首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
p38 mitogen-activated protein kinase regulates human T cell IL-5 synthesis.   总被引:4,自引:0,他引:4  
Involvement of p38 mitogen-activated protein (MAP) kinase in human T cell cytokine synthesis was investigated. p38 MAP kinase was clearly induced in human Th cells activated through the TCR. SB203580, a highly selective inhibitor of p38 MAP kinase, inhibited the induction of p38 MAP kinase in human Th cells. Major T cell cytokines, IL-2, IL-4, IL-5, and IFN-gamma, were produced by Der f 2-specific Th clones upon stimulation through the TCR. IL-5 synthesis alone was significantly inhibited by SB203580 in a dose-dependent manner, whereas the production of IL-2, IL-4, and IFN-gamma was not affected. The proliferation of activated T cells was not affected. IL-5 synthesis of human Th clones induced upon stimulation with rIL-2, phorbol ester plus anti-CD28 mAb, and immobilized anti-CD3 mAb plus soluble anti-CD28 mAb was also suppressed by SB203580 in the same concentration response relationship. The results clearly indicated that IL-5 synthesis by human Th cells is dependent on p38 MAP kinase activity, and is regulated distinctly from IL-2, IL-4, and IFN-gamma synthesis. Selective control of IL-5 synthesis will provide a novel treatment devoid of generalized immune suppression for bronchial asthma and atopic dermatitis that are characterized by eosinophilic inflammation.  相似文献   

3.
We have explored the phenotype and regulation of Th1 cell activation by the cytokines IL-12 and IL-18. We demonstrate that these two cytokines selectively induce IFN-gamma in a differentiated Th1 cell population through the previously described p38 mitogen-activated protein (MAP) kinase pathway. Using a highly selective p38 MAP kinase inhibitor, we demonstrate that it is possible to block IFN-gamma induction from activated, differentiated Th1 cells via p38 MAP kinase without disrupting the activation and differentiation of naive T cells or the proliferation of naive or differentiated T cells. In addition, IL-12 and IL-18 provide an Ag and IL-2-independent survival signal to this uniquely differentiated Th1 cell population. We hypothesize that this Ag-independent survival of Th1 cells may participate in an innate inflammatory loop with monocytes at the sites of chronic inflammation. In addition, p38 MAP kinase inhibition of this cytokine-regulated pathway may be a unique mechanism to inhibit chronic inflammation without disruption of Ag-driven activation and function of naive T cells.  相似文献   

4.
5.
6.
7.
IL-12 and IL-2 can stimulate mitogen- or CD3-activated T cells to proliferate, produce IFN-gamma, and kill tumor cells. The magnitude of these functional responses is greatly augmented when T cells are activated by the combination of IL-12 and IL-2. Although peripheral blood T cells are largely unresponsive to these cytokines without prior activation, a small subset of CD8+ T cells (CD8+CD18bright) is strongly activated by the combination of IL-12 and IL-2. In this report we show that the functional synergy between IL-12 and IL-2 in CD8+CD18bright T cells correlates with the activation of the stress kinases, p38 mitogen-activated protein (MAP) kinase and stress-activated protein kinase (SAPK)/Jun N-terminal kinase, but not with the activation of the extracellular signal-regulated kinases. The functional synergy between IL-2 and IL-12 is also associated with a prominent increase in STAT1 and STAT3 serine phosphorylation over that observed with IL-12 or IL-2 alone. By contrast, STAT tyrosine phosphorylation is not augmented over that seen with either cytokine alone. A specific inhibitor of p38 MAP kinase completely inhibits the serine phosphorylation of STAT1 and STAT3 induced by IL-12 and IL-2 and abrogates the functional synergy between IL-12 and IL-2 without affecting STAT tyrosine phosphorylation. This suggests that p38 MAP kinase may play an important role in regulating STAT serine phosphorylation in response to the combination of IL-12 and IL-2. Furthermore, these findings indicate that the optimal activation of T cells by IL-12 and IL-2 may depend on an interaction between the p38 MAP kinase and Janus kinase/STAT signaling pathways.  相似文献   

8.
Allergens are capable of polarizing the T cell immune response toward a Th2 cytokine profile in a process that is mediated by dendritic cells (DCs). Proteases derived from Aspergillus species (Aspergillus proteases; AP) have been shown to induce a Th2-like immune response when administered directly to the airway and without adjuvant or prior priming immunizations at sites remote from the lung in models of allergic airway disease. To explore mechanisms that underlie the Th2 immune response, we have investigated the effect of AP on DC function. We found that human DCs derived from CD14(+) monocytes from healthy donors underwent partial maturation when incubated with AP. Naive allogeneic T cells primed with AP-activated DCs proliferated and displayed enhanced production of IL-4 and reduced expression of IFN-gamma as compared with naive T cells primed with LPS-activated DCs. Global gene expression analysis of DCs revealed relatively low expression of IL-12p40 in AP-activated DCs as compared with those activated by LPS, and this was confirmed at the protein level by ELISA. Exogenous IL-12p70 added to cocultures of DCs and T cells resulted in reduced IL-4 and increased IFN-gamma expression when DCs were activated with AP. When the proteolytic activity of AP was neutralized by chemical inactivation it failed to up-regulate costimulatory molecules on DCs, and these DCs did not prime a Th2 response in naive T cells. These findings provide a mechanism for explaining how proteolytically active allergens could preferentially induce Th2 responses through limited maturation of DCs with reduced production of IL-12.  相似文献   

9.
10.
IL-13 and IL-4 have similar biological activities and are characteristic of cytokines expressed by Th2 cells. In contrast, IL-12 and IL-18 have been shown to be strong cofactors for Th1 cell development. In this study, we found strong induction of IL-13 mRNA and protein by IL-2 + IL-18 in NK and T cells. In contrast, IL-12 did not enhance the IL-13 production induced by IL-2 alone. Moreover, IL-13 mRNA and protein expression induced by IL-2 + IL-18 in purified NK and T cells obtained from IFN-gamma knockout (-/-) mice were greater than seen in purified cells from normal controls. In contrast, IL-10 production induced by IL-2 and/or IL-12 was not significantly different in IFN-gamma (-/-) mice and normal controls. These results suggest IL-13 expression induced by IL-2 + IL-18 may be regulated by IFN-gamma in vivo, while IL-10 expression may be IFN-gamma-independent. Thus, depending upon the cell type, IL-18 may act as a strong coinducer of Th1 or Th2 cytokines. Our findings suggest that IL-12 and IL-18 have different roles in the regulation of gene expression in NK and T cells.  相似文献   

11.
T cell proliferation and cytokine production usually require stimulation via both the TCR/CD3 complex and the CD28 costimulatory receptor. Using purified human CD4+ peripheral blood T cells, we show that CD28 stimulation alone activates p38 alpha mitogen-activated protein kinase (p38 alpha). Cell proliferation induced by CD28 stimulation alone, a response attributed to CD4+CD45RO+ memory T cells, was blocked by the highly specific p38 inhibitors SB 203580 (IC50 = 10-80 nM) and RWJ 67657 (IC50 = 0.5-4 nM). In contrast, proliferation induced by anti-CD3 plus anti-CD28 mAbs was not blocked. Inhibitors of p38 also blocked CD4+ T cell production of IL-4 (SB 203580 IC50 = 20-100 nM), but not IL-2, in response to CD3 and CD28 stimulation. IL-5, TNF-alpha, and IFN-gamma production were also inhibited, but to a lesser degree than IL-4. IL-4 production was attributed to CD4+CD45RO+ T cells, and its induction was suppressed by p38 inhibitors at the mRNA level. In polarized Th1 and Th2 cell lines, SB 203580 strongly inhibited IL-4 production by Th2 cells (IC50 = 10-80 nM), but only partially inhibited IFN-gamma and IL-2 production by Th1 cells (<50% inhibition at 1 microM). In both Th1 and Th2 cells, CD28 signaling activated p38 alpha and was required for cytokine production. These results show that p38 alpha plays an important role in some, but not all, CD28-dependent cellular responses. Its preferential involvement in IL-4 production by CD4+CD45RO+ T cells and Th2 effector cells suggests that p38 alpha may be important in the generation of Th2-type responses in humans.  相似文献   

12.
Experimental studies in monkeys on the basis of ex vivo-generated, reinjected dendritic cells (DCs) allow investigations of primate DC biology in vivo. To study in vitro and in vivo properties of DCs with a reduced capacity to produce IL-12, we adapted findings obtained in vitro with human cells to the rhesus macaque model. Following exposure of immature monocyte-derived monkey DCs to the immunomodulating synthetic polypeptide glatiramer acetate (GA) and to dibutyryl-cAMP (d-cAMP; i.e., a cAMP enhancer that activates DCs but inhibits the induction of Th1 immune responses), the resulting DCs displayed a mature phenotype with enhanced Ag-specific T cell stimulatory function, notably also for memory Th1 cells. Phosphorylation of p38 MAPK was not induced in GA/d-cAMP-activated DCs. Accordingly, these cells secreted significantly less IL-12p40 (p < or = 0.001) than did cytokine-activated cells. However, upon restimulation with rhesus macaque CD154, GA/d-cAMP-activated DCs produced IL-12p40/IL-23. Additionally, DCs activated by proinflammatory cytokines following protocols for the generation of cells used in clinical studies secreted significantly more IL-23 upon CD154 restimulation than following prior activation. Two days after intradermal injection, GA/d-cAMP-activated fluorescence-labeled DCs were detected in the T cell areas of draining lymph nodes. When similarly injected, GA/d-cAMP as well as cytokine-activated protein-loaded DCs induced comparable Th immune responses characterized by secretion of IFN-gamma, TNF, and IL-17, and transiently expanded FOXP3(+) regulatory T cells. Reactivation of primate DCs through CD154 considerably influences their immmunostimulatory properties. This may have a substantial impact on the development of innovative vaccine approaches.  相似文献   

13.
Dendritic cells (DCs) activated through TLRs provide a potent negative signal for Th2 cell development that is independent of positive signals for Th1 cell development such as IL-12 and IFN-gamma. In this study we demonstrate that the ability of TLR-activated DCs to suppress Th2 cell development is Ag dose-independent and unique to DCs that have been activated through TLRs vs by cytokines. We show that TLR-activated DCs inhibit early IL-4 production by CD4 T cells and thus inhibit their ability to subsequently increase GATA-3 expression and commit to the Th2 lineage. This occurs independently of expression of the GATA-3 antagonist T-bet. Although CD4 T cells activated by TLR-activated DCs make IL-2, they are not capable of phosphorylating STAT5 in response to this cytokine. This inhibition of responsiveness to IL-2 appears to underlie the failure to make early IL-4. Our findings suggest that DCs provide instructional signals for T cell differentiation before cytokine-mediated Th cell selection and outgrowth.  相似文献   

14.
IL-12 induces monocyte IL-18 binding protein expression via IFN-gamma   总被引:6,自引:0,他引:6  
IL-18 is a Th1 cytokine that synergizes with IL-12 and IL-2 in the stimulation of lymphocyte IFN-gamma production. IL-18 binding protein (IL-18BP) is a recently discovered inhibitor of IL-18 that is distinct from the IL-1 and IL-18 receptor families. In this report we show that IL-18BPa, the IL-18BP isoform with the highest affinity for IL-18, was strongly induced by IL-12 in human PBMC. Other Th1 cytokines, including IFN-gamma, IL-2, IL-15, and IL-18, were also capable of augmenting IL-18BPa expression. In contrast, IL-1alpha, IL-1beta, TNF-alpha, IFN-gamma-inducible protein-10, and Th2 cytokines such as IL-4 and IL-10 did not induce IL-18BPa. Although monocytes were found to be the primary source of IL-18BPa, the induction of IL-18BPa by IL-12 was mediated through IFN-gamma derived predominantly from NK cells. IL-18BPa production was observed in cancer patients receiving recombinant human IL-12 and correlated with the magnitude of IFN-gamma production. The IFN-gamma/IL-18BPa negative feedback loop identified in this study may be capable of broadly controlling immune activation by cytokines that synergize with IL-18 to induce IFN-gamma and probably plays a key role in the modulation of both innate and adaptive immunity.  相似文献   

15.
16.
17.
The mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), and p38, are activated in response to infectious agents and innate immune stimulators such as CpG DNA, and regulate the subsequent initiation and termination of immune responses. CpG DNA activates p38 and ERK with slightly different kinetics in monocytic cells. The present studies investigated the roles of these two key mitogen-activated protein kinases in regulating the CpG DNA-induced production of pro- and anti-inflammatory cytokines in the macrophage-like cell line RAW264.7. p38 activity was essential for the induction of both IL-10 and IL-12 expression by CpG DNA. In contrast, CpG DNA-mediated ERK activation was shown to suppress IL-12 production, but to be essential for the CpG DNA-induced IL-10 production. Studies using rIL-10 and IL-10 gene-deficient mice demonstrated that the inhibitory effect of ERK on CpG DNA-mediated IL-12 production is indirect, due to the role of ERK in mediating IL-10 production. These results demonstrate that ERK and p38 differentially regulate the production of pro- and anti-inflammatory cytokines in APCs that have been activated by CpG DNA. CpG DNA-induced p38 activity is required for the resulting innate immune activation. In contrast, ERK plays a central negative regulatory role in the CpG DNA-mediated Th1 type response by promoting production of the Th2 type cytokine, IL-10.  相似文献   

18.
IL-12 is a key inducer of Th1-associated inflammatory responses, protective against intracellular infections and cancer, but also involved in autoimmune tissue destruction. We report that human Th2 cells interacting with monocyte-derived dendritic cells (DC) effectively induce bioactive IL-12p70 and revert to Th0/Th1 phenotype. In contrast, the interaction with B cells preserves polarized Th2 phenotype. The induction of IL-12p70 in Th2 cell-DC cocultures is prevented by IL-4-neutralizing mAb, indicating that IL-4 acts as a Th2 cell-specific cofactor of IL-12p70 induction. Like IFN-gamma, IL-4 strongly enhances the production of bioactive IL-12p70 heterodimer in CD40 ligand-stimulated DC and macrophages and synergizes with IFN-gamma at low concentrations of both cytokines. However, in contrast to IFN-gamma, IL-4 inhibits the CD40 ligand-induced production of inactive IL-12p40 and the production of either form of IL-12 induced by LPS, which may explain the view of IL-4 as an IL-12 inhibitor. The presently described ability of IL-4 to act as a cofactor of Th cell-mediated IL-12p70 induction may allow Th2 cells to support cell-mediated immunity in chronic inflammatory states, including cancer, autoimmunity, and atopic dermatitis.  相似文献   

19.
20.
Human anaplasmosis is an emerging infectious disease transmitted by ticks that can be potentially fatal in the immunocompromised and the elderly. The mechanisms of defense against the causative agent, Anaplasma phagocytophilum, are not completely understood; however, interferon (IFN)-gamma plays an important role in pathogen clearance. Here, we show that IFN-gamma is regulated through an early IL-12/23p40-dependent mechanism. Interleukin (IL)-12/23p40 is regulated in macrophages and dendritic cells after activation by microbial agonists and cytokines and constitutes a subunit of IL-12 and IL-23. IL-12/23p40-deficient mice displayed an increased A. phagocytophilum burden, accelerated thrombocytopenia and increased neutrophil numbers in the spleen at day 6 postinfection. Infection of MyD88- and mitogen-activated kinase kinase 3 (MKK3)-deficient mice suggested that the early susceptibility due to IL-12/23p40 deficiency was not dependent on signaling through MyD88 or MKK3. The lack of IL-12/23p40 reduced IFN-gamma production in both CD4(+) and CD8(+) T cells although the effect was more pronounced in CD4(+) T cells. Our data suggest that the immune response against A. phagocytophilum is a multifactorial and cooperative process. The IL-12/23p40 subunit drives the CD4(+) Th1 immune response in the early phase of infection and IL-12/23p40-independent mechanisms ultimately contribute to pathogen elimination from the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号