首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We have previously cloned a cellulase [β-1,4-endoglucanase (EGase), EC 3.2.1.4] cDNA (Ag-EGase I) belonging to glycoside hydrolase family (GHF) 45 from the mulberry longicorn beetle, Apriona germari. We report here the gene structure, expression and enzyme activity of an additional celluase (Ag-EGase II) from A. germari and also described the gene structure of Ag-EGase I. The Ag-EGase II gene spans 1033 bp and consisted of two introns and three exons coding for 239 amino acid residues. The 2713-bp-long genomic DNA of Ag-EGase I also consisted of two introns and three exons. The Ag-EGase II showed 61% protein sequence identity to Ag-EGase I and 51% to another beetle, Phaedon cochleariae, cellulase, belonging to GHF 45. The catalytic sites of GHF 45 are conserved in Ag-EGase II. The Ag-EGase II has 14 conserved cysteine residues and three putative N-glycosylation sites. Northern blot analysis confirmed midgut-specific expression of Ag-EGase II, suggesting that the midgut is the prime site for cellulase synthesis in A. germari larvae. The cDNA encoding Ag-EGase II was expressed as a 36-kDa polypeptide in baculovirus-infected insect Sf9 cells and the enzyme activity of the purified recombinant Ag-EGase II was approximately 812 U/mg of recombinant Ag-EGase II. The enzymatic properties of the purified recombinant Ag-EGase II showed the highest activity at 50 °C and pH 6.0, and were stable at 60 °C at least for 10 min.  相似文献   

2.
A novel insect β-1,4-endoglucanase (DvvENGaseI) gene belonging to the glycoside hydrolase family (GHF) 45 was identified from the western corn rootworm, Diabrotica virgifera virgifera. The cDNA of the DvvENGaseI consisted of a 720 bp open reading frame encoding a 239 amino-acid protein. Analysis of the amino acid sequence revealed that DvvENGaseI exhibits 60% protein sequence identity when compared with an endoglucanase belonging to GHF45 from another beetle, Leptinotarsa decemlineata. Western blot analyses using a polyclonal antiserum developed from a partial peptide sequence revealed that DvvENGaseI expression coincided with body regions corresponding to the fore-, mid- and hindgut, although regions corresponding to the midgut and hindgut were the primary sites for DvvENGaseI expression. Functional analysis of the DvvENGaseI by RNA interference (RNAi) indicated that nearly complete knock-down of gene expression could be obtained by injection of dsRNA based on qRT-PCR and western blot analysis. However, suppression only resulted in slight developmental delays suggesting that this gene may be part of a larger system of cellulose degrading enzymes.  相似文献   

3.
The availability of sequenced insect genomes has allowed for discovery and functional characterization of novel genes and proteins. We report use of the Tribolium castaneum (Herbst) (red flour beetle) genome to identify, clone, express, and characterize a novel endo-β-1,4-glucanase we named TcEG1 (T. castaneum endoglucanase 1). Sequence analysis of a full-length TcEG1 cDNA clone (1356 bp) revealed sequence homology to enzymes in glycosyl hydrolase family 9 (GHF9), and verified presence of a change (Gly for Ser) in the conserved catalytic domain for GHF9 cellulases. This TcEG1 cDNA clone was predicted to encode a 49.5 kDa protein with a calculated pI of 5.39. Heterologous expression of TcEG1 in Drosophila S2 cell cultures resulted in secretion of a 51-kDa protein, as determined by Western blotting. The expressed protein was used to characterize TcEG1 enzymatic activity against two cellulose substrates to determine its specificity and stability. Our data support that TcEG1 as a novel endo-β-1,4-glucanase, the first functional characterization of a cellulase enzyme derived from an insect genome with potential applications in the biofuel industry due to its high relative activity at alkaline pH.  相似文献   

4.
5.
In an effort to understand whether heat shock protein 70 (Hsp70) participates in the environmental 5 °C signal reception/transduction toward breaking embryonic diapause of the silkworm Bombyx mori, we isolated a cDNA for Hsp70a and examined the expression of Hsp70a mRNA in B. mori diapause and nondiapause eggs by quantitative real-time PCR. Hsp70a mRNA gradually increased in diapause eggs continuously kept at 25 °C after oviposition to maintain diapause. When diapause eggs were exposed to the diapause-terminating condition of 5 °C beginning at 2 days post-oviposition, Hsp70a mRNA increased beginning at 5 days post-cold treatment. Even in nondiapause eggs, Hsp70a mRNA increased slightly with exposure to 5 °C. These results suggest that Hsp70a is involved in reception/transduction of the diapause-terminating (5 °C) signal via gene activation. The expression patterns of Hsp70a mRNA are discussed in relation to those of the cold-response gene Samui.  相似文献   

6.
We isolated a novel pyridoxal-5-phosphate-dependent l-cystine lyase from the dandelion Taraxacum brevicorniculatum. Real time qPCR analysis showed that C–S lyase from Taraxacum brevicorniculatum (TbCSL) mRNA is expressed in all plant tissues, although at relatively low levels in the latex and pedicel. The 1251 bp TbCSL cDNA encodes a protein with a calculated molecular mass of 46,127 kDa. It is homologous to tyrosine and alanine aminotransferases (AlaATs) as well as to an Arabidopsis thaliana carbon–sulfur lyase (C–S lyase) (SUR1), which has a role in glucosinolate metabolism. TbCSL displayed in vitrol-cystine lyase and AlaAT activities of 4 and 19 nkat mg−1 protein, respectively. However, we detected no in vitro tyrosine aminotransferase (TyrAT) activity and RNAi knockdown of the enzyme had no effect on phenotype, showing that TbCSL substrates might be channeled into redundant pathways. TbCSL is in vivo localized in the cytosol and functions as a C–S lyase or an aminotransferase in planta, but the purified enzyme converts at least two substrates specifically, and can thus be utilized for further in vitro applications.  相似文献   

7.
Calcium–calmodulin dependent protein kinase I is a component of a calmodulin-dependent protein kinase cascade and involved in many physiological processes. The full-length cDNA of calcium–calmodulin dependent protein kinase I (MnCaMKI) was cloned from the freshwater prawn Macrobrachium nipponense and its expression pattern during the molt cycle and after eyestalk ablation is described. The full-length cDNA of MnCaMKI is 3262 bp in length and has an open reading frame (ORF) of 1038 bp, encoding a 345 amino acid protein. The expression of MnCaMKI in three examined tissues was upregulated in the premolt stage of the molt cycle. Its expression was induced after eyestalk ablation (ESA): the highest expression level was reached 1 day after ESA in hepatopancreas, and 3 days after ESA in muscle. By dsRNA-mediated RNA interference assay, expression of MnCaMKI and ecydone receptor gene (MnEcR) was significantly decreased in prawns treated by injection of dsMnCaMKI, while expression of these two genes was also significantly decreased in prawns treated by injection of dsMnEcR, demonstrating a close correlation between the expression of these two genes. These results suggest that CaMKI in M. nipponense is involved in molting.  相似文献   

8.
We synthesized iron(III), cobalt(II), copper(II) and zinc(II) complexes [FeIII(HBPClNOL)Cl2]·H2O (1), [CoII(H2BPClNOL)Cl2] (2), [CuII(H2BPClNOL)Cl]Cl·H2O (3), and [ZnII(HBPClNOL)Cl] (4), where H2BPClNOL is the ligand (N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)[(3-chloro)(2-hydroxy)]propylamine). The complexes obtained were characterized by elemental analysis, IR and UV-visible spectroscopies, electrospray ionization mass spectrometry (ESI-MS), tandem mass spectrometry (MS/MS), and cyclic voltammetry. X-ray diffraction studies were performed for complexes (3) and (4) revealing the presence of mononuclear and dinuclear structures in solid state for (3). However, the zinc complex is mononuclear in solid state. Biological studies of complexes (1)-(4) were carried out in vitro for antimicrobial activity against nine Gram-positive bacteria (Staphylococcus aureus strains RN 6390B, COL, ATCC 25923, Smith Diffuse, Wood 46, enterotoxigenic S. aureus FRI-100 (SEA+), FRI S-6 (SEB+) and SEC FRI-361) and animal strain S. aureus LSA 88 (SEC/SED/TSST-1+). The following sequence of inhibition promoted by the complexes was observed: (4) > (2) > (3) > (1), showing the effect of the metal on the biological activity. To directly observe the morphological changes of the internal structure of bacterial cells after the treatment, transmission electron microscopy (TEM) was employed. For the most active complex [ZnII(HBPClNOL)Cl] (4), granulation deposits around the genetic material and internal material leaking were clearly detected.  相似文献   

9.
Polyphenol oxidases are involved in aurone biosynthesis but the gene responsible for 4-deoxyaurone formation in Asteraceae was so far unknown. Three novel full-length cDNA sequences were isolated from Coreopsis grandiflora with sizes of 1.80 kb (cgAUS1) and 1.85 kb (cgAUS2a, 2b), encoding for proteins of 68–69 kDa, respectively. cgAUS1 is preferably expressed in young petals indicating a specific role in pigment formation. The 58.9 kDa AUS1 holoproenzyme, was recombinantly expressed in E. coli and purified to homogeneity. The enzyme shows only diphenolase activity, catalyzing the conversion of chalcones to aurones and was characterized by SDS–PAGE and shot-gun type nanoUHPLC–ESI-MS/MS.  相似文献   

10.
Studies investigating the association between interleukin-13 (IL-13) single nucleotide polymorphism (SNP) rs20541 and allergic rhinitis (AR) risk have reported conflicting results. The aim of the present study was to conduct a meta-analysis assessing the possible association of IL-13 SNP rs20541 with AR risk. Eight studies were included in the present meta-analysis (2153 cases and 3931 controls). The combined results based on all studies showed that IL-13 SNP rs20541 was associated with increased AR risk (Gln versus Arg: odds ratio (OR) = 1.18, 95% confidence interval (CI) = 1.08–1.30; Gln/Gln versus Arg/Arg: OR = 1.52, 95% CI = 1.20–1.92; Arg/Gln + Gln/Gln versus Arg/Arg: OR = 1.19, 95% CI = 1.06–1.33; Gln/Gln versus Arg/Gln + Arg/Arg: OR = 1.42, 95% CI = 1.13–1.79). When stratifying for race, IL-13 SNP rs20541 exhibited increased AR risk in Asians (Gln versus Arg: OR = 1.20, 95% CI = 1.06–1.36; Gln/Gln versus Arg/Arg: OR = 1.57, 95% CI = 1.17–2.12; Arg/Gln + Gln/Gln versus Arg/Arg: OR = 1.22, 95% CI = 1.04–1.44; Gln/Gln versus Arg/Gln + Arg/Arg: OR = 1.45, 95% CI = 1.09–1.93), while no significant association was detected in Caucasians (Gln versus Arg: OR = 1.28, 95% CI = 0.93 ~ 1.78; Gln/Gln versus Arg/Arg: OR = 1.42, 95% CI = 0.96–2.11; Arg/Gln + Gln/Gln versus Arg/Arg: OR = 1.35, 95% CI = 0.89–2.05; Gln/Gln versus Arg/Gln + Arg/Arg: OR = 1.37, 95% CI = 0.93–2.02). This meta-analysis supported that IL-13 SNP rs20541 was associated with AR, particularly in Asians.  相似文献   

11.
We investigated the effects of initial biomass, nutrients, herbivory, and competition with Spirodela polyrhiza (L.) Schleid on Salvinia minima Baker biomass and density. S. minima populations were subjected to two levels of herbivory (control vs. two adults per plant) from the weevil Cyrtobagous salviniae Calder and Sands and eight levels of competition from S. polyrhiza, while growing in high (5 mg N l−1) or low (0.5 mg N l−1) nutrient conditions. Herbivory was the most important factor in S. minima biomass production while competition or fertility had no measurable impact. In contrast, S. polyrhiza biomass was mediated primarily by nutrients, not competition. There was no herbivory treatment for this plant. S. polyrhiza was superior to S. minima at converting nutrients to biomass but this did not give it a competitive advantage since S. minima biomass was unchanged when herbivory was absent. S. minima can generally overtop S. polyrhiza which, in turn, can form multiple layers within its mat. These characteristics may act to lessen competition between these species, thereby permitting their habitat sharing.  相似文献   

12.
In eukaryotes, mature rRNA sequences are produced from single large (45S) precursor (pre-rRNA) as the result of successive removal of spacers through a series of rapid and intricate actions of endo- and exonucleases. The excision of internal transcribed spacer (ITS2), a eukaryotic-specific insertion, remains the most elusive processing step. ITS2 is the element mandatory for all eukaryotic pre-rRNAs that contain at least three processing cleavage sites for precise 5.8S and 28S formation. Conserved core sequences (cis-elements) binding to trans-factors provide for precise rRNA processing, whereas rapidly diverging regions between the core sequences preserve internal complementarity, which guarantees the spatial integrity of ITS2. Characteristic differences in the formation of such insertions during evolution should reflect the relationships between taxa. The phylogeny of the reptiles and the relationships between taxa proposed by scientists are controversial. To delineate the structural and functional features preserved among reptilian ITS2s, we cloned and sequenced 58 ITS2s belonging to four reptile orders: Squamata, Crocodilians, Aves, and Testudines. We studied the subsequent alignment and folding of variable regions. The sizes and packing of the loop–stems between conserved consensus segments in reptiles vary considerably between taxa. Our phylogenetic trees constructed on the basis of the reptile ITS2s primary structural alignments revealed a split between Iguania clade and all other taxa. True lizards (suborder Scleroglossa) and snakes (suborder Serpentes) show sister relationships, as well as the two other reptilian orders, Crocodilia + Aves and Testudines. In summary, our phylogenetic trees exhibit a mix of specific features deduced or, to the contrary, rejected earlier by other authors.  相似文献   

13.
The first committed step in the formation of 24-alkylsterols in the ascomycetous fungus Paracoccidiodes brasiliensis (Pb) has been shown to involve C24-methylation of lanosterol to eburicol (24(28)-methylene-24,25-dihydro-lanosterol) on the basis of metabolite co-occurrence. A similarity-based cloning strategy was employed to obtain the cDNA clone corresponding to the sterol C24-methyltransferase (SMT) implicated in the C24-methylation reaction. The resulting catalyst, prepared as a recombinant fusion protein (His/Trx/S), was expressed in Escherichia coli BL21(C43) and shown to possess a substrate specificity for lanosterol and to generate a single exocyclic methylene product. The full-length cDNA has an open reading frame of 1131 base pairs and encodes a protein of 377 residues with a calculated molecular mass of 42,502 Da. The enzymatic C24-methylation gave a Kmapp of 38 μM and kcatapp of 0.14 min−1. Quite unexpectedly, “plant” cycloartenol was catalyzed in high yield to 24(28)-methylene cycloartanol consistent with conformational arguments that favor that both cycloartenol and lanosterol are bound pseudoplanar in the ternary complex. Incubation of [27-13C]- or [24-2H]cycloartenol with PbSMT and analysis of the enzyme-generated product by a combination of 1H and 13CNMR and mass spectroscopy established the regiospecific conversion of the pro-Z methyl group of the Δ24(25)-substrate to the pro-R isopropyl methyl group of the product and the migration of H24 to C25 on the Re-face of the original substrate double bond undergoing C24-methylation. Inhibition kinetics and products formed from the substrate analogs 25-azalanosterol (Ki 14 nM) and 26,27-dehydrolanosterol (Ki 54 μM and kinact of 0.24 min−1) provide direct evidence for distinct reaction channeling capitalized by structural differences in the C24- and C26-sterol acceptors. 25-Azalanosterol was a potent inhibitor of cell growth (IC50, 30 nM) promoting lanosterol accumulation and 24-alkyl sterol depletion. Phylogenetic analysis of PbSMT with related SMTs of diverse origin together with the results of the present study indicate that the enzyme may have a similar complement of active-site amino acid residues compared to related yeast SMTs affording monofunctional C1-transfer behavior, yet there are sufficient differences in its overall amino acid composition and substrate-dependent partitioning pathways to group PbSMT into a fourth and new class of SMT.  相似文献   

14.
Two Gram-staining-negative, moderately halophilic bacteria, strains M1-18T and L1-16, were isolated from a saltern located in Huelva (Spain). They were motile, strictly aerobic rods, growing in the presence of 3–25% (w/v) NaCl (optimal growth at 7.5–10% [w/v] NaCl), between pH 4.0 and 9.0 (optimal at pH 6.0–7.0) and at temperatures between 15 and 40 °C (optimal at 37 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that both strains showed the higher similarity values with Chromohalobacter israelensis ATCC 43985T (95.2–94.8%) and Chromohalobacter salexigens DSM 3043T (95.0–94.9%), and similarity values lower than 94.6% with other species of the genera Chromohalobacter, Kushneria, Cobetia or Halomonas. Multilocus sequence analysis (MLSA) based on the partial sequences of atpA, rpoD and secA housekeeping genes indicated that the new isolates formed an independent and monophyletic branch that was related to the peripheral genera of the family Halomonadaceae, Halotalea, Carnimonas and Zymobacter, supporting their placement as a new genus of the Halomonadaceae. The DNA–DNA hybridization between both strains was 82%, whereas the values between strain M1-18T and the most closely related species of Chromohalobacter and Kushneria were equal or lower to 48%. The major cellular fatty acids were C18:1ω7c/C18:1ω6c, C16:0, and C16:1ω7c/C16:1ω6c, a profile that differentiate this new taxon from species of the related genera. We propose the placement of both strains as a novel genus and species, within the family Halomonadaceae, with the name Larsenia salina gen. nov., sp. nov. The type strain is M1-18T (= CCM 8464 = CECT 8192T = IBRC-M 10767T = LMG 27461T).  相似文献   

15.
Anyphaena accentuata and Philodromus spp. are cold adapted and winter-active spider species. Their predation activity was investigated at constant temperatures between –4 and 30 °C. The lower temperature threshold for Anyphaena was –3.7 °C, while that of Philodromus was –1.2 °C. At 1 °C the latency to capture and prey consumption was significantly shorter in Anyphaena than in Philodromus. The capture rate increased with temperature and was maximal at 15 °C in Anyphaena and at 30 °C in Philodromus. At 30 °C, the latency to the capture was significantly shorter in Philodromus than in Anyphaena whose mortality significantly increased.  相似文献   

16.
Three strains of Steinernema feltiae Filipjev (All, Mexican, and Breton strains) and one of Heterorhabditis heliothidis (Khan, Brooks, and Hirschmann) were evaluated for their potential to control Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), larvae and pupae in the soil. In laboratory studies, H. heliothidis and S. feltiae (Mexican strain) produced the highest mortality (6 days posttreatment) of CPB when applied to the surface of a soil column containing mature CPB larvae 5 cm below. Mortality ranged from 80 to 90% at rates of 79-158 nematodes/cm². Similar results were seen in a field microplot study with all four nematodes; S. feltiae (Mexican strain) and H. heliothidis were most effective. Adult CPB emergence was reduced 86.5-100% after application of 31-93 H. heliothidis/cm² and 88.4-100% with 93-155 S. feltiae (Mexican strain)/cm². The All strain of S. feltiae was moderately effective (ca. 80% reduction at 93-155 nematodes/cm²), while the Breton strain was ineffective (< 40% reduction at 155 nematodes/cm²). In small plots of potatoes enclosed in field cages, application of H. heliothidis and S. feltiae (Mexican strain) at rates of 93-155 nematodes/cm² before larval CPB burial in the soil resulted in 66-77% reduction in adult CPB emergence. Soil applications of these nematodes show potential for biological control of CPB.  相似文献   

17.
18.
19.
Bacillus thuringiensis (Bt) Cry8D insecticidal proteins are unique among Cry8 family proteins in terms of its insecticidal activity against adult Scarab beetles, such as Japanese beetle (Popillia japonica Newman). From the sequence homology with other Bt Cry proteins especially those active against beetles, such as Cry3Aa whose 3D structure is available, the structure of the Cry8D protein has been predicted to be a typical three-domain Cry protein type. In addition, the activation process of Cry8D in gut juice of susceptible insects is presumed to be similar to that of Cry3A (Yamaguchi et al., 2008). In this study, the activation process of Cry8Da in insect gut juice was closely examined. Japanese beetle gut juice proteases digested the 130 kDa Cry8Da protein to produce a 64 kDa protein. This 64 kDa protein was active against both adult and larval Japanese beetle and considered to be an activated toxin. N-terminal sequencing of this 64 kDa protein revealed that the Cry8Da leader sequence consisting of 63 amino acid residues from M1 to F63 was removed. As in the case of Cry3Aa, the proteases further digested the 64 kDa protein to two 8 kDa and 54 kDa fragments. N-terminal amino acid analysis of these smaller fragments indicated that the proteases digested the loop between Alpha Helix (Alpha for short) 3 and Alpha 4. This means that the 8 kDa fragment consists of Alpha 1-3 of Domain I and that the 54 kDa fragment contains the remaining Domain I and full Domain II and Domain III. Size exclusion chromatography and anion exchange chromatography could not separate these 64, 54 and 8 kDa proteins suggesting that the 54 kDa and 8 kDa fragments are still forming the toxin complex equivalent to the 64 kDa protein by size and ionic charge. The sequencing and chromatography results suggest that the gut juice proteases merely nicked the loop between Alpha 3 and Alpha 4. This nicking process appeared to be essential for receptor binding of the Cry8Da toxin. BBMV binding assay revealed that the Cry8Da toxin bound to BBMV preparations from both adult and larval Japanese beetle only after the loop was nicked. Only the 54 kDa fragment bound to the BBMV preparations but not the 64 kDa protein. Ligand blot showed that the protease activated Cry8Da toxin, presumably the 54 kDa fragment, bound to specific BBMV proteins, one or more of those would be receptor(s). The sizes and binding affinities of these Cry8Da-bound proteins of Japanese beetle BBMV differed between larvae and adults.  相似文献   

20.
RNA interference has been described as a powerful genetic tool for gene functional analysis and a promising approach for pest management. However, RNAi efficiency varies significantly among insect species due to distinct RNAi machineries. Lepidopteran insects include a large number of pests as well as model insects, such as the silkworm, Bombyx mori. However, only limited success of in vivo RNAi has been reported in lepidoptera, particularly during the larval stages when the worms feed the most and do the most harm to the host plant. Enhancing the efficiency of larval RNAi in lepidoptera is urgently needed to develop RNAi-based pest management strategies. In the present study, we investigate the function of the conserved RNAi core factor, Argonaute2 (Ago2), in mediating B. mori RNAi efficiency. We demonstrate that introducing BmAgo2 dsRNA inhibits the RNAi response in both BmN cells and embryos. Furthermore, we establish several transgenic silkworm lines to assess the roles of BmAgo2 in larval RNAi. Over-expressing BmAgo2 significantly facilitated both dsRNA-mediated larval RNAi when targeting DsRed using dsRNA injection and shRNA-mediated larval RNAi when targeting BmBlos2 using transgenic shRNA expression. Our results show that BmAgo2 is involved in RNAi in B. mori and provides a promising approach for improving larval RNAi efficiency in B. mori and in lepidopteran insects in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号