinetics are commonly and easily measured, there is a lack of consensus as to what controls the characteristic series of transients, partially because most of the current models of FI focus on subsets of reactions of PSII, but not the whole. Here we present a model of fluorescence induction, which includes all discrete energy and electron transfer steps in and around PSII, avoiding any assumptions about what is critical to obtaining O J I P kinetics. This model successfully simulates the observed kinetics of fluorescence induction including O J I P transients. The fluorescence emission in this model was calculated directly from the amount of excited singlet-state chlorophyll in the core and peripheral antennae of PSII. Electron and energy transfer were simulated by a series of linked differential equations. A variable step numerical integration procedure (ode15s) from MATLAB provided a computationally efficient method of solving these linked equations. This in silico representation of the complete molecular system provides an experimental workbench for testing hypotheses as to the underlying mechanism controlling the O J I P kinetics and fluorescence emission at these points. Simulations based on this model showed that J corresponds to the peak concentrations of Q A QB (QA and QB are the first and second quinone electron acceptor of PSII respectively) and Q A Q B and I to the first shoulder in the increase in concentration of Q A Q B 2− . The P peak coincides with maximum concentrations of both Q A Q B 2− and PQH2. In addition, simulations using this model suggest that different ratios of the peripheral antenna and core antenna lead to differences in fluorescence emission at O without affecting fluorescence emission at J, I and P. An increase in the concentration of QB-nonreducing PSII centers leads to higher fluorescence emission at O and correspondingly decreases the variable to maximum fluorescence ratio (F v/F m).  相似文献   

14.
Spectral and kinetic characteristics of fluorescence from isolated reaction centers of photosynthetic purple bacteria Rhodobacter sphaeroides and Rhodobacter capsulatus were measured at room temperature under rectangular shape of excitation at 810 nm. The kinetics of fluorescence at 915 nm reflected redox changes due to light and dark reactions in the donor and acceptor quinone complex of the reaction center as identified by absorption changes at 865 nm (bacteriochlorophyll dimer) and 450 nm (quinones) measured simultaneously with the fluorescence. Based on redox titration and gradual bleaching of the dimer, the yield of fluorescence from reaction centers could be separated into a time-dependent (originating from the dimer) and a constant part (coming from contaminating pigment (detached bacteriochlorin)). The origin was also confirmed by the corresponding excitation spectra of the 915 nm fluorescence. The ratio of yields of constant fluorescence over variable fluorescence was much smaller in Rhodobacter sphaeroides (0.15±0.1) than in Rhodobacter capsulatus (1.2±0.3). It was shown that the changes in fluorescence yield reflected the disappearance of the dimer and the quenching by the oxidized primary quinone. The redox changes of the secondary quinone did not have any influence on the yield but excess quinone in the solution quenched the (constant part of) fluorescence. The relative yields of fluorescence in different redox states of the reaction center were tabulated. The fluorescence of the dimer can be used as an effective tool in studies of redox reactions in reaction centers, an alternative to the measurements of absorption kinetics.Abbreviations Bchl bacteriochlorophyll - Bpheo bacteriopheophytin - D electron donor to P+ - P bacteriochlorophyll dimer - Q quinone acceptor - QA primary quinone acceptor - QB secondary quinone acceptor - RC reaction center protein - UQ6 ubiquinone-30  相似文献   

15.
Susceptibility of a moss,Ceratodon purpureus (Hedw.) Brid., to photoinhibition and subsequent recovery of the photochemical efficiency of PSII was studied in the presence and absence of the chloroplast-encoded protein-synthesis inhibitor lincomycin.Ceratodon had a good capacity for repairing the damage to PSII centers induced by strong light. Tolerance against photoinhibition was associated with rapid turnover of the D1 protein, since blocking of D1 protein synthesis more than doubled the photoinhibition rate measured as the decline in the ratio of variable fluorescence to maximal fluorescence (Fv/Fmax). Under exposure to strong light in the absence of lincomycin a net loss of D1 protein occurred, indicating that the degradation of damaged D1 protein inCeratodon was rapid and independent of the resynthesis of the polypeptide. The result suggests that synthesis is the limiting factor in the turnover of D1 protein during photoinhibition of the mossCeratodon. The level of initial fluorescence (Fo) correlated with the production of inactive PSII centers depleted of D1 protein. The higher the Fo level, the more severe was the loss of D1 protein seen in the samples during photoinhibition. Restoration of Fv/Fmax at recovery light consisted of a fast and slow phase. The recovery of fluorescence yield in the presence of lincomycin, which was added at different times in the recovery, indicated that the chloroplast-encoded protein-synthesis-dependent repair of damaged PSII centers took place during the fast phase of recovery. Pulse-labelling experiments with [35S]methionine supported the conclusion drawn from fluorescence measurements, since the rate of D1 protein synthesis after photoinhibition exceeded that of the control plants during the first hours under recovery conditions.  相似文献   

16.
The recent crystallographic structure at 3.0 Å resolution of PSII from Thermosynechococcus elongatus has revealed a cavity in the protein which connects the membrane phase to the binding pocket of the secondary plastoquinone QB. The cavity may serve as a quinone diffusion pathway. By fluorescence methods, electron transfer at the donor and acceptor sides was investigated in the same membrane-free PSII core particle preparation from T. elongatus prior to and after crystallization; PSII membrane fragments from spinach were studied as a reference. The data suggest selective enrichment of those PSII centers in the crystal that are intact with respect to O2 evolution at the manganese-calcium complex of water oxidation and with respect to the integrity of the quinone binding site. One and more functional quinone molecules (per PSII monomer) besides of QA and QB were found in the crystallized PSII. We propose that the extra quinones are located in the QB cavity and serve as a PSII intrinsic pool of electron acceptors.  相似文献   

17.
The transfer of laboratory cultures of H. pluvialis to high irradiance outdoors caused a substantial decline in the maximum quantum yield of photosystem II (PSII), from 0.65 in the morning to 0.45 at midday, as measured by the ratio of variable to maximum fluorescence yields (Fv/Fm), and a steep rise in non-photochemical quenching (NPQ). Chlorophyll fluorescence induction curves of morning samples showed a clear I-step, reflecting a certain PSII heterogeneity. Single turnover flash measurements on samples taken from the outdoor photobioreactor in the middle of day showed an increase in the reoxidation time constant of the reduced plastoquinone QA , i.e., the time required for electron transfer from the primary plastoquinone acceptor of PSII QA to the secondary plastoquinone acceptor QB. Photosynthesis rates were almost constant during the day. Along with the increase in non-photochemical quenching, there was a slight increase in zeaxanthin and antheraxanthin contents and decrease in violaxanthin, showing the presence of an operative xanthophyll cycle in this microalga. A marked increase of secondary carotenoids was found at the end of the first day of exposure to sunlight, mainly astaxanthin monoester, which reached 15.5% of the total carotenoid content. Though cells turned reddish during the second day, the decline in the fluorescence parameter Fv/Fm in the middle of the day was less than during the first day, and there was no further increase in the value for NPQ. Similar behaviour was observed during the third day when the culture was fully red. After four days of exposure to sunlight, the dry weight reached 800 mg L–1 and the concentration of secondary carotenoids (81% astaxanthin monoester) reached 4.4% dry weight.  相似文献   

18.
The effects of low temperature acclimation and photoinhibitory treatment on Photosystem 2 (PS 2) have been studied by thermoluminescence and chlorophyll fluorescence decay kinetics after a single turnover saturating flash. A comparison of unhardened and hardened leaves showed that, in the hardened case, a decrease in overall and B-band thermoluminescence emissions occurred, indicating the presence of fewer active PS 2 reaction centers. A modification in the form of the B-band emission was also observed and is attributed to a decrease in the apparent activation energy of recombination in the hardened leaves. The acclimated leaves also produced slower QA reoxidation kinetics as judged from the chlorophyll fluorescence decay kinetics. This change was mainly seen in an increased lifetime of the slow reoxidation component with only a small increase in its amplitude. Similar changes in both thermoluminescence and fluorescence decay kinetics were observed when unhardened leaves were given a high light photoinhibitory treatment at 4°C, whereas the hardened leaves were affected to a much lesser extent by a similar treatment. These results suggest that the acclimated plants undergo photoinhibition at 4°C even at low light intensities and that a subsequent high light treatment produces only a small additive photoinhibitory effect. Furthermore, it can be seen that photoinhibition eventually gives rise to PS 2 reaction centers which are no longer functional and which do not produce thermoluminescence or variable chlorophyll fluorescence.Abbreviations D1 The 32 kDa protein of Photosystem 2 reaction center - Fm maximum chlorophyll fluorescence yield - F0 minimal chlorophyll fluorescence yield obtained when all PS 2 centers are open - Fi intermediate fluorescence level corresponding to PS 2 centers which are loosely or not connected to plastoquinone (non-B centers) - Fv maximum variable chlorophyll fluorescence yield (Fv=Fm–F0) - PS 2 Photosystem 2 - QA and QB respectively, primary and secondary quinonic acceptors of PS 2 - S1, S2 and S3 respectively, the one, two and three positively charged states of the oxygen evolving system - Z secondary donor of PS 2  相似文献   

19.
The increase of chlorophyll fluorescence yield in chloroplasts in a 12.5 Hz train of saturating single turnover flashes and the kinetics of fluorescence yield decay after the last flash have been analyzed. The approximate twofold increase in Fm relative to Fo, reached after 30-40 flashes, is associated with a proportional change in the slow (1-20 s) component of the multiphasic decay. This component reflects the accumulation of a sizeable fraction of QB-nonreducing centers. It is hypothesized that the generation of these centers occurs in association with proton transport across the thylakoid membrane. The data are quantitatively consistent with a model in which the fluorescence quenching of QB-nonreducing centers is reversibly released after second excitation and electron trapping on the acceptor side of Photosystem II.  相似文献   

20.
In order to characterize the photosystem II (PS II) centers which are inactive in plastoquinone reduction, the initial variable fluorescence rise from the non-variable fluorescence level Fo to an intermediate plateau level Fi has been studied. We find that the initial fluorescence rise is a monophasic exponential function of time. Its rate constant is similar to the initial rate of the fastest phase (-phase) of the fluorescence induction curve from DCMU-poisoned chloroplasts. In addition, the initial fluorescence rise and the -phase have the following common properties: their rate constants vary linearly with excitation light intensity and their fluorescence yields are lowered by removal of Mg++ from the suspension medium. We suggest that the inactive PS II centers, which give rise to the fluorescence rise from Fo to Fi, belong to the -type PS II centers. However, since these inactive centers do not display sigmoidicity in fluorescence, they thus do not allow energy transfer between PS II units like PS II.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - DMQ 2,5-dimethyl-p-benzoquinone - Fo initial non-variable fluorescence yield - Fm maximum fluorescence yield - Fi intermediate fluorescence yield - PS II photosystem II - QA primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号