首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 938 毫秒
1.
The Hippo pathway has been associated with regulation of early follicle growth. Studies of murine ovaries suggest that changes in the actin cytoskeleton, caused by fragmentation, result in inhibition of the Hippo pathway, and in turn, may activate follicle growth. In humans, the connections between fragmentation, the actin cytoskeleton, and follicle activation are yet to be confirmed. In this study, we investigated the impact in vitro fragmentation of a human ovarian cortex on (a) actin polymerization, (b) components of the Hippo pathway, and (c) follicle growth in vivo. The results showed that the ratio between globular and filamentous actin remained unchanged at all timepoints (0, 10, 30, 60, 120, and 240 min) following tissue fragmentation. Neither was the Hippo pathway effector protein YES‐associated protein upregulated nor was gene expression of the downstream growth factors CCN2, CCN3, or CCN5 increased at any timepoint in the fragmented cortex. Furthermore, the number of growing follicles was similar in fragmented and intact cortex pieces after 6 weeks' xenotransplantation. However, the total number of surviving follicles was considerably lower in the fragmented cortex compared with intact tissue, suggesting detrimental effects of fragmentation on tissue grafting. These results indicate that fragmentation is likely to be ineffective to activate follicle growth in the human ovarian cortex.  相似文献   

2.
An option for fertility preservation for women facing a cancer diagnosis involves the cryopreservation of ovarian tissue for later re‐transplantation or in vitro culture, with in vitro culture preferred to avoid reintroduction of the cancer. Small, immature follicles survive the freeze‐thaw process, and can be matured through in follicle maturation (IFM) that involves an initial growth of the follicle and subsequent maturation of the oocyte. The ovarian tissue can be cryopreserved in two forms: (i) cortical strips consisting of follicles and surrounding stroma (Cryo‐Ov) or (ii) individually isolated follicles (Cryo‐In). The aim of this study was to assess the follicle growth and oocyte maturation for follicles that were cryopreserved either as strips or individually using a slow‐freezing cryopreservation method. The two follicle groups, together with non‐cryopreserved control follicles, were grown in an alginate‐based three‐dimensional culture system for 12 days. The overall survival, size increase and antrum formation rates were comparable among the three groups. At day 12 of culture, Androstenedione levels were decreased in the Cryo‐Ov group relative to the other two, and the ratio of progesterone to estradiol was increased in the two cryopreserved groups relative to the control. Both Gja1 (known as connexin 43) and Gja4 (known as connexin 37) mRNA expression were decreased at day 6 in the cryopreserved groups relative to controls, and by day 12, Gja1 was similar for all three groups. Moreover, Cryo‐In resulted in lower GVBD rate indicating some impaired oocyte development. Overall, the present study demonstrated that mouse preantral follicles, either within ovarian tissues or individually isolated, could be successfully cryopreserved by the slow‐freezing method, as evidenced by post‐thaw follicle development and steroidgenesis, oocyte maturation and molecular markers for oocyte and/or granulosa cells connection. Biotechnol. Bioeng. 2009;103: 378–386. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
Cumulus cells (CCs) have an important role during oocyte growth, competence acquisition, maturation, ovulation and fertilization. In an attempt to isolate potential biomarkers for bovine in vitro fertilization, we identified genes differentially expressed in bovine CCs from oocytes with different competence statuses, through microarray analysis. The model of follicle size, in which competent cumulus–oocyte complexes (COCs) were recovered from bigger follicles (≥8.0 mm in diameter) and less competent ones from smaller follicles (1–3 mm), was used. We identified 4178 genes that were differentially expressed (< 0.05) in the two categories of CCs. The list was further enriched, through the use of a 2.5‐fold change in gene expression as a cutoff value, to include 143 up‐regulated and 80 down‐regulated genes in CCs of competent COCs compared to incompetent COCs. These genes were screened according to their cellular roles, most of which were related to cell cycle, DNA repair, energy metabolism, metabolism of amino acids, cell signaling, meiosis, ovulation and inflammation. Three candidate genes up‐regulated (FGF11, IGFBP4, SPRY1) and three down‐regulated (ARHGAP22, COL18A1 and GPC4) in CCs from COCs of big follicles (≥8.1 mm) were selected for qPCR analysis. The selected genes showed the same expression patterns by qPCR and microarray analysis. These genes may be potential genetic markers that predict oocyte competence in in vitro fertilization routines.  相似文献   

4.
The intermediate filament keratin, K15, is present in variable abundance in stratified epithelia. In this study we have isolated and characterized the sheepK15gene, focusing on its expression in the follicles of sheep and mice. We show thatK15is expressed throughout the hair cycle in the basal layer of the outer root sheath that envelops the follicle. Strikingly, however, in large medullated wool follicles, a small group of basal outer root sheath cells located in the region thought to contain hair follicle stem cells areK15-negative. In the follicle bulbK15is expressed in cells situated next to the dermal papilla but not in the inner bulb cells. Elsewhere,K15is expressed at a low, variable level in the basal layer of the epidermis and sebaceous gland, often in a punctate pattern. In the esophagus of the sheepK15expression is restricted to the basal layer, in contrast to human esophagus where it is expressed throughout the epithelium. Transgenic mouse lines established with a 15-kb sheepK15gene construct exhibited faithful expression and showed no phenotypic consequences ofK15overexpression. An investigation of transgene expression showed thatK15is continuously expressed in outer root sheath cells during the hair cycle. Given its expression in the mitotically active basal cell layers of diverse epithelia and the follicle,K15expression appears to signal an early stage in the pathway of keratinocyte differentiation that precedes the decision of a cell to become epidermal or hair-like.  相似文献   

5.
Obtaining and fertilizing mature oocytes from immature follicles that were grown outside the body has conceptually attracted scientists for centuries, with initial attempts first documented in the 19th century. Significant progress has been made since then, due in part to a better understanding of folliculogenesis and improved techniques of in vitro follicle growth. Indeed, in vitro growth is now considered a reasonable approach to preserve or restore fertility when immature follicles and their oocytes need to be grown and matured outside the body. Certain patients would benefit from in vitro follicle growth, particularly those who carry a risk of cancer re‐seeding after grafting of frozen‐thawed ovarian tissue or who are at the risk of premature ovarian failure due to several intrinsic ovarian defects and genetic mutations that lead to accelerated follicle atresia and early exhaustion of the ovarian reserve. This review provides an update on the current status of in vitro growth of preantral human follicles, from initial efforts to the most recent achievements.  相似文献   

6.
Most follicles in the mammalian ovary undergo atresia. Granulosa cell apoptosis is a hallmark of follicle atresia. Our previous study using a microRNA (miRNA) microarray showed that the let-7 microRNA family was differentially expressed during follicular atresia. However, whether the let-7 miRNA family members are related to porcine (Sus scrofa) ovary follicular apoptosis is unclear. In the current study, real-time quantitative polymerase chain reaction showed that the expression levels of let-7 family members in follicles and granulosa cells were similar to our microarray data, in which miRNAs let-7a, let-7b, let-7c, and let-7i were significantly decreased in early atretic and progressively atretic porcine ovary follicles compared with healthy follicles, while let-7g was highly expressed during follicle atresia. Furthermore, flow cytometric analysis and Hoechst33342 staining demonstrated that let-7g increased the apoptotic rate of cultured granulosa cells. In addition, let-7 target genes were predicted and annotated by TargetScan, PicTar, gene ontology and Kyoto encyclopedia of genes and genomes pathways. Our data provide new insight into the association between the let-7 miRNA family in granulosa cell programmed death.  相似文献   

7.
An increasing number of studies show that platelet‐rich plasma (PRP) is effective for androgenic alopecia (AGA). However, the underlying cellular and molecular mechanisms along with its effect on hair follicle stem cells are poorly understood. In this study, we designed to induce platelets in PRP to release factors by calcium chloride (PC) or by sonication where platelet lysates (PS) or the supernatants of platelet lysate (PSS) were used to evaluate their effect on the hair follicle activation and regeneration. We found that PSS and PS exhibited a superior effect in activating telogen hair follicles than PC. In addition, PSS injection into the skin activated quiescent hair follicles and induced K15+ hair follicle stem cell proliferation in K14‐H2B‐GFP mice. Moreover, PSS promoted skin‐derived precursor (SKP) survival in vitro and enhanced hair follicle formation in vivo. In consistence, protein array analysis of different PRP preparations revealed that PSS contained higher levels of 16 growth factors (out of 41 factors analysed) than PC, many of them have been known to promote hair follicle regeneration. Thus, our data indicate that sonicated PRP promotes hair follicle stem cell activation and de novo hair follicle regeneration.  相似文献   

8.
9.
The cellular form of the prion protein (PrP(C)) has been detected in many tissues including reproductive tissues. While its function is unclear, it has been suggested to act as a receptor for an unidentified ligand and/or as an antioxidant agent. We tested the hypothesis that PrP(C) is differentially expressed in dominant, growing, compared to subordinate bovine ovarian follicles. Using both microarray analysis and quantitative real-time PCR, the level of prion protein mRNA (Prnp) in both theca and granulosa cells was measured. We found that levels of Prnp were significantly higher in the theca cells of dominant compared to subordinate follicles but similar among granulosa cells from different follicles. This difference was apparent immediately after selection of the dominant follicle and continued to the dominance stage of the follicle wave. Levels of the protein for PrP(C) were also higher (P < 0.05) in theca cells of dominant compared to subordinate follicles. In conclusion, elevated PrP(C) was associated with ovarian follicle growth and development and we suggest that it may play a role in the success of follicle development.  相似文献   

10.
Rapamycin has been proven to effectively inhibit the activation of primordial follicles while cisplatin‐induced the loss of primordial follicles due to the over‐activation of the primordial follicle stockpile. Whether rapamycin could inhibit the loss of primordial follicles induced by cisplatin is still unknown. The ovaries of neonatal Sprague Dawley rats were cultured in vitro in different doses of rapamycin (0.08, 0.16, and 0.32 μg/ml) and cisplatin (0.1, 0.4, and 0.8 μg/ml). The immature BALB/c mice were administered cisplatin with or without rapamycin by intraperitoneal injection. Ovaries were collected to analyze the histomorphology, the messenger RNA (mRNA) expression of anti‐Mullerian hormone (AMH), growth differentiation factor 9 (GDF9), and bone morphogenetic protein 15 (BMP15) and the expression of key proteins of mammalian target of rapamycin (mTOR) pathway. Growing follicle counts of ovaries cultured in vitro in the R0.16 and R0.32 groups were decreased and the ratio of growing to primordial follicles was also decreased in a dose‐dependent manner. In the C0.8 group, growing follicles were decreased compared with the other groups while the ratio was substantially increased in the C0.4 and C0.8 group. Co‐treatment attenuated primordial follicle loss and reduced the upregulated ratio induced by cisplatin. Ovarian follicle dynamics in vivo was consistent with the in vitro results. Primordial follicles counts were statistically increased and the ratio was reduced in the rapamycin group compared with the control group. Primordial follicle counts were dramatically reduced in the cisplatin group whereas co‐treatment with rapamycin slightly recovered its counts. There was no obvious difference in the number of growing follicles between the cisplatin group and other groups. The ratio was significantly increased in cisplatin‐treated mice whereas decreased in the co‐treatment group. The apoptosis rate of antral follicles in cisplatin‐treated mice was higher than the other groups while the apoptosis rate was decreased in the co‐treatment group in vivo. Compared with the control and rapamycin group, the mRNA expression of AMH, GDF9, and BMP15 were downregulated in the cisplatin group. The co‐treatment group recovered the mRNA expression of BMP15. In addition, the expression of key protein of mTOR pathway rpS6 and its phosphorylated forms were increased in the cisplatin‐treated group while co‐treatment decreased their expression. Rapamycin attenuated the loss of primordial follicles induced by cisplatin through the inhibitory effect of rapamycin on the mTOR pathway. These results suggest that rapamycin may be an effective drug for the protection of ovarian function during chemotherapy.  相似文献   

11.
Previous studies have reported that only primordial follicles and empty follicles can be found in 7.5 days postparturition (dpp) Sohlh1?/? mouse ovaries and females are infertility. There appears to be a defect in follicle development during the primordial‐to‐primary follicle transition in Sohlh1?/? mouse ovaries. However, detailed analyses of these phenomena have not been performed. In this study, we used Sohlh1?/? transgenic mice to explore the role of Sohlh1 in folliculogenesis. The results showed that only primordial follicles and empty follicles can be observed in Sohlh1?/? ovaries from 0.5 to 23.5 dpp. The expression of Foxo3 and FOXO3 was downregulated; nucleocytoplasmic shuttling of FOXO3 was normal in 7.5‐dpp Sohlh1+/+ but not Sohlh1?/? ovaries; and primordial follicle activation (PFA) was not observed in 7.5‐dpp Sohlh1?/? mice. The expression levels of KIT, AKT, and P308‐AKT were downregulated (p < 0.05), whereas that of P473‐AKT was not significantly changed (p > 0.05). The KIT/PI3K/AKT pathway was inhibited. Furthermore, we conducted a dual luciferase assay and chromatin immunoprecipitation. The results showed that SOHLH1 can upregulate the Kit gene by binding to the ?3698 bp E‐box motif. The absence of Sohlh1 may affect PFA in mouse ovaries via downregulation of Kit and inhibition of the KIT/PI3K/AKT pathway.  相似文献   

12.
Prostaglandin involvement in ovulation and maturation of amphibian (Rana pipiens) ovarian follicular oocytes was investigated using in vitro-cultured ovarian follicles. Exposure of follicles to PGF2α during culture stimulated variable but generally low levels of ovulation without concomitant induction of maturation. Addition of PGF2α to cultured follicles markedly enhanced the incidence of ovulation in follicles exposed to progesterone or frog pituitary homogenate (FPH). Onset of the ovulatory process was further accelerated following addition of PGF2α to FPH-treated follicles. PGE, in contrast to PGF2α, exhibited no stimulatory effects on ovulation and consistently inhibited ovulation induction by FPH and progesterone. Cytological analysis of follicles undergoing ovulation revealed that ovulation of immature oocytes induced by PGF2α varied markedly from that seen following FPH or progesterone stimulation of follicles in vivo or in vitro. Immature oocytes in contrast to maturing oocytes were typically ovlulated with follicle cells still attached to the vitelline membrane. The observations indicate that PGF2α effected follicle rupture and contraction of the follicular epithelium and theca without prior separation of the follicle cells from the oocyte. Selective inhibitors of steroid synthesis (cyanoketone) and protein synthesis (cycloheximide) inhibited FPH-induced ovulation and maturation. PGF2α reversed the inhibitory effects of cyanoketone and cycloheximide on FPH-induced ovulation but not maturation of oocytes. Neither prostaglandins alone or in combination with progesterone or FPH induced ovulation of oocytes following removal of the follicular epithelium. Ovulatory effects of PGF2α appear to be mediated through the follicular epithelium. Results indicate that ovulation and maturation of amphibian oocytes can be induced independently of each other by separate classes of hormones. Normal synchronization of ovulation and maturation of oocytes may require the combined action of prostaglandins and steroids acting within different follicular compartments.  相似文献   

13.
We report for the first time that oocyte nuclear and cytoplasmic maturation are triggered in vitro in non-hormone-treated amphibian (Rana pipiens) ovarian follicles following transient exposure to synthetic chymotrypsin inhibitor Nα-tosyl-L-phenylalanine-chloromethyl ketone (TPCK). The mechanism of action of TPCK in regulating oocyte maturation was investigated and compared to that induced by progesterone or pituitary hormone. Follicular oocytes failed to mature following continuous exposure to the same doses of TPCK in the presence or absence of progesterone. Continuous treatment of follicles with lower levels of TPCK occasionally induced GVBD in the absence of progesterone and augmented maturational effects of low levels of progesterone. TPCK induced maturation of intrafollicular oocytes without stimulating progesterone production and also induced maturation of naked oocytes. Stimulation of follicular progesterone synthesis following gonadotropin stimulation or addition of pregnenolone was inhibited by TPCK, indicating that TPCK affects metabolic processes in both the somatic and germinal components of the ovarian follicle. Oocyte maturation induced by either TPCK or progesterone was inhibited by cycloheximide, calcium-deficient medium, and forskolin. Results suggest that TPCK induces oocyte maturation independent of steroidogenesis via mechanisms similar to those triggered by progesterone involving protein synthesis, formation of cytoplasmic maturation-promoting factor (MPF), and changes in cAMP levels. Our data indicate that a chymotrypsin-like protease plays a role(s) in regulating the oocyte meiotic maturation process.  相似文献   

14.
The primordial follicle assembly, activation and the subsequent development are critical processes for female reproduction. A limited number of primordial follicles are activated to enter the growing follicle pool each wave, and the primordial follicle pool progressively diminishes over a woman's life‐time. The number of remaining primordial follicles represents the ovarian reserve. Identification and functional investigation of the factors involved in follicular initial recruitment will be of great significance to the understanding of the female reproduction process and ovarian ageing. In this study, we aimed to study whether and how semaphorin 6C (Sema6c) regulated the primordial follicle activation in the neonatal mouse ovary. The attenuation of SEMA6C expression by SiRNA accelerated the primordial follicle activation in the in vitro ovary culture system. PI3K‐AKT‐rpS6 pathway was activated when SEMA6C expression was down‐regulated. And the LY294002 could reverse the effect of low SEMA6C expression on primordial follicle activation. Our findings revealed that Sema6c was involved in the activation of primordial follicles, and the down‐regulation of SEMA6C led to massive primordial follicle activation by interacting with the PI3K‐AKT‐rpS6 pathway, which might also provide valuable information for understanding premature ovarian failure and ovarian ageing.  相似文献   

15.
The Nile tilapia is one of the most important fish species for aquaculture worldwide. Understanding their reproductive biology is essential for improving their aquaculture methods. The morphological and quantitative dynamics of ovarian recrudescence of Oreochromis niloticus was studied for 21 days postspawning. To accomplish this, breeding females were kept in controlled conditions and ovarian samples were collected weekly for histological, ultrastructural and morphometric analyses. Ovarian follicle morphology revealed an intense synthesis activity of the follicular cells, which actively contributed to formation of the zona radiata and oocyte development following spawning. Recently spawned ovaries contained follicles at all developmental stages, but they were predominantly early primary growth (~42%) and full‐grown follicles (~20%). Remnants of spawning, postovulatory follicle complexes represented approximately 5% of the former ovarian follicles immediately after spawning, and less than 1% after 7 days. Atretic follicles accounted for approximately 2% of the follicles studied during the period. The stock of primary growth follicles was stable during ovarian recrudescence, indicating their availability for continuous recruitment. Only the frequency of full‐grown follicles significantly increased in the ovaries during recrudescence, representing approximately 35% of the follicles 21 days postspawning. The diameters of all follicles were significantly different between the periods analyzed. The ovaries' morphological characteristics, the maintenance of young follicles stocks and the gradual and significant increase in the proportion and diameter of full‐grown follicles showed a rapid ovarian recovery and follicular growth of O. niloticus, in 21 days at 29.5°C, necessary for the next spawning. J. Morphol. 275:348–356, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Cancer survivorship rates have drastically increased due to improved efficacy of oncologic treatments. Consequently, clinical concerns have shifted from solely focusing on survival to quality of life, with fertility preservation as an important consideration. Among fertility preservation strategies for female patients, ovarian tissue cryopreservation and subsequent reimplantation has been the only clinical option available to cancer survivors with cryopreserved tissue. However, follicle atresia after transplantation and risk of reintroducing malignant cells have prevented this procedure from becoming widely adopted in clinics. Herein, we investigated the encapsulation of ovarian follicles in alginate hydrogels that isolate the graft from the host, yet allows for maturation after transplantation at a heterotopic (i.e., subcutaneous) site, a process we termed in vivo follicle maturation. Survival of multiple follicle populations was confirmed via histology, with the notable development of the antral follicles. Collected oocytes (63%) exhibited polar body extrusion and were fertilized by intracytoplasmic sperm injection and standard in vitro fertilization procedures. Successfully fertilized oocytes developed to the pronucleus (14%), two‐cell (36%), and four‐cell (7%) stages. Furthermore, ovarian follicles cotransplanted with metastatic breast cancer cells within the hydrogels allowed for retrieval of the follicles, and no mice developed tumors after removal of the implant, confirming that the hydrogel prevented seeding of disease within the host. Collectively, these findings demonstrate a viable option for safe use of potentially cancer‐laden ovarian donor tissue for in vivo follicle maturation within a retrievable hydrogel and subsequent oocyte collection. Ultimately, this technology may provide novel options to preserve fertility for young female patients with cancer.  相似文献   

17.
18.
Homeobox gene Msx2 is widely expressed during both embryogenesis and postnatal development and plays important roles during organogenesis. We developed an Msx2‐rtTA BAC transgenic line which can activate TetO‐Cre expression in Msx2‐expressing cells upon doxycycline (Dox) treatment. Using the Rosa26‐LacZ (R26R) reporter line, we show that rtTA is activated in Msx2‐expressing organs including the limb, heart, external genitalia, urogenital system, hair follicles and craniofacial regions. Moreover, we show that in body appendages, the transgene can be activated in different domains depending on the timing of Dox treatment. In addition, the transgene can also be effectively activated in adult tissues such as the hair follicle and the urogenital system. Taken together, this Msx2‐rtTA;TetO‐Cre system is a valuable tool for studying gene function in the development of the aforementioned organs in a temporal and spatially‐restricted manner, as well as for tissue lineage tracing of Msx2‐expressing cells. When induced postnatally, this system can also be used to study gene function in adult tissues without compromising normal development and patterning. genesis 47:352–359, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号