首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decreased serum T3 concentrations in elderly subjects and their possible relationship with the development of dementia have been indicated. To see the effects of a passive increase in the serum T3 concentration, low dose T3 administration was undertaken. Forty-four subjects from 65 to 93 years of age (average 81.0 +/- 7.8) were divided into 2 groups. The grade of dementia was determined by Hasegawa's dementia rating scale (DR score). In 22 subjects, 25 micrograms per day of T3 was administered for 4 W, while the control group was given a placebo. The DR score was measured before and immediately after the study. Changes in behaviour were monitored in a double-blind fashion. The administration of T3 induced a 0.65 nmol/l increase in serum T3 in 2 W and 0.36 nmol/l in 4 W. These T3 increases were not associated with significant changes in the DR score but 7 of 22 subjects showed apparent improvement in behaviour. TSH was suppressed to less than 1 mU/l in 2 W and then slightly increased by the 4th week, but T4, rT3 and fT4 all showed significant and progressive decreases. The DR score after T3 correlated significantly with the rT3/T4 ratio (before T3: -0.55, changes: +0.50) and also with changes in rT3 (r = 0.49). In conclusion, T3 administration to the elderly subjects was associated with behavioural improvement in some individuals, but the intellectual ability as assessed by the DR score in those with low T3 or elevated rT3 were hardly improved by passive T3 elevation.  相似文献   

2.
Twenty-four growing male buffalo calves (one year of age; 88.54 +/- 3.81 kg average body weight) were divided into three comparable groups (I, II and III) on the basis of their body weight (BW) in a completely randomised design to study the effect of long term feeding of ammoniated wheat straw (AWS) and hydrochloric acid treated ammoniated wheat straw (HCl-AWS) on blood biochemical changes. The animals were offered a concentrate mixture (CM) along with wheat straw (WS), ammoniated wheat straw (AWS) (4% urea at a 50% moisture level) and hydrochloric acid treated ammoniated wheat straw (HCI-AWS) (4% urea at a 50% moisture level and HCI added to trap 30% of NH3 evolved) in groups I, II and III, respectively for an average daily gain (ADG) of 500 g. All the diets were made iso-nitrogenous by preparing three types of concentrate mixtures of different CP levels. The blood was collected from the jugular vein randomly from three animals of each group initially after 8 months post feeding and subsequently after two months interval up to 14 months of experimental feeding. Due to urea ammoniation, the CP content of WS increased from 3.66 to 8.51 and was further increased to 11.35 due to the addition of HCl during urea-ammoniation of wheat straw. The cumulative period mean plasma glucose values (mg %), in group II (53.13) were significantly (P < 0.001) higher than those in groups I (48.44) and III (50.60). The cumulative period mean values of serum albumin and globulin (g %) were not significantly different and were comparable among the groups I (3.33 and 3.06), II (3.53 and 2.97) and III (3.49 and 2.94). The cumulative period mean values of serum albumin: globulin ratio and total protein values were not significantly different among the different groups. Serum urea and creatinine values were significantly (P < 0.001) higher in group III (58.66 and 2.24) as compared to groups I and II. The cumulative period mean values of serum alkaline phosphatase (ALP) (KA units) did not differ significantly, but serum glutamate pyruvate transaminase (SGPT) and glutamate oxaloacetate transaminase (SGOT) values (units x mL(-1) were significantly (P < 0.001) higher in groups II and III than in group I. The cumulative period mean values of T3 (ng x mL(-1)) did not differ significantly among the groups, but T4 values were significantly (P < 0.001) higher in group III (22.74) than in groups 1 (21.41) and II (20.89), respectively. Since the mean values of all the blood parameters were within the normal range, it may be concluded that feeding of ammoniated wheat straw treated with and without HCl to growing male buffalo calves for fourteen months has no adverse effect on the blood biochemical parameters.  相似文献   

3.
This study describes an extrathyroidal mechanism for regulating serum concentration of triiodothyronine (T3) in thyroxine (T4) deficiency or excess. Serum levels of T3, T4, reverse T3 (rT3), and thyrotropin were determined in two series of athyreotic patients (n = 22 and n = 16, respectively) during various doses of T4 substitution therapy. The patients were followed from the severe hypothyroid state up to the modest hyperthyroid state, induced by stepwise increasing doses of administered T4. The periods of constant T4 replacement doses were 1 week (group I) and 5 weeks (group II), respectively. As serum T4 levels rose from less than 0.5 micrograms/dl to 18.9 micrograms/dl, serum T3 levels showed a curvilinear increase, which was pronounced in the very low T4 range while it was flattened at the higher end of the spectrum of T4 levels. As to rT3, an analogous course did not occur. The different character of the relationships between T4 and its conversion products was further elucidated by calculating the T3/T4 and rT3/T4 ratios. T3/T4 ratio declined fourfold from 43.3.10(-3) in the severe hypothyroid to 11.7.10(-3) in the hyperthyroid range. The results support the hypothesis of a peripheral autoregulation of T4 to T3 conversion which appears to be operative at both ends of the T4 spectrum and which serves to maintain or defend serum T3 levels.  相似文献   

4.
Thyroid function and serum levels of triiodothyronine (T3) and thyroxine (T4) were investigated in 79 euthyroid geriatric patients. Of the 59 inpatients and 20 outpatients 35 (59%) and 2, respectively, had low T3 levels. In contrast, 7 (12%) and 6 (30%), respectively, had raised T4 levels. Two further patients were excluded from the study because of raised levels of thyroid-stimulating hormone. Thyroxine-binding globulin was greatly increased in both groups of patients, but low serum albumin levels were present in 31 (39%). Despite these changes free T3 and T4 indices closely followed total T3 and T4 levels. The difference between the two groups of patients did not correlate with body weight, diagnostic categories, age, drug treatment, or duration of stay in hospital.  相似文献   

5.
Changes in the pituitary-thyroid axis in patients with Hashimoto's thyroiditis following withdrawal of thyroid suppressive therapy were analyzed. The group of patients with thyroid adenoma served as control (group I). Patients with Hashimoto's thyroiditis were divided into 2 groups on the basis of serum TSH levels 8 weeks after discontinuing the exogenous thyroid hormone (group II, less than 10 microunits/ml; group III, more than 10 microunits/ml). During treatment with L-T4(200 micrograms/day) or L-T3(50 micrograms/day), there was no significant difference in serum T4-I and T3 levels among the three groups. Following L-T4 withdrawal, basal serum TSH levels were higher at 2 to 8 weeks in groups II and III than in group I. Serum TSH response to TRH was greater at 4 to 8 weeks in groups II and III than in group I. Following L-T3 withdrawal, basal serum TSH levels were higher at 1 and 2 weeks in group II than in group I, while those of group III were consistently higher during the study. Higher TSH responses to TRH were observed at 1 to 8 weeks in groups II and III. Neither basal nor TRH-induced prolactin (PRL) secretion differed significantly among the three groups. We have demonstrated that pituitary TSH secretion in patients with Hashimoto's thyroiditis is affected more by withdrawal of thyroid hormone therapy than in patients with thyroid adenoma. In addition, the present findings suggest a difference between the sensitivity of thyrotrophs and lactotrophs in Hashimoto's thyroiditis after prolonged thyroid therapy is discontinued.  相似文献   

6.
Although patients with primary hyperparathyroidism (1 degree HPT) were euthyroid, we measured serum thyroid hormone levels in 16 patients with 1 degree HPT together with 17 patients with hypercalcemia due to malignant diseases (HCM). In patients with 1 degree HPT, serum levels of T3, T4 and T3U were within normal range, but serum rT3 (reverse T3) levels (205 +/- 37 pg/ml, mean +/- SD) were significantly decreased as compared with those in normal controls (276 +/- 44 pg/ml, P less than 0.01). A significant inverse correlation was observed between the serum levels of rT3 and parathyroid hormone (PTH) (r = 0.54, P less than 0.05). After parathyroidectomy, serum rT3 levels were significantly elevated (240 +/- 56 pg/ml) compared to preoperative levels (P less than 0.01). Low levels of serum rT3 seemed to be attributed to the high levels of serum PTH. On the other hand, serum levels of T3 and T4 were low and serum rT3 levels were high in patients with HCM. Low serum rT3 allows for the differentiation of patients with 1 degree HPT from those with HCM.  相似文献   

7.
BACKGROUND/OBJECTIVES: Thyroid function measurements in 3 mentally retarded patients treated with antiepileptic drugs (phenytoin or carbamazepine) showed normal thyroid-stimulating hormone (TSH) responses in spite of markedly low levels of total thyroxine (T(4)), triiodothyronine (T(3)), and free thyroxine (FT(4)) concentrations; free triiodothyronine (FT(3)), as well as mean thyroxine-binding globulin (TBG) concentrations were normal. The objective of the present investigations was to determine if antiepileptic medication in these patients contributed to the disparate TSH and thyroid hormone (TH) levels. METHODS: Thyroid tests and other laboratory parameters were measured by conventional techniques. RESULTS: Circulating TH changes noted in retarded patients were similar to those observed in control subjects receiving carbamazepine alone. Reverse T(3) (rT(3)) levels in all patients were either undetectable or below the normal range. CONCLUSIONS: As type I 5'-deiodinase has a higher affinity for rT(3) than T(4), an increased activity of this enzyme would enhance rT(3) deiodination and reduce serum rT(3) concentration whereas enhanced T(4) deiodination would aid in normalizing intracellular FT(3) concentration. The finding of normal serum FT(3) concentration was consistent with normal TSH response and clinical euthyroidism in both retarded and control subjects. While phenytoin-induced increase in type I 5'-deiodinase has been previously noted, the present studies demonstrate a similar effect of carbamazepine on 5'-deiodinase.  相似文献   

8.
In order to clarify the role of free fatty acid (FFA) in thyroid hormone abnormalities in patients with nonthyroidal illness, thyroid function, FFA, inhibitor of extrathyroidal conversion of T4 to T3 (IEC) and thyroid hormone binding inhibitor (THBI) were studied in 99 patients with various nonthyroidal illnesses including diabetes mellitus (DM) (n = 35), liver cirrhosis (LC) (n = 33), chronic obstructive pulmonary disease (COPD) (n = 17) and chronic heart failure (CHF) (n = 14). Patients were divided into three groups based on the level of serum T3: Group I (T3 < 50 ng/dl), Group II (50 < or = T3 < 80) and Group III (80 < or = T3). Serum T4, FT3 and the T3/T4 ratio decreased significantly in the order Group III, Group II and Group I (Group III > II > I). The plasma FFA level was 0.91 +/- 0.12 mmol/l in Group I (P < 0.05, vs. Group III), 0.65 +/- 0.06 in Group II and 0.54 +/- 0.04 in Group III, respectively. The incidence of positive IEC was 80.0% in Group I (P < 0.05, vs. Group III), 53.7% in Group II (P < 0.05, vs. Group III) and 34.2% in Group III. However, IEC was not correlated with the serum T3 concentration. The incidence of positive THBI was 80% in Group I (P < 0.05, vs. Group III), 68.3% in Group II and 47.4% in Group III, but THBI was not correlated with the serum T4 level. Positive correlations were observed among FFA, IEC and THBI (P < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Serum T4 and rT3 were high at about 4-12 h after birth, then they decreased to a nadir on day 3 (rT3) and day 7 (T4). Serum T3 concentration fell immediately after birth but then increased to a relatively stable level during the next 2-6 weeks, then fell after weaning. Reciprocal concentration profiles of T4, T3 and rT3 in the thyroid were found. The thyroidal iodothyronine content increased significantly after weaning. In the liver, 5'-monodeiodinating activity, low after birth, rose until day 3 and then decreased concomitantly with T3 in serum. The 5-monodeiodinating activity, high at birth, fell to a nadir at about 3 weeks. No changes in 5- and 5'-deiodinase activity after 3 weeks were observed. Opposite to the variations in absolute content, the iodothyronine relative proportion in thyroid tissue was practically unchanged until weaning time (6 weeks), when they rose. Serum T3/T4 and rT3/T4 ratios increased with age until weaning. The post-weaned pigs had T3/T4 and rT3/T4 ratios about two times smaller than 6-weeks-old pigs. Serum rT3/T3, high after birth, decreased with age. Summarizing, the results indicate that neither changes in the thyroid iodothyronine content nor in the liver T4-monodeiodinating activity can solely account for variations in serum TH during the early neonatal period in the pig. It is suggested that the rapid variations in serum TH levels can reflect changes in the thyroidal secretory activity in preferential T3 secretion and/or blood disappearance rates.  相似文献   

10.
Euthyroid sick syndrome is characterized by low serum T3 and raised reverse T3 (rT3). Most of the states with this syndrome are also documented to manifest hyperglucagonemia. Furthermore, several recent studies have suggested that glucagon may play a role in T4 monodeiodination in some of these states such as starvation and uncontrolled diabetes mellitus. Therefore, hyperglucagonemia was induced by intravenous glucagon administration in euthyroid healthy volunteers and thyroid hormone levels were determined at frequent intervals up to six hours. Plasma glucose and insulin rose promptly on glucagon administration, thus establishing the physiologic effect of glucagon. Serum T4, free T4, T3 resin uptake, and TSH concentrations remained unaltered throughout the study period. Serum T3 declined to a significantly low level (P less than 0.05) between 60-90 minutes. Serum rT3 rose significantly (P less than 0.05) by four hours and the rise was progressive till the end of the study period. Therefore, these results suggest that hyperglucagonemia may be one of the factors responsible for lowering of T3 and a rise in rT3 in euthyroid sick syndrome.  相似文献   

11.
The present study was undertaken in order to assess the influence of aging on the endogenous opioid control of gonadotropin and adrenocorticotropin/cortisol secretion in man. For this purpose, the capability of the opioid antagonist naloxone to increase circulating levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and cortisol was tested in male subjects of different ages. Thirty normal men were randomly chosen and divided into 3 groups by age: group I = 22-40 years (n = 10); group II = 41-59 years (n = 10); group III = 62-80 years (n = 10). Since the men of group III showed higher basal serum gonadotropin concentrations than the subjects of group I and group II, we selected from a large population a fourth group of elderly men with normal basal LH and FSH levels: group IV = 61-82 years (n = 7). All subjects were tested for 120 min during the intravenous administration of naloxone (4 mg given in an intravenous bolus at time 0, plus 10 mg infused for 2 h). Control tests with normal saline instead of naloxone were performed in all groups. All subjects had similar blood testosterone and cortisol levels, whereas LH and FSH concentrations were significantly higher in group III than in groups I, II and IV. Naloxone increased plasma cortisol concentrations by 50% in all groups. The cortisol secretory response followed a similar pattern regardless of age.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The pituitary-thyroid axis of 12 patients, exposed to transsphenoidal pituitary microsurgery because of nonfunctioning adenomas (6), prolactinomas (3) and craniopharyngioma (1), or to major pituitary injury (1 apoplexy, 1 accidental injury), was controlled more than 6 months following the incidents. The patients did not receive thyroid replacement therapy and were evaluated by measurement of the serum concentration of thyroxine (T4), 3,5,3'-triiodothyronine (T3), 3,3',5'-triiodothyronine (rT3), T3-resin uptake test and thyrotropin (TSH, IRMA method) before and after 200 micrograms thyrotropin releasing hormone (TRH) iv. The examination also included measurement of prolactin (PRL) and cortisol (C) in serum. Apart from 1 patient with pituitary apoplexy all had normal basal TSH levels and 9 showed a significant TSH response to TRH. Compared to 40 normal control subjects the 12 patients had significantly decreased levels of T4, T3 and rT3 (expressed in free indices), while the TSH levels showed no change. Five of the patients, studied before and following surgery, had all decreased and subnormal FT4I (free T4 index) after surgery, but unchanged FT3I and TSH. The levels of FT4I were positively correlated to both those of FT3I and FrT3I, but not to TSH. The TSH and thyroid hormone values showed no relationship to the levels of PRL or C of the patients exposed to surgery. It is concluded that the risk of hypothyroidism in patients exposed to pituitary microsurgery is not appearing from the TSH response to TRH, but from the thyroid hormone levels.  相似文献   

13.
The maturation of the 5'- and 5-monodeiodinase system in liver, kidney and brown adipose tissue of rabbits, during the foetal period (from 21 days of gestation to birth) and the neonatal period (from birth to 3 weeks of life) was studied. A sudden increase of 5'- and 5-monodeiodinase activity in liver and kidney 3 days before birth was observed, falling to a nadir at day 3 after birth. Foetal and neonatal serum T4, T3 and rT3 concentration were very low and rose progressively with age, reaching adult values at about day 21. In the foetal brown adipose tissue high 5'-monodeiodinase and low 5-monodeiodinase activity was found. The 5'-monodeiodinase decreased during the first days of life whereas the 5-monodeiodinase activity remained at a low stable level until day 3 when the activities of both enzymes increased. The increase of conversion rate of T4 to T3 and rT3 in liver and kidney well correlate with the triiodothyronines concentration in serum from day 3 after birth.  相似文献   

14.
In order to clarify an alteration in thyroid functions in patients with chronic liver diseases, serum total and free thyroxine (T4, FT4), total and free triiodothyronine (T3, FT3), total reverse T3 (rT3), thyrotropin (TSH), thyroxine-binding globulin (TBG) concentrations, and T3 uptake (T3U) were measured by radioimmunoassays in 53 patients with chronic hepatitis (CH), 24 patients with compensated liver cirrhosis (LC), 17 patients with hepatocellular carcinoma associated with LC (HCC), and 40 normal subjects. Serum T4, T3, and rT3 in CH, and serum rT3 in HCC were significantly increased, while serum T4 in LC and serum T3 in HCC were significantly decreased. Serum TBG was increased and T3U was decreased in these patients. Serum TBG in CH and LC correlated positively with transaminase, and inversely with prothrombin time. FT4 and T4/TBG ratios in CH and LC and FT3 and T3/TBG ratios in LC and HCC were significantly decreased. Although T4/TBG ratios in HCC and T3/TBG ratios in CH were significantly decreased, FT4 in HCC and FT3 in CH were not decreased. The ratio of rT3/T3 in CH and LC correlated with various liver function tests. FT3 in LC and HCC correlated inversely with BSP (45') and positively with KICG. No differences in serum TSH values were found between chronic liver diseases and normal subjects. From these results, it was concluded that the thyroid functions in patients with chronic liver diseases were affected by the decrease in serum thyroxine, elevated serum TBG, the degree of which is in proportion to that of the liver cell damage, and impaired peripheral conversion of T4 to T3, the degree of which is in proportion to that of the hepatic dysfunction.  相似文献   

15.
The effect of thyroxine (T4) on T4 conversion to triiodothyronine (T3) and reverse T3 (rT3) was studied in BB/W rats. A colony of 38 BB/W rats was obtained and half were treated with thyroxine (T4), 1 mg per liter of drinking water. At 106 days of age the following groups were identified: nondiabetic, no T4 treatment, 8 rats; nondiabetic, T4 treated, 8 rats; diabetic, no T4 treatment, 10 rats; diabetic, T4 treated, 7 rats. All animals with diabetes were treated with insulin. T4 conversion to T3 and rT3 was assessed in liver homogenates in 0.1 M Tris-HCl buffer, pH 7.4, with or without 5 mM dithiothreitol (DDT). Serum T4 and rT3 were significantly elevated in both T4-treated groups (P less than 0.001), while serum T3 was not affected in either. Basal T4 deiodination to T3 by the liver homogenate did not change on treatment with T4; the addition of DTT increased T3 production in the homogenate from T4 treated nondiabetic animals (P less than 0.05). In both nondiabetic and insulin-treated diabetic rats there was no effect of T4 on the rate of rT3 production. Since, in the rat, 30-40% of circulating T3 is a direct contribution of thyroid gland secretion, and that would be absent in our T4-suppressed animals, the normal serum T3 may reflect increased absolute peripheral T3 production from the greater concentration of circulating T4.  相似文献   

16.
Current evidence demonstrates that pharmacologic agents, alone or in combination produce short-term weight-loss and may remain effective for extended periods of time in obese patients. We have evaluated the weight loss of a selective inhibitor of serotonin uptake, fluoxetine, alone as compared with combined therapeutic trial with another serotoninergic drug, dexfenfluramine. Thirty-three patients were randomly assigned in a double-blind randomized clinical trial divided to two groups: Group I [Fluoxetine 40 mg and placebo (n=13)] and Group II [Fluoxetine 40 mg plus dexfenfluramine 15 mg at night (n=20)]. Both groups had a significant weight loss at the end of 8 months (Group I, mean ± SEM 6.2 ± 2.8 kg and Group II 13.4 ± 6.3 kg, p < 0.05). Group II patients had a significantly greater weight loss as compared with Group I both in terms of mean weight loss in kg and BMI in kg/m2. However significance between Group I and II related to BMI mean values and weight mean values were only achieved after, respectively, 4 and 6 months of treatment. At laboratory level there was an elevation of HDL-cholesterol and lowering of serum lipids values (cholesterol and triglycerides) in both groups. Side effects were relatively minor and no altered clinical vital signs or abnormal laboratory values were observed. We concluded that the combination of fluoxetine (daytime) and dexfenfluramine (at night) may be more effective than fluoxetine alone in weight reduction although the small size of this study does not permit broad generalization.  相似文献   

17.
Concentrations of thyroxine (T4), 3,5,3'-triiodothyronine (T3) and 3,3',5'-triiodothyronine (rT3) in the placenta were measured in 7 patients with abortion, in 9 patients with premature delivery, in 16 normal pregnancies and in 4 pregnant women with Graves' disease. The placentas, obtained at delivery, were homogenized and centrifuged at 800 X g. T4, T3 and rT3 concentrations in the supernatants were extracted with 3 vol. of 99% ethanol and measured by RIAs. In normal pregnancy, placental T4, T3 and rT3 concentrations were 18.8 +/- 5.9 (mean +/- SD), 0.026 +/- 0.012, and 1.70 +/- 0.49 ng/g tissue, respectively. Ratios of rT3/T3 and rT3/T4 in the placenta were about 12 and 2.3 times as high as those in the fetal sera, respectively. There was a significant positive correlation between the placental T4 and the maternal or cord serum T4 concentrations. However, no correlation was found between the placental T3 or rT3 concentrations and the maternal or cord T3 or rT3 concentrations. In 4 patients with Graves' disease, the placental T4 concentration was elevated. These results indicate that the placental T4 concentration is influenced by both the maternal and fetal serum T4, and elevated ratios of rT3/T3 and rT3/T4 in the placenta might be due to the active placental 5-monodeiodination.  相似文献   

18.
The effects of adrenaline (A) on liver T3 and rT3 neogenesis from T4 were studied in Wistar rats. The animals were implanted subcutaneously either with A or placebo (P) especially coated tablets which linearly released the hormone. The serum A values 6 hrs after implantation of 7.5, 15.0 and 45.0 mg tablets were 6.5 +/- 1.31, 6.8 +/- 1.8 and 16.4 +/- 1.9 ng/ml, respectively vs 4.4 +/- 2.5 ng/ml seen in P pretreated group. The output rates of A were 0.11 (7.5 mg), 0.18 (15 mg) and 0.52 microgram/ml (45 mg). The pretreatment with A led to hyperglycemia and the "low T3 syndrome". Neogenesis of T3 from T4 in medium containing liver microsomes of P pretreated rats was 5.49 +/- 0.25 pmol of T3/mg protein/min and decreased in A pretreated rats to 3.82 +/- 0.17, 3.12 +/- 0.27 and 3.06 +/- 0.11 pmol of T3/mg of protein/min. Neogenesis of rT3 from T4 in microsomes from P group was 1.52 +/- 0.09 pmol rT3/mg protein/min and increased after A to 2.71 +/- 0.11, 2.60 +/- 0.21 and 2.21 +/- 0.34 pmol of rT3/mg protein/min thus showing no dose dependency. Enrichment of microsomes medium with cytosol either from P or A pretreated rats had no effect on T3 generation thus excluding effect of A on cytosolic cofactor. Although cytosol further increased rT3 neogenesis this was seen regardless of whether cytosol was obtained from A or P implanted rats. It is concluded that A decreases the activity of T4-5'-deiodinase in liver, and possibly increases the activity of T4-5-deiodinase.  相似文献   

19.
To clarify whether serum free fatty acid (FFA) is an inhibitor of extrathyroidal conversion (IEC) of thyroxine (T4) to thyronine (T3), we measured the concentration of FFA, IEC activity and thyroid hormones in normal subjects, acute ketotic children and children with low T3 syndrome due to nonthyroidal illness (NTI). Iodothyronine (I) 5'-deiodinase activity was assayed with reverse triiodothyronine (rT3) as substrate and liberated 125I-was measured. The IEC was determined by the inhibition of I 5'-deiodination by ether extract of sera or standard oleate solution. IEC values were represented as mM oleate. The serum concentration of FFA was 0.470 +/- 0.117 (SD) mM in 11 normal subjects, and it was significantly higher (1.242 +/- 0.248 mM; P < 0.01) in 10 acute ketotic children and in 7 samples from 6 NTI children (0.904 +/- 0.530 mM; P < 0.05). In contrast, there was no difference in IEC among three groups (normal subject, 0.451 +/- 0.069 mM; acute ketosis, 0.437 +/- 0.040 mM; NTI, 0.465 +/- 0.224 mM). No correlations were found between IEC activity and the serum FFA concentration or thyroid hormones in 28 samples from three groups. The sequential changes in serum thyroid hormones, FFA and IEC in 3 of 6 NTI children revealed no consistent relationship. Furthermore, one NTI child had significantly high IEC (> 1.000 mM) but its serum FFA (1.182 mM) was below the mean value for the acute ketotic group. These results indicate that 1) many NTI patients may bear no relation to IEC and 2) IEC may not be caused by serum FFA only but includes several factors.  相似文献   

20.
A recent report documented the existence of three putative types of variant albumin in dysalbuminemic hyperthyroxinemia (DH) and suggested that measurement of the total concentration of three iodothyronines (T4, T3 and rT3) in serum of affected subjects could aid in their differentiation. In the present report, we describe three affected subjects from a single family which DH exhibited, in addition to increased serum total T4 levels, variable changes in the concentrations of total T3 and rT3. The concentrations of the following iodothyronines were above the normal limit: T4, T3 and rT3 in the propositus, T4 and T3 but not rT3 in her sister, and T4 but not T3 and rT3 in her mother. These differences cannot be caused by structurally different types of variant albumins, because the three subjects are members of the same family. They rather correlated with the relative abundance of the variant albumin in serum of the affected family members. Although previously reported subjects with DH always had serum T4 levels above the normal limit due to the predominantly higher affinity of the variant albumin for T4, significant increases in the concentration of serum T3 and rT3, reaching at times values above the upper normal range, have also been observed. Since a number of factors, including the relative abundance of the variant albumin, influence the concentration of iodothyronines in serum, their measurement alone cannot be used to determine the inherited type of DH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号