首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The chlorophyll a fluorescence induction pattern in chloroplasts upon repetitive single turnover excitations: Accumulation and function of QB-nonreducing centers
Authors:Wim Vredenberg  Vojtech Kasalicky  Milan Durchan
Institution:a Department of Plant Physiology, Wageningen University and Research, Wageningen, NL, USA
b Faculty of Biology and Inst. of Physical Biology, University of South Bohemia, Ceske Budejovice, Czech Republic
c Laboratory of Photosynthesis, Inst. of Microbiology, Academy of Sciences Czech Republic, Trebon, Czech Republic
Abstract:The increase of chlorophyll fluorescence yield in chloroplasts in a 12.5 Hz train of saturating single turnover flashes and the kinetics of fluorescence yield decay after the last flash have been analyzed. The approximate twofold increase in Fm relative to Fo, reached after 30-40 flashes, is associated with a proportional change in the slow (1-20 s) component of the multiphasic decay. This component reflects the accumulation of a sizeable fraction of QB-nonreducing centers. It is hypothesized that the generation of these centers occurs in association with proton transport across the thylakoid membrane. The data are quantitatively consistent with a model in which the fluorescence quenching of QB-nonreducing centers is reversibly released after second excitation and electron trapping on the acceptor side of Photosystem II.
Keywords:β  fraction of PSUs with QB-nonreducing RCs  DCMU  3(3  4-dichlorophenyl)-1  1-dimethylurea  FCCP  carbonyl cyanide p-trofluoromethoxyphenylhydrazone  F(t)  fluorescence level at time t  Fm  maximum fluorescence in each STF in flash train  Fo  fluorescence level of system with 100% open PSUs in dark-adapted state  Fv  variable fluorescence at each STF in a 12    Hz flash train with Fv     Fm   &minus     Fo  ΔF  fluorescence increase in STF in 12    Hz flash train  ΔFo  increase in fluorescence level at onset of STF in 12    Hz flash train with ΔFo     Fm&minus  ΔF  ΔFQa  fluorescence increase in STF associated with release of QA-quenching  ΔFPhe  fluorescence increase in STF associated with release of Phe-quenching  ΔFnQb  fluorescence increase in STF associated with release of quenching in QB-nonreducing RCs  Fsc  fluorescence of semi-closed (-open) QB-reducing RCs  FscnQb  fluorescence of semi-closed (-open) QB-nonreducing RCs  FcnQb  fluorescence of closed QB-nonreducing RCs  k&minus  1  rate constant of radical pair recombination  kAB1  2  rate constant of QA&minus   oxidation by QB and QB&minus    respectively  k1  2  rate constant of reoxidation of [PheQA]2&minus   to [PheQA]&minus   in QB-nonreducing RCs  knB1  2  rate constant of reoxidation [PheQA]&minus   in QB-nonreducing RCs  ke  rate constant of QA photoreduction  N  number of STFs in variable flash train  OEC  oxygen evolving complex  P680  primary electron donor of PSII  Phe(or Ph)  pheophytin  primary electron acceptor of PSII  [PheQA]2&minus    &minus    double and single reduced acceptor pair of PSII  respectively  PQ  plastoquinone  PSII  photosystem II  PSU  photosynthetic unit  QA  primary quinone acceptor of PSII  QB  secondary quinone acceptor of PSII  RC  reaction center of PSII  TSTM  three-state trapping model  STF  single turnover flash  VMC  valinomyin  YZ  secondary electron donor of PSII
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号