首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Expression of the acidic dehydrin gene wcor410 was found to be associated with the development of freezing tolerance in several Gramineae species. This gene is part of a family of three homologous members, wcor410, wcor410b, and wcor410c, that have been mapped to the long arms of the homologous group 6 chromosomes of hexaploid wheat. To gain insight into the function of this gene family, antibodies were raised against the WCOR410 protein and affinity purified to eliminate cross-reactivity with the WCS120 dehydrin-like protein of wheat. Protein gel blot analyses showed that the accumulation of WCOR410 proteins correlates well with the capacity of each cultivar to cold acclimate and develop freezing tolerance. Immunoelectron microscope analyses revealed that these proteins accumulate in the vicinity of the plasma membrane of cells in the sensitive vascular transition area where freeze-induced dehydration is likely to be more severe. Biochemical fractionation experiments indicated that WCOR410 is a peripheral protein and not an integral membrane protein. These results provide direct evidence that a subtype of the dehydrin family accumulates near the plasma membrane. The properties, abundance, and localization of these proteins suggest that they are involved in the cryoprotection of the plasma membrane against freezing or dehydration stress. We propose that WCOR410 plays a role in preventing the destabilization of the plasma membrane that occurs during dehydrative conditions.  相似文献   

2.
Cold acclimation, an adaptive process for developing freezing tolerance in over-wintering plants, is associated with increased expression levels of a series of cold-responsive (Cor)/late embryogenesis abundant (Lea) genes. To investigate the function of Wcor15, a member of the wheat Cor/Lea gene family, for improvement of freezing tolerance, two types of transgenic tobacco lines expressing Wcor15-containing chimeric genes were produced and characterized. Immunoblot and gene expression analyses of a transgenic tobacco line expressing the Wcor15-GFP fusion gene under control of the CaMV35S promoter showed transport and abundant accumulation of the WCOR15 protein in the stromal compartment of the chloroplasts. The 5' upstream region of Wcor15 induced expression of the GFP reporter gene under low-temperature conditions in the transgenic tobacco. Both transgenic lines expressing the Wcor15-GFP fusion gene showed a similar and significantly improved level of freezing tolerance compared with the wild-type tobacco plants. Our results demonstrate that the induced expression of the wheat Wcor15 gene positively contributes to the development of freezing tolerance in the heterologous tobacco plants.  相似文献   

3.
根癌农杆菌介导转录因子CBF1基因对草莓的转化   总被引:2,自引:0,他引:2  
以草莓(Fragaria ananassa Duch)品种“达斯莱克特“(Darselect)为试材,用根癌农杆菌介导的方法,将转录因子CBF1基因导入草莓叶盘细胞,经多次筛选获得了转基因植株.转化植株经PCR检测,证实了CBF1基因已经整合到草莓的基因组中.以电解质渗透法检测了植株的抗寒性,结果显示转基因草莓的抗寒能力较未转化植株有明显提高,且不同转基因株系之间提高程度有着差异.  相似文献   

4.
5.
Lee SC  Lee MY  Kim SJ  Jun SH  An G  Kim SR 《Molecules and cells》2005,19(2):212-218
A full-length 1.1 kb cDNA, designated Oryza sativa Dehydrin 1 (OsDhn1), was isolated from the seed coat of rice. The deduced protein is hydrophilic and has three K-type and one S-type motifs (SK3-type), indicating that OsDhn1 belongs to the acidic dehydrin family, which includes wheat WCOR410 and Arabidopsis COR47. Expression of OsDhn1 was strongly induced by low temperature as well as by drought. Induction of OsDhn1 by cold stress was clearcut in the roots of seedlings and the epidermis of palea and lemma. OsDhn1 was also up-regulated in UBI::CBF1/DREB1b transgenic plants indicating that it is regulated by the CBF/DREB stress signaling pathway.  相似文献   

6.
Extracellular freezing in plants results in dehydration and mechanical stresses upon the plasma membrane. Plants that acquire enhanced freezing tolerance after cold acclimation can withstand these two physical stresses. To understand the tolerance to freeze-induced physical stresses, the cryobehavior of the plasma membrane was observed using protoplasts isolated from cold-acclimated Arabidopsis thaliana leaves with the combination of a lipophilic fluorescent dye FM 1-43 and cryomicroscopy. We found that many vesicular structures appeared in the cytoplasmic region near the plasma membrane just after extracellular freezing occurred. These structures, referred to as freeze-induced vesicular structures (FIVs), then developed horizontally near the plasma membrane during freezing. There was a strong correlation between the increase in individual FIV size and the decrease in the surface area of the protoplasts during freezing. Some FIVs fused with their neighbors as the temperature decreased. Occasionally, FIVs fused with the plasma membrane, which may be necessary to relax the stress upon the plasma membrane during freezing. Vesicular structures resembling FIVs were also induced when protoplasts were mechanically pressed between a coverslip and slide glass. Fewer FIVs formed when protoplasts were subjected to hyperosmotic solution, suggesting that FIV formation is associated with mechanical stress rather than dehydration. Collectively, these results suggest that cold-acclimated plant cells may balance membrane tension in the plasma membrane by regulating the surface area. This enables plant cells to withstand the direct mechanical stress imposed by extracellular freezing.  相似文献   

7.
Expression of a Low-Temperature-Induced Protein in Brassica napus   总被引:1,自引:1,他引:0       下载免费PDF全文
BN28 is a low-temperature-induced, boiling-soluble protein in Brassica napus. We used antibodies raised against a recombinant BN28 to examine the expression of this protein in cold-acclimating plants and to investigate its relationship to plant freezing tolerance. Changes in the steady-state levels of BN28 protein appear to lag several days behind those of the mRNA. BN28 is first detected on immunoblots after approximately 8 d of exposure to low temperature, and thereafter levels remain stable while plants are maintained at 4[deg]C. Radiolabeling studies indicate that BN28 is synthesized at a relatively low rate. A decline in protein levels is observed soon after returning plants to control temperatures, and little or no protein can be detected after 7 d of deacclimation. The disappearance of the protein precedes a loss in freezing tolerance, suggesting that BN28 is not involved in maintaining plasma membrane integrity. Expression of BN28 is observed primarily in leaves and appears to be low-temperature specific. Quantitative analysis indicated that BN28 accumulates to approximately 82.7 pmol mg-1 total protein in cold-acclimated leaves. This concentration is similar to that reported for two group 2 late-embryogenesis-abundant-like proteins.  相似文献   

8.
9.
10.
11.
12.
During cold acclimation, antifreeze proteins (AFPs) that are similar to pathogenesis-related proteins accumulate in the apoplast of winter rye (Secale cereale L. cv Musketeer) leaves. AFPs have the ability to modify the growth of ice. To elucidate the role of AFPs in the freezing process, they were assayed and immunolocalized in winter rye leaves, crowns, and roots. Each of the total soluble protein extracts from cold-acclimated rye leaves, crowns, and roots exhibited antifreeze activity, whereas no antifreeze activity was observed in extracts from nonacclimated rye plants. Antibodies raised against three apoplastic rye AFPs, corresponding to a glucanase-like protein (GLP, 32 kD), a chitinase-like protein (CLP, 35 kD), and a thaumatin-like protein (TLP, 25 kD), were used in tissue printing to show that the AFPs are localized in the epidermis and in cells surrounding intercellular spaces in cold-acclimated plants. Although GLPs, CLPs, and TLPs were present in nonacclimated plants, they were found in different locations and did not exhibit antifreeze activity, which suggests that different isoforms of pathogenesis-related proteins are produced at low temperature. The location of rye AFPs may prevent secondary nucleation of cells by epiphytic ice or by ice propagating through the xylem. The distributions of pathogenesis-induced and cold-accumulated GLPs, CLPs, and TLPs are similar and may reflect the common pathways by which both pathogens and ice enter and propagate through plant tissues.  相似文献   

13.
14.
15.
The effects of chilling and freezing temperature on membrane permeability and ATP content were studied in the leaves of cucumber ( Cucumis sativus L.) and winter rape ( Brassica napus L. var. oleifera L.) leaves, grown at different temperatures. In the winter rape leaves, the endogenous ATP content was modified by application of dinitrophenol (DNP) solutions of different concentrations. The low temperature-induced changes in membrane permeability (as monitored by the conductivity method) were found to be associated with ATP decrease, both in the chilling-sensitive and chilling-resistant (subjected to freezing) plants. In tissues showing reversible injuries, changes in ATP content preceded those in membrane permeability and the adenylate energy charge was affected slightly. In tissues showing irreversible membrane damage, the ATP content was always below 0.4 μmol (g dry weight)−1 and the adenylate energy charge was near 0.5. DNP treatment increased freezing sensitivity of winter rape leaves. In the cold-hardened winter rape leaves, however, freezing and thawing did not significantly affect ATP content or the energy charge, although the specimen showed a rather large increase in membrane permeability. In these leaves ATP content recovered about 20 h after a freezing and thawing treatment. It is proposed that a decrease in ATP supply might be the primary reason for the membrane leakiness at low temperature, both in chilling-sensitive and chilling-resistant (subjected to freezing) plants. The conclusion is, however, not true for the cold-acclimated, frostadapted cells.  相似文献   

16.
17.
18.
Cold acclimation and freezing tolerance are the result of complex interaction between low temperature, light, and photosystem II (PSII) excitation pressure. Previous results have shown that expression of the Wcs19 gene is correlated with PSII excitation pressure measured in vivo as the relative reduction state of PSII. Using cDNA library screening and data mining, we have identified three different groups of proteins, late embryogenesis abundant (LEA) 3-L1, LEA3-L2, and LEA3-L3, sharing identities with WCS19. These groups represent a new class of proteins in cereals related to group 3 LEA proteins. They share important characteristics such as a sorting signal that is predicted to target them to either the chloroplast or mitochondria and a C-terminal sequence that may be involved in oligomerization. The results of subcellular fractionation, immunolocalization by electron microscopy and the analyses of target sequences within the Wcs19 gene are consistent with the localization of WCS19 within the chloroplast stroma of wheat (Triticum aestivum) and rye (Secale cereale). Western analysis showed that the accumulation of chloroplastic LEA3-L2 proteins is correlated with the capacity of different wheat and rye cultivars to develop freezing tolerance. Arabidopsis was transformed with the Wcs19 gene and the transgenic plants showed a significant increase in their freezing tolerance. This increase was only evident in cold-acclimated plants. The putative function of this protein in the enhancement of freezing tolerance is discussed.  相似文献   

19.
Betaine Improves Freezing Tolerance in Wheat   总被引:20,自引:0,他引:20  
The accumulation of the osmolyte betaine was found to be correlatedwith the development of freezing tolerance (FT) of two wheatcultivars where it increases by about three fold during thecold acclimation period. Exogenous betaine application resultedin a large increase in total osmolality mostly due to betaineaccumulation. Plants that accumulated betaine are more tolerantto freezing stress since a four day exposure to 250 mM betaineresulted in a LT50 of –8°C (in spring wheat Glenlea)and –9°C (in winter wheat Fredrick) compared to –3°C(Glenlea) and –4°C (Fredrick) for control non-exposedplants. Betaine treatment (250 mM) during cold acclimation increasedFT in an additive manner since the LT50 reached –14°C(Glenlea) and –22°C (Fredrick) compared to –8°C(Glenlea) and –16°C (Fredrick) for plants that arecold acclimated in the absence of betaine. These results showthat betaine treatment can improve FT by more than 5°C inboth non-acclimated and cold-acclimated plants. The betainetreatment resulted in the induction of a subset of low temperatureresponsive genes, such as the wcor410, and wcor413, that arealso induced by salinity or drought stresses. In addition tothese genetic responses, betaine treatment was also able toimprove the tolerance to photoin-hibition of PSII and the steady-stateyield of electron transport over PSII in a manner that mimickedcold-acclimated plants. These data also suggest that betaineimproves FT by eliciting some of the genetic and physiologicalresponses associated with cold acclimation. (Received April 23, 1998; Accepted September 4, 1998)  相似文献   

20.
Antifreeze protein produced endogenously in winter rye leaves   总被引:30,自引:0,他引:30  
After cold acclimation, winter rye (Secale cereale L.) is able to withstand the formation of extracellular ice at freezing temperatures. We now show, for the first time, that cold-acclimated winter rye plants contain endogenously produced antifreeze protein. The protein was extracted from the apoplast of winter rye leaves, where ice forms during freezing. After partial purification, the protein was identified as antifreeze protein because it modified the normal growth pattern of ice crystals and depressed the freezing temperature of water noncolligatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号