首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Idiopathic pneumonia syndrome (IPS) is a significant cause of mortality post-bone marrow transplant (BMT) in humans. In our murine model, lethal pre-BMT conditioning and allogeneic T cells result in the recruitment of host antigen-presenting cells (APC) and donor T cells into the lung post-BMT concomitant with development of severe lung dysfunction. CCL2 induction is found in bronchoalveolar lavage fluid (BALF) before host monocyte influx. The major receptor for CCL2 is CCR2 present on monocytes; this interaction can play a crucial role in monocyte recruitment in inflammation. To determine whether blockade of the CCL2/CCR2 pathway could hinder host monocyte influx, lethally conditioned wild-type (WT), CCL2(-/-), or CCR2(-/-) mice were transplanted with allogeneic marrow and spleen cells. WT and (-/-) recipients exhibited equivalent lung dysfunction post-BMT. The frequencies of host macrophages as well as donor CD4(+) and CD8(+) T cells in lungs post-BMT did not differ between WT and (-/-) recipients. However, the T cell dependency of the host CD11b(+) major histocompatibility complex class II(+) cell influx was lost in CCR2(-/-) recipients. In CCR2(-/-) mice, this influx was accompanied by elevated levels of CCL20. Post-BMT BALF and sera of (-/-) mice did not reveal any decrease in cytokines or chemokines compared with WT mice. CCL2(-/-) mice had a deficiency of CCL2 in their BALF and sera post-BMT, confirming our hypothesis that CCL2 is predominantly host derived. Therefore, IPS can occur independently of host expression of CCL2 or CCR2, and compensatory mechanisms exist for regulating APC recruitment into the lung during the early post-BMT period.  相似文献   

2.
Cluster of differentiation 69 (CD69) has been identified as a lymphocyte early activation marker, and recent studies have indicated that CD69 mediates intracellular signals and plays an important role in various inflammatory diseases. Cigarette smoke (CS) is a strong proinflammatory stimulus that induces the release of proinflammatory mediators by recruiting macrophages and neutrophils into the lung tissue, and is one of the main risk factors for a number of chronic diseases. However, the potential role of CD69 in CS-induced pulmonary inflammation has not been determined. To address to this question, CD69-deficient (KO) and wild-type (WT) mice were subjected to CS-induced acute pulmonary inflammation. After the exposure with CS, the expression of CD69 in the lung of WT mice was significantly induced, it was predominantly observed in macrophages. In conjunction with this phenomenon, neutrophil and macrophage cell counts, and expression of several cytokines were significantly higher in the bronchoalveolar lavage fluid (BALF) of CS-exposed WT mice compared with air-exposed WT mice. Likewise, the CS-induced accumulation of inflammatory cells and cytokines expression were significantly lower in CD69-KO mice than in WT mice. These results suggest that CD69 on macrophages is involved in CS-induced acute pulmonary inflammation.  相似文献   

3.
Cluster of differentiation 69 (CD69) has been identified as a lymphocyte early activation marker, and recent studies have indicated that CD69 mediates intracellular signals and plays an important role in various inflammatory diseases. Cigarette smoke (CS) is a strong proinflammatory stimulus that induces the release of proinflammatory mediators by recruiting macrophages and neutrophils into the lung tissue, and is one of the main risk factors for a number of chronic diseases. However, the potential role of CD69 in CS-induced pulmonary inflammation has not been determined. To address to this question, CD69-deficient (KO) and wild-type (WT) mice were subjected to CS-induced acute pulmonary inflammation. After the exposure with CS, the expression of CD69 in the lung of WT mice was significantly induced, it was predominantly observed in macrophages. In conjunction with this phenomenon, neutrophil and macrophage cell counts, and expression of several cytokines were significantly higher in the bronchoalveolar lavage fluid (BALF) of CS-exposed WT mice compared with air-exposed WT mice. Likewise, the CS-induced accumulation of inflammatory cells and cytokines expression were significantly lower in CD69-KO mice than in WT mice. These results suggest that CD69 on macrophages is involved in CS-induced acute pulmonary inflammation.  相似文献   

4.

Background

Chronic obstructive pulmonary disease is associated with a chronic inflammatory response of the host to chronic exposure to inhaled toxic gases and particles. Although inflammatory cells of both the innate and adaptive immune system infiltrate the lungs in pulmonary emphysema and form lymphoid follicles around the small airways, the exact role of the acquired immune system in the pathogenesis of emphysema is not known.

Methods

In this study, wild type Balb/c mice and immunodeficient scid mice – which lack functional B- and T-cells – were exposed to mainstream cigarette smoke (CS) for 5 weeks or 6 months.

Results

Subacute CS-exposure for 5 weeks significantly increased innate inflammatory cells (neutrophils, macrophages and dendritic cells) in the bronchoalveolar lavage (BAL) fluid of wild type mice and scid mice, which correlated with the CS-induced upregulation of the chemokines Monocyte Chemotactic Protein-1, Macrophage Inflammatory Protein-3α and KC (= mouse Interleukin-8). Chronic CS-exposure for 6 months significantly increased the number of neutrophils, macrophages, dendritic cells, CD4+ and CD8+ T-lymphocytes in BAL fluid and lungs of wild type mice compared to air-exposed littermates, and augmented the size and number of peribronchial lymphoid follicles. In contrast, neither B-lymphocytes, nor T-lymphocytes, nor lymphoid follicles could be discerned in the lungs of air- or CS-exposed scid mice. Importantly, chronic CS-exposure induced pulmonary emphysema in both wild type animals and scid mice, as evidenced by a significant increase in the mean linear intercept and the destructive index of CS-exposed versus air-exposed animals. The CS-induced emphysema was associated with increased mRNA expression of matrix metalloproteinase-12 in the lungs and increased protein levels of Tumor Necrosis Factor-α in the BAL fluid of CS-exposed Balb/c and scid mice compared to air-exposed littermates.

Conclusion

This study suggests that the adaptive immune system is not required per se to develop pulmonary emphysema in response to chronic CS-exposure, since emphysema can be induced in scid mice, which lack lymphoid follicles as well as functional B- and T-cells.  相似文献   

5.

Background

CD8+ T cells participate in airway hyperresponsiveness (AHR) and allergic pulmonary inflammation that are characteristics of asthma. CXCL10 by binding to CXCR3 expressed preferentially on activated CD8+ T cells, attracts T cells homing to the lung. We studied the contribution and limitation of CXCR3 to AHR and airway inflammation induced by ovalbumin (OVA) using CXCR3 knockout (KO) mice.

Methods

Mice were sensitized and challenged with OVA. Lung histopathological changes, AHR, cellular composition and levels of inflammatory mediators in bronchoalveolar lavage (BAL) fluid, and lungs at mRNA and protein levels, were compared between CXCR3 KO mice and wild type (WT) mice.

Results

Compared with the WT controls, CXCR3 KO mice showed less OVA-induced infiltration of inflammatory cells around airways and vessels, and less mucus production. CXCR3 KO mice failed to develop significant AHR. They also demonstrated significantly fewer CD8+ T and CD4+ T cells in BAL fluid, lower levels of TNFα and IL-4 in lung tissue measured by real-time RT-PCR and in BAL fluid by ELISA, with significant elevation of IFNγ mRNA and protein expression levels.

Conclusions

We conclude that CXCR3 is crucial for AHR and airway inflammation by promoting recruitment of more CD8+ T cells, as well as CD4+ T cells, and initiating release of proinflammatory mediators following OVA sensitization and challenge. CXCR3 may represent a novel therapeutic target for asthma.  相似文献   

6.
We investigated mechanisms by which TLR9 signaling promoted the development of the protective response to Cryptococcus neoformans in mice with cryptococcal pneumonia. The afferent (week 1) and efferent (week 3) phase immune parameters were analyzed in the infected wild-type (TLR9(+/+)) and TLR-deficient (TLR9(-/-)) mice. TLR9 deletion diminished 1) accumulation and activation of CD11b(+) dendritic cells (DCs), 2) the induction of IFN-γ and CCR2 chemokines CCL7, CCL12, but not CCL2, at week 1, and 3) pulmonary accumulation and activation of the major effector cells CD4(+) and CD8(+) T cells, CD11b(+) lung DCs, and exudate macrophages at week 3. The significance of CCL7 induction downstream of TLR9 signaling was investigated by determining whether CCL7 reconstitution would improve immunological parameters in C. neoformans-infected TLR9(-/-) mice. Early reconstitution with CCL7 1) improved accumulation and activation of CD11b(+) DCs at week 1, 2) restored early IFN-γ production in the lungs, and 3) restored the accumulation of major effector cell subsets. CCL7 administration abolished the difference in lung fungal burdens between TLR9(+/+) and TLR9(-/-) mice at week 3; however, significant reduction of fungal burdens between PBS- and CCL7-treated mice has not been observed, suggesting that additional mechanism(s) apart from early CCL7 induction contribute to optimal fungal clearance in TLR9(+/+) mice. Collectively, we show that TLR9 signaling during the afferent phase contributes to the development of protective immunity by promoting the early induction of CCL7 and IFN-γ and the subsequent early recruitment and activation of DCs and additional effector cells in mice with cryptococcal pneumonia.  相似文献   

7.
The role of Th2/CD4 T cells, which secrete IL-4, IL-5, and IL-13, in allergic disease is well established; however, the role of CD8(+) T cells (allergen-induced airway hyperresponsiveness (AHR) and inflammation) is less clear. This study was conducted to define the role of Ag-primed CD8(+) T cells in the development of these allergen-induced responses. CD8-deficient (CD8(-/-)) mice and wild-type mice were sensitized to OVA by i.p. injection and then challenged with OVA via the airways. Compared with wild-type mice, CD8(-/-) mice developed significantly lower airway responsiveness to inhaled methacholine and lung eosinophilia, and exhibited decreased IL-13 production both in vivo, in the bronchoalveolar lavage (BAL) fluid, and in vitro, following Ag stimulation of peribronchial lymph node (PBLN) cells in culture. Reconstitution of sensitized and challenged CD8(-/-) mice with allergen-sensitized CD8(+) T cells fully restored the development of AHR, BAL eosinophilia, and IL-13 levels in BAL and in culture supernatants from PBLN cells. In contrast, transfer of naive CD8(+) T cells or allergen-sensitized CD8(+) T cells from IL-13-deficient donor mice failed to do so. Intracellular cytokine staining of lung as well as PBLN T cells revealed that CD8(+) T cells were a source of IL-13. These data suggest that Ag-primed CD8(+) T cells are required for the full development of AHR and airway inflammation, which appears to be associated with IL-13 production from these primed T cells.  相似文献   

8.
Infection with pathogenic influenza virus induces severe pulmonary immune pathology, but the specific cell types that cause this have not been determined. We characterized inflammatory cell types in mice that overexpress MCP-1 (CCL2) in the lungs, then examined those cells during influenza infection of wild-type (WT) mice. Lungs of both naive surfactant protein C-MCP mice and influenza-infected WT mice contain increased numbers of CCR2(+) monocytes, monocyte-derived DC (moDC), and exudate macrophages (exMACs). Adoptively transferred Gr-1(+) monocytes give rise to both moDC and exMACs in influenza-infected lungs. MoDC, the most common inflammatory cell type in infected lungs, induce robust naive T cell proliferation and produce NO synthase 2 (NOS2), whereas exMACs produce high levels of TNF-alpha and NOS2 and stimulate the proliferation of memory T cells. Relative to WT mice, influenza-infected CCR2-deficient mice display marked reductions in the accumulation of monocyte-derived inflammatory cells, cells producing NOS2, the expression of costimulatory molecules, markers of lung injury, weight loss, and mortality. We conclude that CCR2(+) monocyte-derived cells are the predominant cause of immune pathology during influenza infection and that such pathology is markedly abrogated in the absence of CCR2.  相似文献   

9.
Although several subsets of intestinal APCs have been described, there has been no systematic evaluation of their phenotypes, functions, and regional localization to date. In this article, we used 10-color flow cytometry to define the major APC subsets in the small and large intestine lamina propria. Lamina propria APCs could be subdivided into CD11c(+)CD11b(-), CD11c(+)CD11b(+), and CD11c(dull)CD11b(+) subsets. CD11c(+)CD11b(-) cells were largely CD103(+)F4/80(-) dendritic cells (DCs), whereas the CD11c(+)CD11b(+) subset comprised CD11c(+)CD11b(+)CD103(+)F4/80(-) DCs and CD11c(+)CD11b(+)CD103(-)F4/80(+) macrophage-like cells. The majority of CD11c(dull)CD11b(+) cells were CD103(-)F4/80(+) macrophages. Although macrophages were more efficient at inducing Foxp3(+) regulatory T (T(reg)) cells than DCs, at higher T cell/APC ratios, all of the DC subsets efficiently induced Foxp3(+) T(reg) cells. In contrast, only CD11c(+)CD11b(+)CD103(+) DCs efficiently induced Th17 cells. Consistent with this, the regional distribution of CD11c(+)CD11b(+)CD103(+) DCs correlated with that of Th17 cells, with duodenum > jejunum > ileum > colon. Conversely, CD11c(+)CD11b(-)CD103(+) DCs, macrophages, and Foxp3(+) T(reg) cells were most abundant in the colon and scarce in the duodenum. Importantly, however, the ability of DC and macrophage subsets to induce Foxp3(+) T(reg) cells versus Th17 cells was strikingly dependent on the source of the mouse strain. Thus, DCs from C57BL/6 mice from Charles River Laboratories (that have segmented filamentous bacteria, which induce robust levels of Th17 cells in situ) were more efficient at inducing Th17 cells and less efficient at inducing Foxp3(+) T(reg) cells than DCs from B6 mice from The Jackson Laboratory. Thus, the functional specializations of APC subsets in the intestine are dependent on the T cell/APC ratio, regional localization, and source of the mouse strain.  相似文献   

10.
Host responses to Pneumocystis carinii infection mediate impairment of pulmonary function and contribute to the pathogenesis of pneumonia. IL-10 is known to inhibit inflammation and reduce the severity of pathology caused by a number of infectious organisms. In the present studies, IL-10-deficient (IL-10 knockout (KO)) mice were infected with P. carinii to determine whether the severity of pathogenesis and the efficiency of clearance of the organisms could be altered in the absence of IL-10. The clearance kinetics of P. carinii from IL-10 KO mice was significantly enhanced compared with that of wild-type (WT) mice. This corresponded to a more intense CD4(+) and CD8(+) T cell response as well as an earlier neutrophil response in the lungs of IL-10 KO mice. Furthermore, IL-12, IL-18, and IFN-gamma were found in the bronchoalveolar lavage fluids at earlier time points in IL-10 KO mice suggesting that alveolar macrophages were activated earlier than in WT mice. However, when CD4(+) cells were depleted from P. carinii-infected IL-10 KO mice, the ability to enhance clearance was lost. Furthermore, CD4-depleted IL-10 KO mice had significantly more lung injury than CD4-depleted WT mice even though the intensity of the inflammatory responses was similar. This was characterized by increased vascular leakage, decreased oxygenation, and decreased arterial pH. These data indicate that IL-10 down-regulates the immune response to P. carinii in WT mice; however, in the absence of CD4(+) T cells, IL-10 plays a critical role in controlling lung damage independent of modulating the inflammatory response.  相似文献   

11.
TNF is a major therapeutic target in a range of chronic inflammatory disorders, including asthma. TNFR-associated factor (TRAF)1 is an intracellular adaptor molecule important for signaling by TNFR. In this study, we investigated the role of TRAF1 in an adoptive transfer model of allergic lung inflammation. Mice deficient in TRAF1 (TRAF1(-/-)) and wild-type (WT) control animals were adoptively transferred with WT OVA-immune CD4(+) T cells, exposed to an aerosol of LPS-free OVA, and analyzed for the development of allergic lung inflammation. In contrast to WT mice, TRAF1(-/-) recipients failed to display goblet cell hyperplasia, eosinophilic inflammation, and airway hyperresponsiveness in this model of asthma. Neither T cell recruitment nor expression of the proinflammatory cytokines IL-4, IL-5, IL-13, or TNF occurred in the lungs of TRAF1(-/-) mice. Although purified myeloid TRAF1(-/-) dendritic cells (DCs) exhibited normal Ag-presenting function and transmigratory capacity in vitro and were able to induce OVA-specific immune responses in the lung draining lymph nodes (LNs) following adoptive transfer in vivo, CD11c(+)CD11b(+) DCs from airways of TRAF1(-/-) recipients were not activated, and purified draining LN cells did not proliferate in vitro. Moreover, transfer of WT or TRAF1(-/-) DCs failed to restore T cell recruitment and DC activation in the airways of TRAF1(-/-) mice, suggesting that the expression of TRAF1 in resident lung cells is required for the development of asthma. Finally, we demonstrate that T cell-transfused TRAF1(-/-) recipient mice demonstrated impaired up-regulation of ICAM-1 expression on lung cells in response to OVA exposure.  相似文献   

12.
Although many studies have shown that pulmonary surfactant protein (SP)-A functions in innate immunity, fewer studies have addressed its role in adaptive immunity and allergic hypersensitivity. We hypothesized that SP-A modulates the phenotype and prevalence of dendritic cells (DCs) and CD4(+) T cells to inhibit Th2-associated inflammatory indices associated with allergen-induced inflammation. In an OVA model of allergic hypersensitivity, SP-A(-/-) mice had greater eosinophilia, Th2-associated cytokine levels, and IgE levels compared with wild-type counterparts. Although both OVA-exposed groups had similar proportions of CD86(+) DCs and Foxp3(+) T regulatory cells, the SP-A(-/-) mice had elevated proportions of CD4(+) activated and effector memory T cells in their lungs compared with wild-type mice. Ex vivo recall stimulation of CD4(+) T cell pools demonstrated that cells from the SP-A(-/-) OVA mice had the greatest proliferative and IL-4-producing capacity, and this capability was attenuated with exogenous SP-A treatment. Additionally, tracking proliferation in vivo demonstrated that CD4(+) activated and effector memory T cells expanded to the greatest extent in the lungs of SP-A(-/-) OVA mice. Taken together, our data suggested that SP-A influences the prevalence, types, and functions of CD4(+) T cells in the lungs during allergic inflammation and that SP deficiency modifies the severity of inflammation in allergic hypersensitivity conditions like asthma.  相似文献   

13.
Immune complex-induced acute lung injury (IC-ALI) has been implicated in various pulmonary disease states. However, the role of NKT cells in IC-ALI remains unknown. Therefore, we explored NKT cell functions in IC-ALI using chicken egg albumin and anti-chicken egg albumin IgG. The bronchoalveolar lavage fluid of CD1d(-/-) and Jα18(-/-) mice contained few Ly6G(+)CD11b(+) granulocytes, whereas levels in B6 mice were greater and were increased further by α-galactosyl ceramide. IFN-γ and MIP-1α production in the lungs was greater in B6 than CD1d(-/-) mice. Adoptive transfer of wild type (WT) but not IFN-γ-, MIP-1α-, or FcγR-deficient NKT cells into CD1d(-/-) mice caused recruitment of inflammatory cells to the lungs. Moreover, adoptive transfer of IFN-γR-deficient NKT cells enhanced MIP-1α production and cell recruitment in the lungs of CD1d(-/-) or CD1d(-/-)IFN-γ(-/-) mice, but to a lesser extent than WT NKT cells. This suggests that IFN-γ-producing NKT cells enhance MIP-1α production in both an autocrine and a paracrine manner. IFN-γ-deficient NKT cells induced less IL-1β and TNF-α production by alveolar macrophages and dendritic cells in CD1d(-/-) mice than did WT NKT cells. Taken together, these data suggest that CD1d-restricted IFN-γ-producing NKT cells promote IC-ALI by producing MIP-1α and enhancing proinflammatory cytokine production by alveolar macrophages and dendritic cells.  相似文献   

14.
IL-21 is a cytokine with pleiotropic actions, promoting terminal differentiation of B cells, increased Ig production, and the development of Th17 and T follicular helper cells. IL-21 is also implicated in the development of autoimmune disease and has antitumor activity. In this study, we investigated the role of IL-21 in host defense to pneumonia virus of mice (PVM), which initiates an infection in mice resembling that of respiratory syncytial virus disease in humans. We found that PVM-infected mice expressed IL-21 in lung CD4(+) T cells. Following infection, Il21r(-/-) mice exhibited less lung infiltration by neutrophils than did wild-type (WT) mice and correspondingly had lower levels of the chemokine CXCL1 in bronchoalveolar lavage fluid and lung parenchyma. CD8(+), CD4(+), and γδ T cell numbers were also lower in the lungs of PVM-infected Il21r(-/-) mice than in infected WT mice, with normal Th17 cytokines but diminished IL-6 production in PVM-infected Il21r(-/-) mice. Strikingly, Il21r(-/-) mice had enhanced survival following PVM infection, and moreover, treatment of WT mice with soluble IL-21R-Fc fusion protein enhanced their survival. These data reveal that IL-21 promotes the pathogenic inflammatory effect of PVM and indicate that manipulating IL-21 signaling may represent an immunomodulatory strategy for controlling PVM and potentially other respiratory virus infections.  相似文献   

15.
Chronic obstructive pulmonary disease (COPD) is mainly caused by cigarette smoking, and is characterized by an increase in inflammatory cells in the airways and pulmonary tissue. The chemokine receptor CCR6 and its ligand MIP-3alpha/CCL20 may be involved in the recruitment of these inflammatory cells. To investigate the role of CCR6 in the pathogenesis of COPD, we analyzed the inflammatory responses of CCR6 knockout (KO) and wild-type mice upon cigarette smoke (CS) exposure. Both subacute and chronic exposure to CS induced an increase in cells of the innate and adaptive immune system in the bronchoalveolar lavage, both in CCR6 KO and wild-type mice. However, the accumulation of dendritic cells, neutrophils, and T lymphocytes, which express CCR6, was significantly attenuated in the CCR6 KO mice, compared with their wild-type littermates. In the lung tissue of CCR6 KO mice, there was an impaired increase in dendritic cells, activated CD8(+) T lymphocytes, and granulocytes. Moreover, this attenuated inflammatory response in CCR6 KO mice offered a partial protection against pulmonary emphysema, which correlated with an impaired production of MMP-12. Importantly, protein levels of MIP-3alpha/CCL20, the only chemokine ligand of the CCR6 receptor, and MCP-1/CCL2 were significantly increased upon CS exposure in wild-type, but not in CCR6 KO mice. In contrast, CCR6 deficiency had no effect on the development of airway wall remodeling upon chronic CS exposure. These results indicate that the interaction of CCR6 with its ligand MIP-3alpha contributes to the pathogenesis of CS-induced pulmonary inflammation and emphysema in this murine model of COPD.  相似文献   

16.
Matrix metalloproteinases (MMPs) are a large family of endopeptidases that proteolytically degrade extracellular matrix. Many different cells produce MMP-9, and levels have been shown to be up-regulated in patients with allergic asthma. The aim of this study was to investigate the in vivo role of MMP-9 during allergen-induced airway inflammation. Acute allergic pulmonary eosinophilia was established in MMP-9 knockout (KO) and wild-type (WT) control mice by sensitization and challenge with OVA. Cell recruitment was significantly increased in both bronchoalveolar lavage (BAL) and lung tissue compartments in MMP-9 KO mice compared with WT mice. This heightened cell recruitment was primarily due to increased eosinophils and Th2 cells in the BAL and lung tissue of MMP-9 KO mice in comparison with WT controls. Moreover, levels of the Th2 cytokines, IL-4 and IL-13, and the chemokines eotaxin/CCL11 and macrophage-derived chemokine/CCL22 were substantially increased in MMP-9 KO mice compared with WT after OVA challenge. Resolution of eosinophilia was similar between MMP-9 KO and WT mice, but Th2 cells persisted in BAL and lungs of MMP-9 KO mice for longer than in WT mice. Our results indicate that MMP-9 is critically involved in the recruitment of eosinophils and Th2 cells to the lung following allergen challenge, and suggest that MMP-9 plays a role in the development of Th2 responses to allergen.  相似文献   

17.
18.
Pulmonary exposure to Aspergillus fumigatus has been associated with morbidity and mortality, particularly in immunocompromised individuals. A. fumigatus conidia produce β-glucan, proteases, and other immunostimulatory factors upon germination. Murine models have shown that the ability of A. fumigatus to germinate at physiological temperature may be an important factor that facilitates invasive disease. We observed a significant increase in IFN-γ-producing CD8(+) T cells in bronchoalveolar lavage fluid (BALF) of immunocompetent mice that repeatedly aspirated A. fumigatus conidia in contrast to mice challenged with A. versicolor, a species that is not typically associated with invasive, disseminated disease. Analysis of tissue sections indicated the presence of germinating spores in the lungs of mice challenged with A. fumigatus, but not A. versicolor. Airway IFN-γ(+)CD8(+) T-cells were decreased and lung germination was eliminated in mice that aspirated A. fumigatus conidia that were formaldehyde-fixed or heat-inactivated. Furthermore, A. fumigatus particles exhibited greater persistence in the lungs of recipient mice when compared to non-viable A. fumigatus or A. versicolor, and this correlated with increased maintenance of airway memory-phenotype CD8(+) T cells. Therefore, murine airway CD8(+) T cell-responses to aspiration of Aspergillus conidia may be mediated in part by the ability of conidia to germinate in the host lung tissue. These results provide further evidence of induction of immune responses to fungi based on their ability to invade host tissue.  相似文献   

19.
20.
Chemokine-chemokine receptor interaction plays an essential role in leukocyte/dendritic cell (DC) trafficking in inflammation and immune responses. We investigated the pathophysiological roles of secondary lymphoid tissue chemokine (SLC; CCL21) and macrophage inflammatory protein-2 (MIP-2) in the development of acute pulmonary inflammation induced by an intratracheal injection of Propionibacterium acnes in mice. Immunohistochemical studies revealed that SLC was constitutively expressed in the peribronchial areas and perivascular lymphatics in normal mice. MIP-2-positive cells were observed in alveolar spaces in mice challenged with P. acnes. Both neutralization Abs against MIP-2 and CXC chemokine receptor 2 alleviated the P. acnes-induced pulmonary inflammation when injected before P. acnes Ag challenge. On the other hand, polyclonal anti-SLC Abs (pAbs) exacerbated the pulmonary inflammation. The numbers of mature DCs (MHC class II +, CD11c+, and CD86+) as well as macrophages and neutrophils in the P. acnes Ag-challenged lungs were increased, whereas the number of CD4+ T cells, including memory T cells, was decreased. The numbers of mature and proliferating CD4+ T cells (bromodeoxyuridine(+)CD4+) in regional lymph nodes were decreased in mice injected with anti-SLC pAbs compared with those in mice treated with control Abs. An in vitro proliferation assay confirmed the impairment of the Ag-specific T cell response in regional lymph nodes of mice treated with anti-SLC pAbs. These results indicate for the first time a regulatory role for SLC-recruited mature DCs in bridging an acute inflammatory response (innate immunity) and acquired immunity in the lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号