首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Ozone is the main photochemical oxidant that causes leaf damage in many plant species, and can thereby significantly decrease the productivity of crops and forests. When ozone is incorporated into plants, it produces reactive oxygen species (ROS), such as superoxide radicals and hydrogen peroxide. These ROS induce the synthesis of several plant hormones, such as ethylene, salicylic acid, and jasmonic acid. These phytohormones are required for plant growth, development, and defense responses, and regulate the extent of leaf injury in ozone-fumigated plants. Recently, responses to ozone have been studied using genetically modified plants and mutants with altered hormone levels or signaling pathways. These researches have clarified the roles of phytohormones and the complexity of their signaling pathways. The present paper reviews the biosynthesis of the phytohormones ethylene, salicylic acid, and jasmonic acid, their roles in plant responses to ozone, and multiple interactions between these phytohormones in ozone-exposed plants.Key words: cross-talk, ethylene, jasmonic acid, ozone, phytohormones, programmed cell death, salicylic acid, signaling pathways  相似文献   

2.
植物细胞活性氧种类、代谢及其信号转导   总被引:6,自引:0,他引:6  
越来越明显的证据表明,植物体十分活跃的产生着活性氧并将之作为信号分子、进而控制着诸如细胞程序性死亡、非生物胁迫响应、病原体防御和系统信号等生命过程,而不仅是传统意义上的活性氧是有氧代谢的附产物。日益增多的证据显示,由脱落酸、水杨酸、茉莉酸与乙烯以及活性氧所调节的激素信号途径,在生物和非生物胁迫信号的“交谈”中起重要作用。活性氧最初被认为是动物吞噬细胞在宿主防御反应时所释放的附产物,现在的研究清楚的表明,活性氧在动物和植物细胞信号途径中均起作用。活性氧可以诱导细胞程序性死亡或坏死、可以诱导或抑制许多基因的表达,也可以激活上述级联信号。近来生物化学与遗传学研究证实过氧化氢是介导植物生物胁迫与非生物胁迫的信号分子,过氧化氢的合成与作用似乎与一氧化氮有关系。过氧化氢所调节的下游信号包括钙“动员”、蛋白磷酸化和基因表达等。  相似文献   

3.
The phytotoxic air pollutant ozone spontaneously generates reactive oxygen species (ROS) in the leaf apoplast, provokes hypersensitive response-like lesions and induces defence reactions that significantly overlap with pathogen and other oxidative stress responses. Consequently, ozone has been used as a tool to unravel in planta ROS-induced plant defence and cell death mechanisms. Ozone exposure stimulates an oxidative burst in leaves of sensitive plants, resulting in the generation and accumulation of hydrogen peroxide or superoxide anions in distinct species. Accumulation of these ROS precedes the induction of cell death, and both responses co-occur spatially in the periveinal regions of the leaves. The review summarizes some of the recent results that have been obtained concerning the molecular basis of apoplastic ROS production in monocot and dicot species. Signal molecules, in particular ethylene and salicylic acid, control and potentiate the oxidative burst and subsequent cell death in its initiation and propagation phases while jasmonate leads to lesion containment. Amplification mechanisms that result in the production of excess ROS and hypersensitive cell death are discussed as major factors in ozone sensitivity of plant species and cultivars.  相似文献   

4.
Analysis of oxidative signalling induced by ozone in Arabidopsis thaliana   总被引:2,自引:0,他引:2  
We are using acute ozone as an elicitor of endogenous reactive oxygen species (ROS) to understand oxidative signalling in Arabidopsis. Temporal patterns of ROS following a 6 h exposure to 300 nL L(-1) of ozone in ozone-sensitive Wassilewskija (Ws-0) ecotype showed a biphasic ROS burst with a smaller peak at 4 h and a larger peak at 16 h. This was accompanied by a nitric oxide (NO) burst that peaked at 9 h. An analysis of antioxidant levels showed that both ascorbate (AsA) and glutathione (GSH) were at their lowest levels, when ROS levels were high in ozone-stressed plants. Whole genome expression profiling analysis at 1, 4, 8, 12 and 24 h after initiation of ozone treatment identified 371 differentially expressed genes. Early induction of proteolysis and hormone-responsive genes indicated that an oxidative cell death pathway was triggered rapidly. Down-regulation of genes involved in carbon utilization, energy pathways and signalling suggested an inefficient defense response. Comparisons with other large-scale expression profiling studies indicated some overlap between genes induced by ethylene and ozone, and a significant overlap between genes repressed by ozone and methyl jasmonate treatment. Further, analysis of cis elements in the promoters of ozone-responsive genes also supports the view that phytohormones play a significant role in ozone-induced cell death.  相似文献   

5.

Key message

The study focuses on the interaction between reactive oxygen species and hormones that regulate the programmed cell death in plants of Melissa officinalis exposed to ozone.

Abstract

Interaction between hormone and redox signaling pathways has been investigated in ozone-stressed (200 ppb, 5 h) lemon balm to verify if the response resembles the biotic defense reactions. In comparison to controls, plants exhibited foliar injury and the cell death was induced by (1) biphasic production of hydrogen peroxide and superoxide radical; (2) hormonal regulation of ozone-induced lesion formation with a significant production of ethylene, salicylic, jasmonic and abscisic acid; (3) ozone degradation to reactive oxygen species and their detoxification by some enzymatic (such as superoxide dismutase) and non-enzymatic antioxidant systems (such as ascorbic acid, glutathione and carotenoids), that worked in cooperation without providing a defense against free radicals (such as confirmed by the modification of the antioxidant properties of leaf tissue). This integrated view showed that reactive oxygen species interact with hormonal signaling pathway regulating cell death and the sensitivity of lemon balm to ozone.  相似文献   

6.
Our earlier studies demonstrated that the ozone-sensitive hybrid poplar clone NE-388 displays an attenuated level of ozone-, wound-, and phytopathogen-induced defense gene expression. To determine if this reduced gene activation involves signal transduction pathways dependent on salicylic acid (SA) and/or jasmonic acid (JA), we compared the responses of NE-388 and an ozone-tolerant clone, NE-245, to these signal molecules. JA levels increased in both clones in response to ozone, but only minimal increases in SA levels were measured for either clone. Treatment with SA and methyl jasmonate induced defense gene expression only in NE-245, indicating that NE-388 is insensitive to these signal molecules. DNA fragmentation, an indicator of programmed cell death (PCD), was detected in NE-245 treated with either ozone or an avirulent phytopathogen, but was not detected in NE-388. We conclude that these clones undergo two distinct mechanisms of ozone-induced lesion formation. In NE-388, lesions appear to be due to toxic cell death resulting from a limited ability to perceive and subsequently activate SA- and/or JA-mediated antioxidant defense responses. In NE-245, SA-dependent PCD precedes lesion formation via a process related to the PCD pathway activated by phytopathogenic bacteria. These results support the hypothesis that ozone triggers a hypersensitive response.  相似文献   

7.
Reactive oxygen species and hormonal control of cell death   总被引:14,自引:0,他引:14  
The accumulation of reactive oxygen species (ROS) is involved in regulating cell death. Pathogen- and ozone-induced processes have become important models for the study of cell death regulation by ROS. Hydrogen peroxide and superoxide have emerged as the two key ROS and recent studies have addressed their sources and control of their production. ROS signals interact directly or indirectly with several other signaling pathways, such as nitric oxide, and the stress hormones salicylic acid, jasmonic acid and ethylene. The interaction and balance of these pathways determines whether the cell lives or dies.  相似文献   

8.
In this study, some of the signal transduction events involved in AlCl(3)-induced cell death in tomato (Lycopersicon esculentum Mill.) suspension cells were elucidated. Cells treated with 100 microM AlCl(3) showed typical features of programmed cell death (PCD) such as nuclear and cytoplasmic condensation. Cell death was effectively inhibited by protease and human caspase inhibitors indicating a cell death execution mechanism with similarities to animal apoptosis. Cell death was suppressed by application of antoxidants and by inhibitors of phospholipase C (PLC), phospholipase D (PLD) and ethylene signalling pathways. The results suggest that low concentrations of heavy metal ions stimulate both PLC and PLD signalling pathways leading to the production of reactive oxygen species (ROS) and subsequent cell death executed by caspase-like proteases.  相似文献   

9.
Under specific stress treatments (cold, starvation), in vitro microspores can be induced to deviate from their gametophytic development and switch to embryogenesis, forming haploid embryos and homozygous breeding lines in a short period of time. The inductive stress produces reactive oxygen species (ROS) and nitric oxide (NO), signalling molecules mediating cellular responses, and cell death, modifying the embryogenic microspore response and therefore, the efficiency of the process. This work analysed cell death, caspase 3-like activity, and ROS and NO production (using fluorescence probes and confocal analysis) after inductive stress in barley microspore cultures and embryogenic suspension cultures, as an in vitro system which permitted easy handling for comparison. There was an increase in caspase 3-like activity and cell death after stress treatment in microspore and suspension cultures, while ROS increased in non-induced microspores and suspension cultures. Treatments of the cultures with a caspase 3 inhibitor, DEVD-CHO, significantly reduced the cell death percentages. Stress-treated embryogenic suspension cultures exhibited high NO signals and cell death, while treatment with S-nitrosoglutathione (NO donor) in control suspension cultures resulted in even higher cell death. In contrast, in microspore cultures, NO production was detected after stress, and, in the case of 4-day microspore cultures, in embryogenic microspores accompanying the initiation of cell divisions. Subsequent treatments of stress-treated microspore cultures with ROS and NO scavengers resulted in a decreasing cell death during the early stages, but later they produced a delay in embryo development as well as a decrease in the percentage of embryogenesis in microspores. Results showed that the ROS increase was involved in the stress-induced programmed cell death occurring at early stages in both non-induced microspores and embryogenic suspension cultures; whereas NO played a dual role after stress in the two in vitro systems, one involved in programmed cell death in embryogenic suspension cultures and the other in the initiation of cell division leading to embryogenesis in reprogrammed microspores.  相似文献   

10.
We report the characterization of an Arabidopsis thaliana mutant, ups1, isolated on the basis of reduced expression of phosphoribosylanthranilate transferase, a tryptophan biosynthetic enzyme. ups1 also exhibits defects in a wide range of defence responses. After infection with Pseudomonas syringae or Botrytis cinerea, the expression of genes regulated by both the salicylic acid and jasmonic acid/ethylene pathways is reduced in ups1 compared with wild type. Camalexin accumulation in ups1 is greatly reduced after infection with these two pathogens, as well as after amino acid starvation or oxidative stress. Reactive oxygen species (ROS)-mediated gene expression is also compromised in ups1 indicating that this mutant is defective in signalling pathways activated in response to both biotic and abiotic stress. The fact that all three major defence signalling pathways are disrupted in ups1, together with the oxidative stress phenotype, leads us to suggest that UPS1 is involved in ROS signal transduction.  相似文献   

11.
Lesion-mimic mutants (LMMs) provide a valuable tool to reveal the molecular mechanisms determining programmed cell death (PCD) in plants. Despite intensive research, the mechanisms behind PCD and the formation of lesions in various LMMs still remain to be elucidated. Here, we identified a rice (Oryza sativa) LMM, early lesion leaf 1 (ell1), cloned the causal gene by map-based cloning, and verified this by complementation. ELL1 encodes a cytochrome P450 monooxygenase, and the ELL1 protein was located in the endoplasmic reticulum. The ell1 mutant exhibited decreased chlorophyll contents, serious chloroplast degradation, upregulated expression of chloroplast degradation-related genes, and attenuated photosynthetic protein activity, indicating that ELL1 is involved in chloroplast development. RNA sequencing analysis showed that genes related to oxygen binding were differentially expressed in ell1 and wild-type plants; histochemistry and paraffin sectioning results indicated that hydrogen peroxide (H2O2) and callose accumulated in the ell1 leaves, and the cell structure around the lesions was severely damaged, which indicated that reactive oxygen species (ROS) accumulated and cell death occurred in the mutant. TUNEL staining and comet experiments revealed that severe DNA degradation and abnormal PCD occurred in the ell1 mutants, which implied that excessive ROS accumulation may induce DNA damage and ROS-mediated cell death in the mutant. Additionally, lesion initiation in the ell1 mutant was light dependent and temperature sensitive. Our findings revealed that ELL1 affects chloroplast development or function, and that loss of ELL1 function induces ROS accumulation and lesion formation in rice.  相似文献   

12.
13.
We have isolated a codominant Arabidopsis mutant, radical-induced cell death1 (rcd1), in which ozone (O(3)) and extracellular superoxide (O(2)(*)-), but not hydrogen peroxide, induce cellular O(2)(*)- accumulation and transient spreading lesions. The cellular O(2)(*)- accumulation is ethylene dependent, occurs ahead of the expanding lesions before visible symptoms appear, and is required for lesion propagation. Exogenous ethylene increased O(2)(*)--dependent cell death, whereas impairment of ethylene perception by norbornadiene in rcd1 or ethylene insensitivity in the ethylene-insensitive mutant ein2 and in the rcd1 ein2 double mutant blocked O(2)(*)- accumulation and lesion propagation. Exogenous methyl jasmonate inhibited propagation of cell death in rcd1. Accordingly, the O(3)-exposed jasmonate-insensitive mutant jar1 displayed spreading cell death and a prolonged O(2)(*)- accumulation pattern. These results suggest that ethylene acts as a promoting factor during the propagation phase of developing oxyradical-dependent lesions, whereas jasmonates have a role in lesion containment. Interaction and balance between these pathways may serve to fine-tune propagation and containment processes, resulting in alternate lesion size and formation kinetics.  相似文献   

14.
15.
Out of 168 Arabidopsis accessions screened with isolates of Leptosphaeria maculans, one (An-1) showed clear disease symptoms. In order to identify additional components involved in containment of L. maculans in Arabidopsis, a screen for L. maculans-susceptible (lms) mutants was performed. Eleven lms mutants were isolated, which displayed differential susceptibility responses to L. maculans. lms1 was crossed with Columbia (Col-0) and Ws-0, and mapping data for both populations showed the highest linkage to a region on chromosome 2. Reduced levels of PR-1 and PDF1.2 expression were found in lms1 compared to wild-type plants 48 h after pathogen inoculation. In contrast, the lms1 mutant displayed upregulation of either marker gene upon chemical treatment, possibly as an effect of an altered ethylene (ET) response. To assess the contribution of different defence pathways, genotypes implicated in salicylic acid (SA) signalling plants expressing the bacterial salicylate hydroxylase (nahG) gene, non-expressor of PR1 (npr1)-1 and phytoalexin-deficient (pad4-1), jasmonic acid (JA) signalling (coronatine insensitive (coi)1-16, enhanced disease susceptibility (eds)8-1 and jasmonic acid resistant (jar)1-1) and ET signalling (eds4-1, ethylene insensitive (ein)2, ein3-1 and ethylene resistant (etr)1-1) were screened. All the genotypes screened were as resistant as wild-type plants, demonstrating the dispensability of the pathways in L. maculans resistance. When mutants implicated in cell death responses were assayed, responsive to antagonist 1 (ran1)-1 exhibited a weak susceptible phenotype, whereas accelerated cell death (acd)1-20 showed a rapid lesion development. Camalexin is only partially responsible for L. maculans containment in Arabidopsis, as pad3-1 and enhanced susceptibility to Alternaria (esa)1 clearly showed a susceptible response while wild-type levels of camalexin were present in An-1 and lms1. The data presented point to the existence of multiple defence mechanisms controlling the containment of L. maculans in Arabidopsis.  相似文献   

16.
Nitric oxide (NO) is involved together with reactive oxygen species (ROS) in the activation of various stress responses in plants. We have used ozone (O3) as a tool to elicit ROS-activated stress responses, and to activate cell death in plant leaves. Here, we have investigated the roles and interactions of ROS and NO in the induction and regulation of O3-induced cell death. Treatment with O3 induced a rapid accumulation of NO, which started from guard cells, spread to adjacent epidermal cells and eventually moved to mesophyll cells. During the later time points, NO production coincided with the formation of hypersensitive response (HR)-like lesions. The NO donor sodium nitroprusside (SNP) and O3 individually induced a large set of defence-related genes; however, in a combined treatment SNP attenuated the O3 induction of salicylic acid (SA) biosynthesis and other defence-related genes. Consistent with this, SNP treatment also decreased O3-induced SA accumulation. The O3-sensitive mutant rcd1 was found to be an NO overproducer; in contrast, Atnoa1/rif1 ( Arabidopsis nitric oxide associated 1/resistant to inhibition by FSM1 ), a mutant with decreased production of NO, was also O3 sensitive. This, together with experiments combining O3 and the NO donor SNP suggested that NO can modify signalling, hormone biosynthesis and gene expression in plants during O3 exposure, and that a functional NO production is needed for a proper O3 response. In summary, NO is an important signalling molecule in the response to O3.  相似文献   

17.
Ozone induces rapid activation of SIPK, a mitogen-activated protein kinase (MAPK) in tobacco. Through transgenic manipulation it has previously been shown that overexpression of SIPK leads to enhanced ozone-induced lesion formation with concomitant accumulation of ROS. In spite of this hypersensitive phenotype, the effect of this altered SIPK expression on the levels of various hormones that regulate ozone-induced cell death has remained unexplored. The response of both salicylate and ethylene, the major phytohormones that modulate ozone-induced cell death, have now been analysed in SIPK-OX tobacco plants. Ozone treatment strongly induced ethylene formation in the sensitive SIPK-OX plants at ozone concentrations that failed to elicit stress ethylene release in WT plants. By contrast, SIPK-overexpressing plants displayed no ozone-induced SA accumulation, whereas WT plants accumulated SA upon ozone exposure. Epistatic analysis of SIPK-OX function suggests that the ozone-induced cell death observed in SIPK-OX plants is either independent, or upstream, of SA accumulation.  相似文献   

18.
19.
Autophagy is a major intracellular process for the degradation of cytosolic macromolecules and organelles in the lysosomes or vacuoles for the purposes of regulating cellular homeostasis and protein and organelle quality control. In complex metazoan organisms, autophagy is highly engaged during the immune responses through interfaces either directly with intracellular pathogens or indirectly with immune signalling molecules. Studies over the last decade or so have also revealed a number of important ways in which autophagy shapes plant innate immune responses. First, autophagy promotes defence‐associated hypersensitive cell death induced by avirulent or related pathogens, but restricts unnecessary or disease‐associated spread of cell death. This elaborate regulation of plant host cell death by autophagy is critical during plant immune responses to the types of plant pathogens that induce cell death, which include avirulent biotrophic pathogens and necrotrophic pathogens. Second, autophagy modulates defence responses regulated by salicylic acid and jasmonic acid, thereby influencing plant basal resistance to both biotrophic and necrotrophic pathogens. Third, there is an emerging role of autophagy in virus‐induced RNA silencing, either as an antiviral collaborator for targeted degradation of viral RNA silencing suppressors or an accomplice of viral RNA silencing suppressors for targeted degradation of key components of plant cellular RNA silencing machinery. In this review, we summarize this important progress and discuss the potential significance of the perplexing role of autophagy in plant innate immunity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号