首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The influence of lipopolysaccharide (LPS, endotoxin) or its lipid A component (bacterial and synthetic) on the synthesis of zymosan induced leukotriene C4, prostaglandin E2 and prostacyclin and on the conversion of exogenous arachidonic acid was studied in mouse peritoneal macrophages. It was found that following preincubation with LPS the amount of leukotriene C4 released during phagocytosis of zymosan was substantially decreased. The levels of prostaglandin E2 and prostacyclin, however, were the same in LPS-treated cells and controls. Likewise, pretreatment with LPS impaired the capacity to convert exogenously added arachidonic acid to mono- and di-HETE's. Lipid A (bacterial and synthetic) exhibited the same activity as LPS. LPS had no effect on macrophages of the endotoxin low responder mouse strain (C3H/ HeJ). Several explanations could be possible for the observed LPS effect. The finding that low doses of α-tocopheryl acetate prevented the LPS-induced decrease of LTC4 synthesis indicates a protective role of this agent. We would, therefore, favour the idea that lipoxygenases undergo oxidative selfinactivation during LPS action.  相似文献   

2.
Resident rat peritoneal macrophages synthesize a variety of prostanoids and leukotrienes from arachidonic acid. Overnight treatment with lipopolysaccharide (LPS) induces the synthesis of cyclooxygenase-2 (COX-2) and an altered prostanoid profile that emphasizes the preferential conversion of arachidonic acid to prostacyclin and prostaglandin E2. In these studies, we report that exposure to LPS also caused a strong suppression of 5-lipoxygenase but not 12-lipoxygenase activity, indicated by the inhibition of synthesis of both leukotriene B4 and 5-hydroxyeicosatetraenoic acid (5-HETE), but not of 12-HETE. Inhibition of 5-lipoxygenase activity by LPS was both time- and dose-dependent. Treatment of macrophages with prostaglandin E2 partially inhibited leukotriene synthesis, and cyclooxygenase inhibitors partially blocked the inhibition of leukotriene generation in LPS-treated cells. In addition to COX-2, nitric oxide synthase (NOS) was also induced by LPS. Treatment of macrophages with an NO donor mimicked the ability of LPS to significantly reduce leukotriene B4 synthesis. Inhibition of NOS activity in LPS-treated cells blunted the suppression of leukotriene synthesis. Inhibition of both inducible NOS and COX completely eliminated leukotriene suppression. Finally, macrophages exposed to prolonged LPS demonstrated impaired killing of Klebsiella pneumoniae and the combination of NOS and COX inhibitors restored killing to the control level. These results indicate that prolonged exposure to LPS severely inhibits leukotriene production via the combined action of COX and NOS products. The shift in mediator profile, to one that minimizes leukotrienes and emphasizes prostacyclin, prostaglandin E2 and NO, provides a signal that reduces leukocyte function, as indicated by impaired killing of Gram-negative bacteria.  相似文献   

3.
Altered macrophage arachidonic acid metabolism may play a role in endotoxic shock and the phenomenon of endotoxin tolerance induced by repeated injections of endotoxin. Studies were initiated to characterize both lipoxygenase and cyclooxygenase metabolite formation by endotoxin tolerant and non-tolerant macrophages in response to 4 different stimuli, i.e. endotoxin, glucan, zymosan, and the calcium ionophore A23187. In contrast to previous reports of decreased prostaglandin synthesis by tolerant macrophages, A23187-stimulated immunoreactive (i) leukotriene (LT)C4/D4 and prostaglandin (PG)E2 production by tolerant cells was greater than that by non-tolerant controls (p less than 0.001). However, A23187-stimulated i-6-keto-PGF1 alpha levels were lower in tolerant macrophages compared to controls. Stimulation of prostaglandin and thromboxane (Tx)B2 synthesis by endotoxin or glucan was significantly less in tolerant macrophages compared to controls (p less than 0.05). iLTC4/D4 production was not significantly stimulated by endotoxin or glucan, but was stimulated by zymosan in the non-tolerant cells. Synthesis of iLTB4 by control macrophages was stimulated by endotoxin (p less than 0.01). These results demonstrate that arachidonic acid metabolism via the lipoxygenase and cyclooxygenase pathways in macrophages is differentially altered by endotoxin tolerance.  相似文献   

4.
Lipoxygenase pathways of macrophages   总被引:2,自引:0,他引:2  
Resident mouse peritoneal macrophages when exposed to zymosan during the first day of cell culture synthesize and secrete large amounts of prostaglandin E2 and leukotriene (LT) C4, the respective products of cyclooxygenase- and 5-lipoxygenase-catalyzed oxygenations of arachidonic acid. Under these conditions of cell stimulation only small amounts of hydroxyeicosatetraenoic acids (HETEs) are concomitantly produced. However, exogenously added arachidonic acid is metabolized to large amounts of 12- and 15-HETE. No LTC4 is formed under these conditions. Inasmuch as 12- and 15-HETE have been shown to modulate certain lymphocyte responses, further study of the regulation of their production by macrophages is warranted.  相似文献   

5.
Altered macrophage arachidonic acid metabolism may play a role in endotoxic shock and the phenomenon of endotoxin tolerance induced by repeated injections of endotoxin. Studies were initiated to characterize both lipoxygenase metabolite formation by endotoxin tolerant and non-tolerant macrophages in response to 4 different stimuli, i.e. endotoxin, glucan, zymosan, and the calcium ionophore A23187. In contrast to previous reports of decreased prostaglandin synthesis by tolerant macrophages, A23187-stimulated immunoreactive (i) leukotriene (LT)C4/D4 and prostaglandin (PG)E2 production by tolerant cells was greater than that by non-tolerant controls (p<0.001). However, A23187-stimulated i-6-keto-PGF levels were lower in tolerant macrophages compared to controls. Stimulation of prostaglandin and thromboxane (Tx)B2 synthesis by endotoxin or glucam was significantly less in tolerant macrophages compaared to controls (p<0.05). iLTC4/D4 production was not significantly stimulated by endotoxin or glucan, but was stimulated by zymosan in the non-tolerant cells. Synthesis ofb iLTB4 by control macrophages was stimulated by endotoxin (p<0.01). These results demonstrate that arachidonic acid metabolism via the lipoxygenase and cyclooxygenase pathways in macrophages is differentially altered by endotoxin tolerance.  相似文献   

6.
Oxidized low density lipoproteins (LDL) are now considered to be one of the atherogenic lipoproteins in vivo and to play an important role in the pathogenesis of atherosclerosis. We previously demonstrated in mouse peritoneal macrophages that oxidized LDL stimulated prostaglandin (PG) E2 synthesis when incorporated into the cells [Yokode, M. et al. (1988) J. Clin. Invest. 81, 720-729]. In this study, we investigated arachidonate metabolism in macrophages after foam cell transformation. The cells were incubated with 100 micrograms/ml of oxidized LDL for 18 h, then stimulated with zymosan. Lipid-enriched macrophages which had taken up oxidized LDL produced much less eicosanoids, such as PGE2, 6-keto-PGF1 alpha, and leukotriene C4 than control cells. After labeling of the cells with [14C]arachidonic acid, they were stimulated with zymosan and the phospholipase activity was determined. The activity of lipid-enriched cells was about two-thirds of that of control cells. Then we investigated the fatty acid composition of their phospholipid fraction to clarify arachidonic acid content and mobilization. Percent of arachidonic acid of lipid-enriched cells decreased and less arachidonic acid mobilization was observed after stimulation with zymosan. These data suggest that impaired arachidonate metabolism in lipid-enriched macrophages can be explained by their decreased phospholipase activity and changes in their fatty acid composition.  相似文献   

7.
Resident mouse peritoneal macrophages when exposed to zymosan during the first day of cell culture synthesize and secrete large amounts of prostaglandin E2 (PGE2) and leukotriene C4 (LTC4), the respective products of cyclo-oxygenase- and 5-lipoxygenase-catalysed oxygenations of arachidonic acid. Under these conditions of cell stimulation only small amounts of hydroxyeicosatetraenoic acids (HETEs) are concomitantly produced. However, exogenously added arachidonic acid is metabolized to large amounts of 12- and 15-HETE and only relatively small amounts of PGE2. No LTC4 is formed under these conditions. In contrast, resident mouse peritoneal macrophages in cell culture for 4 days synthesized less PGE2 and LTC4 when exposed to zymosan. However, these macrophage populations continue to synthesize 12-HETE from exogenously added arachidonic acid. Zymosan induced the secretion of a lysosomal enzyme, N-acetyl-beta-glucosaminidase, equally in both 1- and 4-day cultures. Both 12- and 15-hydroperoxyeicosatetraenoic acids (HPETEs), the precursors of 12- and 15-HETE, were found to be irreversible inhibitors of the cyclo-oxygenase pathway and reversible inhibitors of the 5-lipoxygenase pathway in macrophages. 15-HETE were found to be reversible inhibitors of both pathways. Thus the oxidation of arachidonic oxidation of arachidonic acid to both prostaglandins and leukotrienes may be under intracellular regulation by products of 12- and 15-lipoxygenases.  相似文献   

8.
Lipopolysaccharides of different wild-type and mutant gram-negative bacteria, as well as synthetic and bacterial free lipid A, were studied for their ability to activate arachidonic acid metabolism in mouse peritoneal macrophages in vitro. It was found that lipopolysaccharides of deep-rough mutants of Salmonella minnesota and Escherichia coli (Re to Rc chemotypes) stimulated macrophages to release significant amounts of leukotriene C4 (LTC4) and prostaglandin E2 (PGE2). Lipopolysaccharides of wild-type strains (S. abortus equi, S. friedenau) only induced PGE2 and not LTC4 formation. Unexpectedly, free bacterial and synthetic E. coli lipid A were only weak inducers of LTC4 and PGE2 production. Deacylated Re-mutant lipopolysaccharide preparations were inactive. However, co-incubation of macrophages with both deacylated lipopolysaccharide and lipid A lead to the release of significant amounts of LTC4 and PGE2, similar to those obtained with Re-mutant lipopolysaccharide. The significance of the lipid A portion of lipopolysaccharide for the induction of LTC4 was indicated by demonstrating that peritoneal macrophages of endotoxin-low-responder mice or of mice rendered tolerant to endotoxin did not respond with the release of arachidonic acid metabolites on stimulation with Re-mutant lipopolysaccharide and that polymyxin B prevented the Re-lipopolysaccharide-induced LTC4 and PGE2 release. Physical measurements showed that the phase-transition temperatures of both free lipid A and S-form lipopolysaccharide were above 37 degrees C while those of R-mutant lipopolysaccharides were significantly lower (30-35 degrees C). Thus, with the materials investigated, an inverse relationship between the phase-transition temperature and the capacity to elicit LTC4 production was revealed.  相似文献   

9.
Phagocytosis of non-opsonized microorganisms by macrophages initiates innate immune responses for host defense against infection. Cytosolic phospholipase A(2) is activated during phagocytosis, releasing arachidonic acid for production of eicosanoids, which initiate acute inflammation. Our objective was to identify pattern recognition receptors that stimulate arachidonic acid release and cyclooxygenase 2 (COX2) expression in macrophages by pathogenic yeast and yeast cell walls. Zymosan- and Candida albicans-stimulated arachidonic acid release from resident mouse peritoneal macrophages was blocked by soluble glucan phosphate. In RAW264.7 cells arachidonic acid release, COX2 expression, and prostaglandin production were enhanced by overexpressing the beta-glucan receptor, dectin-1, but not dectin-1 lacking the cytoplasmic tail. Pure particulate (1, 3)-beta-D-glucan stimulated arachidonic acid release and COX2 expression, which were augmented in a Toll-like receptor 2 (TLR2)-dependent manner by macrophage-activating lipopeptide-2. However, arachidonic acid release and leukotriene C(4) production stimulated by zymosan and C. albicans were TLR2-independent, whereas COX2 expression and prostaglandin production were partially blunted in TLR2(-/-) macrophages. Inhibition of Syk tyrosine kinase blocked arachidonic acid release and COX2 expression in response to zymosan, C. albicans, and particulate (1, 3)-beta-D-glucan. The results suggest that cytosolic phospholipase A(2) activation triggered by the beta-glucan component of yeast is dependent on the immunoreceptor tyrosine-based activation motif-like domain of dectin-1 and activation of Syk kinase, whereas both TLR2 and Syk kinase regulate COX2 expression.  相似文献   

10.
Lipopolysaccharide (10 micrograms/ml) was found to stimulate resident mouse peritoneal macrophages to produce leukotriene C4 (36 +/- 1.3 ng/10(6) cells, SEM, n = 20) within 16 h. Spontaneous synthesis in control cultures without lipopolysaccharide was less than 1.6 ng/10(6) cells. Leukotriene C4 was characterized by reversed-phase high-performance liquid chromatography, ultraviolet spectrometry and radioimmunoassay. When the macrophages, prelabeled with [3H]arachidonic acid, were treated with lipopolysaccharide radioactivity was incorporated into leukotriene C4. The amount produced varied with the method of macrophage preparation and incubation conditions and was dependent on the amount of lipopolysaccharide added (0.5-60 micrograms/ml), on cell counts and on the incubation time (4-16 h). The released leukotriene C4 was converted to a compound identified as a C6-cysteinylleukotriene, indicating metabolism of the leukotriene by the macrophages. Parallel determinations of prostaglandins E2 and F2 alpha by radioimmunoassay demonstrated that leukotriene C4 and prostaglandin E2 are formed by mouse peritoneal macrophages to a similar degree.  相似文献   

11.
We report here that lipopolysaccharide (LPS) priming of rabbit alveolar macrophages leads to amplified synthesis of prostanoids, at least in part, by induction of a novel prostaglandin H synthase (PGH synthase). Rabbit alveolar macrophages were cultured with or without added LPS derived from Escherichia coli 0111:B4 for 4 h and then stimulated with opsonized zymosan (OPZ). LPS priming of alveolar macrophages resulted in enhanced release of thromboxane (TX) upon stimulation with OPZ, when compared to stimulated non-LPS controls. Addition of exogenous arachidonic acid to LPS-primed alveolar macrophages also resulted in increased production of TX. The LPS-induced increase in TX formation, in response to OPZ or arachidonic acid, was abolished by the addition of actinomycin D or cycloheximide during the priming period. Gas chromatography/mass spectrometry analysis indicated that levels of prostaglandins D2, E2, and F2 alpha, along with TX, were augmented in stimulated LPS-primed alveolar macrophages, implicating PGH synthase in the priming process. PGH synthase enzymatic activity, as determined by addition of arachidonic acid to macrophage sonicates, was markedly enhanced in LPS-primed alveolar macrophages. This correlated with increased PGH synthase levels detected by immunoprecipitation of 35S-labeled proteins and by Western blot analysis. Finally, Northern blot analysis using a cDNA probe to the recently described mitogen-inducible mouse PGH synthase revealed strong induction of approximately 4.3-kilobase mRNA in LPS-primed alveolar macrophages. Taken together, these results reveal that induction of a novel PGH synthase, probably the rabbit homologue of PGH synthase-2, plays a role in the enhanced synthesis of prostanoids by LPS-primed alveolar macrophages.  相似文献   

12.
The phospholipids of rabbit alveolar macrophages were pulse-labelled with [(14)C]-arachidonic acid, and the subsequent release of labelled prostaglandins was measured. Resting macrophages released measurable amounts of arachidonic acid, the prostaglandins E(2), D(2) and F(2alpha) and 6-oxoprostaglandin F(1alpha). Phagocytosis of zymosan increased the release of arachidonic acid and prostaglandins to 2.5 times the control value. In contrast, phagocytosis of inert latex particles had no effect on prostaglandin release. Indomethacin inhibited the release of prostaglandin, and, at high doses (20mug/ml), increased arachidonic acid release. Analysis of the cellular lipids showed that after zymosan stimulation the proportion of label was decreased in phosphatidylcholine, but not in other phospholipids or neutral lipids. Cytochalasin B, at a dose of 2mug/ml, inhibited the phagocytosis induced by zymosan but increased prostaglandin synthesis to 3.4 times the control. These data suggest that the stimulation of prostaglandin synthesis by zymosan is not dependent on phagocytosis. Exposure to zymosan also resulted in the release of the lysosomal enzyme, acid phosphatase. Furthermore, cytochalasin B augmented the zymosan-stimulated release of acid phosphatase at the same dose that stimulated prostaglandin synthesis. However, indomethacin, at a dose that completely inhibited prostaglandin synthesis, failed to block the lysosomal enzyme release. Thus despite some parallels between the release of prostaglandins and lysosomal enzymes, endogenous prostaglandins do not appear to mediate the release of lysosomal enzymes. The prostaglandins released from the macrophages may function as humoral substances affecting other cells.  相似文献   

13.
The regulation of arachidonic acid conversion by the 5-lipoxygenase and the cyclooxygenase pathways in mouse peritoneal macrophages has been studied using particulate and soluble agonists. Particulate agonists, zymosan and latex, stimulated the production of cyclooxygenase metabolites as well as the 5-lipoxygenase product, leukotriene C4. In contrast, incubation with the soluble agonist phorbol myristate acetate or exogenous arachidonic acid led to the production of cyclooxygenase metabolites but not leukotriene C4. We tested the hypothesis that the 5-lipoxygenase, unlike the cyclooxygenase, requires activation by calcium before arachidonic acid can be utilized as a substrate. Addition of phorbol myristate acetate to macrophages in the presence of calcium ionophore (A23187) at a concentration which alone did not stimulate arachidonate metabolism resulted in a synergistic increase (50-fold) in leukotriene C4 synthesis compared to phorbol ester or A23187 alone. No such effect on the cyclooxygenase pathway metabolism was observed. Exogenous arachidonic acid in the presence of A23187 produced similar results yielding a 10-fold greater synthesis of leukotriene C4 over either substance alone without any effects on the cyclooxygenase metabolites. Presumably, calcium ionophore unmasked the synthesis of leukotriene C4 from phorbol myristate acetate-released and exogenous arachidonate by elevating intracellular calcium levels enough for 5-lipoxygenase activation. These data indicate that once arachidonic acid is released from phospholipid by an agonist, it is available for conversion by both enzymatic pathways. However, leukotriene synthesis may not occur unless intracellular calcium levels are elevated either by phagocytosis of particulate agonists or with calcium ionophore.  相似文献   

14.
It has been postulated that the ratio of prostacyclin/thromboxane A2 in the blood is an important marker for atherosclerosis. We studied the role of the Acetylated Low Density Lipoprotein (Acetyl-LDL) on the arachidonic acid metabolism in macrophages, the progenitor of the foam-cells in atheroma. When stimulated by Acetyl-LDL, macrophage released and metabolized arachidonic acid. This effect was time- and dose-dependent. Only 50% of the Acetyl-LDL-induced arachidonic acid released was metabolized while more than 90% of zymosan or A23187 induced arachidonic acid released was metabolized. Furthermore, when the macrophages were stimulated by Acetyl-LDL, a decrease of prostaglandin E2 and an increase of the levels of prostacyclin and thromboxane were noted. The implications of these observations in the pathogenesis of atherosclerosis are discussed.  相似文献   

15.
Mouse peritoneal macrophages metabolize dihomogammalinolenic acid (20:3n-6) primarily to 15-hydroxy-8,11,13-eicosatrienoic acid (15-OH-20:3). Since the biological properties of this novel trienoic eicosanoid remain poorly defined, the effects of increasing concentrations of 15-OH-20:3 and its arachidonic acid (20:4n-6) derived analogue. 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE), on mouse macrophage 20:4n-6 metabolism were investigated. Resident peritoneal macrophages were prelabeled with [3H]-20:4n-6 and subsequently stimulated with zymosan in the presence of either 15-OH-20:3 or 15-HETE (1-30 microM). After 1 hr, the radiolabeled soluble metabolites were analyzed by reverse phase high performance liquid chromatography. 15-OH-20:3 inhibited zymosan-induced leukotriene C4 (IC50 = 2.4 microM) and 5-HETE (IC50 = 3.1 microM) synthesis. In contrast to the inhibition of macrophage 5-lipoxygenase, 15-OH-20:3 enhanced 12-HETE synthesis (5-30 microM) and had no measurable effect on cyclooxygenase metabolism (1-10 microM) i.e., 6-keto-prostaglandin F1 alpha and prostaglandin E2 synthesis. Addition of exogenous 15-HETE produced similar effects. These results suggest that the manipulation of macrophage 15-OH-20:3n-6 levels may provide a measure of cellular control over 20:4n-6 metabolism, specifically, leukotriene production.  相似文献   

16.
Docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) was facilely incorporated into phospholipids of mouse peritoneal macrophages following incubation with pure fatty acids complexed to bovine serum albumin. Following stimulation with calcium ionophore A23187, the DHA-enriched cells synthesized significantly smaller amounts of leukotriene C4 and leukotriene B4 compared to control or EPA-enriched cells. The EPA-enriched cells synthesized lower amounts of leukotriene C4 and leukotriene B4 compared to control cells. The stimulated macrophages utilized endogenously released arachidonic acid for leukotriene B4 and leukotriene C4 synthesis. Exogenous arachidonic acid increased the formation of 12-hydroxyeicosatetraenoic acid (12-HETE) and 15-HETE and macrophages enriched with DHA or EPA produced similar amounts of 12-HETE and 15-HETE compared to control cells. These studies demonstrated that the synthesis of leukotriene C4, leukotriene B4 and HETE in macrophages is differentially affected by DHA and EPA.  相似文献   

17.
Macrophages were isolated from the dialysis fluid of patients undergoing continuous ambulatory peritoneal dialysis and separated by gradient centrifugation and purification on 50% Percoll. The cells were prelabeled with [14C]arachidonic acid for 1.5 h. The labeled cells were then incubated with calcium ionophore A23187 (1 microM), serum-treated zymosan (200 micrograms/ml), and a lipoxygenase inhibitor, nordihydroguairetic acid (1 X 10(-5) M). The arachidonate metabolites in the medium were separated on Sep-Pak columns, and finally purified by reverse-phase high-pressure liquid chromatography (HPLC). The labeled products co-chromatographed with authentic leukotriene B4 and leukotriene C4 standards. Serum-treated zymosan and A23187 significantly stimulated and nordihydroguairetic acid significantly inhibited leukotriene synthesis. Leukotriene D4 was not detected, which suggests that these cells contain low gamma-glutamyltranspeptidase or high dipeptidase activity. These results establish, for the first time, that human peritoneal macrophages synthesize the lipoxygenase products, leukotriene B4 and leukotriene C4.  相似文献   

18.
The interaction of phorbol myristate acetate with resident populations of mouse peritoneal macrophages causes an increased release of arachidonic acid followed by increased synthesis and secretion of prostaglandin E2 and 6-keto-prostaglandin F1 alpha. In addition, phorbol myristate acetate causes the selective release of lysosomal acid hydrolases from resident and elicited macrophages. These effects of phorbol myristate acetate on macrophages do not cause lactate dehydrogenase to leak into the culture media. The phorbol myristate acetate-induced release of arachidonic acid and increased synthesis and secretion of prostaglandins by macrophages can be inhibited by RNA and protein synthesis inhibitors, whereas the release of lysosomal hydrolases is unaffected. 0.1 microgram/ml actinomycin D blocked the increased prostaglandin production due to this inflammatory agent by more than 80%, and 3 microgram/ml cycloheximide blocked prostaglandin production by 78%. Similar results with these metabolic inhibitors were found with another stimulator of prostaglandin production, zymosan. However, these inhibitors do not interfere with lysosomal hydrolase releases caused by zymosan or phorbol myristate acetate. It appears that one of the results of the interaction of macrophages with inflammatory stimuli is the synthesis of a rapidly turning-over protein which regulates the production of prostaglandins. It is also clear that the secretion of prostaglandins and lysosomal hydrolases are independently regulated.  相似文献   

19.
Prior exposure of guinea pig macrophages to LPS (lipopolysaccharide) resulted in reduced cAMP-generating responses to prostaglandin E1 and epinephrine. LPS-induced refractoriness was diminished when LPS treatment was carried out in the presence of an inhibitor of prostaglandin synthesis, hydrocortisone, or indomethacin, or an inhibitor of protein synthesis, cycloheximide. The release of arachidonic acid and its metabolites, especially prostaglandin E2 and thromboxane B2, increased during incubation of macrophages with LPS. These increases were efficiently antagonized by hydrocortisone, indomethacin, or cycloheximide. Preincubation of macrophages with prostaglandin E1 greatly reduced the subsequent responses of cAMP generation to prostaglandin E1 and unexpectedly also to epinephrine. Thus, increased production of prostaglandins during the LPS treatment is likely to be responsible for decreased cAMP responses to subsequent addition of prostaglandin E1 and epinephrine.  相似文献   

20.
Decreased prostaglandin production by cholesterol-rich macrophages   总被引:2,自引:0,他引:2  
The regulation of prostaglandin production by macrophages enriched in cholesterol was examined. Mouse peritoneal macrophages were incubated for 18 h with 25 micrograms/ml of human acetyl-LDL (low density lipoprotein) and trace amounts of labeled arachidonic acid. After cholesterol enrichment, the cells were incubated with phorbol 12-myristate 13-acetate (PMA), calcium ionophore, or zymosan to stimulate endogenous arachidonic acid metabolism. A high performance liquid chromatography profile of the eicosanoids released revealed no qualitative differences between unmodified and modified macrophages. Cholesterol-rich cells, however, released less prostacyclin (PGI2) and prostaglandin E2 (PGE2) compared to unmodified cells, and products from the lipoxygenase pathway became the predominant metabolites. A decrease in the synthesis of PGI2 and PGE2 by cholesterol-rich macrophages was confirmed by radioimmunoassay and radiolabeled experiments. The activity of prostaglandin synthetase was modestly increased in the cholesterol-modified macrophages compared to controls. As an estimation of phospholipase activity, the release of labeled arachidonic acid from membrane phospholipids, however, was significantly decreased in cholesterol-rich macrophages. The phosphatidylinositol fraction was particularly resistant to arachidonate release in response to calcium ionophore and PMA in the modified cells. The measurement of membrane phospholipid fatty acid composition before and after calcium ionophore supported the observation that less arachidonate was released by cholesterol-enriched cells in response to the ionophore. Based on these observations, we propose that prostaglandin synthesis from endogenous arachidonate stores is decreased in the cholesterol-rich macrophage. A decrease in agonist-induced activation of the phospholipase activity is proposed as a mechanism for this effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号