首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.

Background  

The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. The basal position of the Prasinophyceae has been well documented, but the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae is currently debated. The four complete chloroplast DNA (cpDNA) sequences presently available for representatives of these classes have revealed extensive variability in overall structure, gene content, intron composition and gene order. The chloroplast genome of Pseudendoclonium (Ulvophyceae), in particular, is characterized by an atypical quadripartite architecture that deviates from the ancestral type by a large inverted repeat (IR) featuring an inverted rRNA operon and a small single-copy (SSC) region containing 14 genes normally found in the large single-copy (LSC) region. To gain insights into the nature of the events that led to the reorganization of the chloroplast genome in the Ulvophyceae, we have determined the complete cpDNA sequence of Oltmannsiellopsis viridis, a representative of a distinct, early diverging lineage.  相似文献   

2.
Jo YD  Park J  Kim J  Song W  Hur CG  Lee YH  Kang BC 《Plant cell reports》2011,30(2):217-229
Plants in the family Solanaceae are used as model systems in comparative and evolutionary genomics. The complete chloroplast genomes of seven solanaceous species have been sequenced, including tobacco, potato and tomato, but not peppers. We analyzed the complete chloroplast genome sequence of the hot pepper, Capsicum annuum. The pepper chloroplast genome was 156,781 bp in length, including a pair of inverted repeats (IR) of 25,783 bp. The content and the order of 133 genes in the pepper chloroplast genome were identical to those of other solanaceous plastomes. To characterize pepper plastome sequence, we performed comparative analysis using complete plastome sequences of pepper and seven solanaceous plastomes. Frequency and contents of large indels and tandem repeat sequences and distribution pattern of genome-wide sequence variations were investigated. In addition, a phylogenetic analysis using concatenated alignments of coding sequences was performed to determine evolutionary position of pepper in Solanaceae. Our results revealed two distinct features of pepper plastome compared to other solanaceous plastomes. Firstly, large indels, including insertions on accD and rpl20 gene sequences, were predominantly detected in the pepper plastome compared to other solanaceous plastomes. Secondly, tandem repeat sequences were particularly frequent in the pepper plastome. Taken together, our study represents unique features of evolution of pepper plastome among solanaceous plastomes.  相似文献   

3.

Background  

The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. While the basal position of the Prasinophyceae is well established, the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae (UTC) remains uncertain. The five complete chloroplast DNA (cpDNA) sequences currently available for representatives of these classes display considerable variability in overall structure, gene content, gene density, intron content and gene order. Among these genomes, that of the chlorophycean green alga Chlamydomonas reinhardtii has retained the least ancestral features. The two single-copy regions, which are separated from one another by the large inverted repeat (IR), have similar sizes, rather than unequal sizes, and differ radically in both gene contents and gene organizations relative to the single-copy regions of prasinophyte and ulvophyte cpDNAs. To gain insights into the various changes that underwent the chloroplast genome during the evolution of chlorophycean green algae, we have sequenced the cpDNA of Scenedesmus obliquus, a member of a distinct chlorophycean lineage.  相似文献   

4.
Chloroplast genome organization, gene order, and content are highly conserved among land plants. We sequenced the chloroplast genome of Trachelium caeruleum L. (Campanulaceae), a member of an angiosperm family known for highly rearranged genomes. The total genome size is 162,321 bp, with an inverted repeat (IR) of 27,273 bp, large single-copy (LSC) region of 100,114 bp, and small single-copy (SSC) region of 7,661 bp. The genome encodes 112 different genes, with 17 duplicated in the IR, a tRNA gene (trnI-cau) duplicated once in the LSC region, and a protein-coding gene (psbJ) with two duplicate copies, for a total of 132 putatively intact genes. ndhK may be a pseudogene with internal stop codons, and clpP, ycf1, and ycf2 are so highly diverged that they also may be pseudogenes. ycf15, rpl23, infA, and accD are truncated and likely nonfunctional. The most conspicuous feature of the Trachelium genome is the presence of 18 internally unrearranged blocks of genes inverted or relocated within the genome relative to the ancestral gene order of angiosperm chloroplast genomes. Recombination between repeats or tRNA genes has been suggested as a mechanism of chloroplast genome rearrangements. The Trachelium chloroplast genome shares with Pelargonium and Jasminum both a higher number of repeats and larger repeated sequences in comparison to eight other angiosperm chloroplast genomes, and these are concentrated near rearrangement endpoints. Genes for tRNAs occur at many but not all inversion endpoints, so some combination of repeats and tRNA genes may have mediated these rearrangements.  相似文献   

5.
The nucleotide sequence of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome was completed (DQ119058). The circular double-stranded DNA, consisting of 155,527 bp, contained a pair of inverted repeat regions (IRa and IRb) of 25,187 bp each, which were separated by small and large single copy regions of 86,879 and 18,274 bp, respectively. The presence and relative positions of 113 genes (76 peptide-encoding genes, 30 tRNA genes, four rRNA genes, and three conserved open reading frames) were identified. The major portion (55.76%) of the C. sativus chloroplast genome consisted of gene-coding regions (49.13% protein coding and 6.63% RNA regions; 27.81% LSC, 9.46% SSC and 18.49% IR regions), while intergenic spacers (including 20 introns) made up 44.24%. The overall G-C content of C. sativus chloroplast genome was 36.95%. Sixteen genes contained one intron, while two genes had two introns. The expansion/contraction manner of IR at IRb/LSC and IR/SSC border in Cucumis was similar to that of Lotus and Arabidopsis, and the manner at IRa/LSC was similar to Lotus and Nicotiana. In total, 56 simple sequence repeats (more than 10 bases) were identified in the C. sativus chloroplast genome.  相似文献   

6.
Chloroplast DNA (cpDNA) encodes essential genes for chloroplast functions, including photosynthesis. Homologous recombination occurs frequently in cpDNA; however, its significance and underlying mechanism remain poorly understood. In this study, we analyzed the role of a nuclear‐encoded chloroplast‐localized homolog of RecA recombinase, which is a key factor in homologous recombination in bacteria, in the moss Physcomitrella patens. Complete knockout (KO) of the P. patens chloroplast RecA homolog RECA2 caused a modest growth defect and conferred sensitivity to methyl methanesulfonate and UV. The KO mutant exhibited low recovery of cpDNA from methyl methanesulfonate damage, suggesting that RECA2 knockout impairs repair of damaged cpDNA. The RECA2 KO mutant also exhibited reduced cpDNA copy number and an elevated level of cpDNA molecule resulting from aberrant recombination between short dispersed repeats (13–63 bp), indicating that the RECA2 KO chloroplast genome was destabilized. Taken together, these data suggest a dual role for RECA2 in the maintenance of chloroplast genome stability: RECA2 suppresses aberrant recombination between short dispersed repeats and promotes repair of damaged DNA.  相似文献   

7.
The enhanced understanding of chloroplast genomics would facilitate various biotechnology applications; however, the chloroplast (cp) genome / plastome characteristics of plants like Fagonia indica Burm.f. (family Zygophyllaceae), which have the capability to grow in extremely hot sand desert, have been rarely understood. The de novo genome sequence of F. indica using the Illumina high-throughput sequencing technology determined 128,379 bp long cp genome, encode 115 unique coding genes. The present study added the evidence of the loss of a copy of the IR in the cp genome of the taxa capable to grow in the hot sand desert. The maximum likelihood analysis revealed two distinct sub-clades i.e. Krameriaceae and Zygophyllaceae of the order Zygophyllales, nested within fabids.  相似文献   

8.
以姜科(Zingiberaceae)豆蔻属(Amomum Roxb.)阳春砂(Amomum villosum)为试材,利用Illumina Hiseq 4000测序平台对阳春砂叶绿体基因组进行测序,通过生物信息学分析方法进行序列组装、注释和特征分析,以揭示阳春砂与其他姜科植物的进化关系及其在系统发育中的地位,为豆蔻属植物的物种鉴定提供理论依据。结果表明:(1)阳春砂叶绿体基因组全长164 069 bp,GC含量为36.1%,包括1对29 959 bp的反向重复区(IR)、一个大单拷贝区(LSC;88 798 bp)和一个小单拷贝区(SSC;15 353 bp);共注释得到133个基因,包括8个rRNA基因、38个tRNA基因和87个蛋白编码基因。(2)在阳春砂基因组中共检测到157个SSR位点,大部分SSR均由A和T组成;豆蔻属物种在基因组大小、IR边界区高度保守,核酸变异主要发生在LSC和SSC区。(3)最大似然法(Maximum Likelihood, ML)聚类分析显示,阳春砂与同属的爪哇白豆蔻(Amomum compactum)和白豆蔻(Amomum kravanh)亲缘关系最近,并且与山姜属(Alpinia Roxb.)也有较近的亲缘关系。  相似文献   

9.
10.
Many species belonging to the coccoid green algae genus Coelastrella are considered potential candidates for the large-scale production of natural pigments and biofuels. However, little is known about the structural, functional and molecular aspects of the chloroplast genomes (cpDNAs) of this genus. In the present study, the complete sequence of the cpDNA of strain FACHB-2138, which was further identified as Coelastrella saipanensis Hanagata based on morphological and molecular analyses, was elucidated. The 196 140 bp cpDNA sequence that was assembled as a circular map was found to possess the typical quadripartite structure. The two identical copies of 11 897 bp inverted repeat (IR) sequences were separated from one another by single copy regions. The large single copy region (LSC) was 104 949 bp, whereas the small single copy region (SSC) was 67 397 bp. The cpDNA encoded a total of 96 unique genes, which included 67 protein-coding genes, three rRNA genes and 26 tRNA genes. A total of 19 group I introns were annotated in this genome. Comparative analyses with three species from the family Scenedesmaceae showed C. saipanensis had a slightly expanded genome, higher GC content and less skewed distribution of its genes between the two DNA strands than that of the other three species. The cpDNA data deduced from the present study helps to expand our present understanding of plant systematics and phylogenetic reconstruction, and identify the possible biotechnological applications of the species belonging to the studied taxa.  相似文献   

11.
Date palm (Phoenix dactylifera L.) is an economically important and widely cultivated palm of the family Arecaceae. We sequenced the complete date palm chloroplast genome (cpDNA) from Pakistani cv. ??Aseel??, using a combination of Sanger-based and next-generation sequencing technologies. Being very similar to a sequence from a Saudi Arabian date palm cultivar ??Khalas?? published recently, the size of the genome was 158,458?bp with a pair of inverted repeat (IR) regions of 27,276?bp that were separated by a large single-copy (LSC) region of 86,195?bp and a small single-copy (SSC) region of 17,711?bp. Genome annotation demonstrated a total of 138 genes, of which 89 were protein coding, 39 were tRNA, and eight were rRNA genes. Comparison of cpDNA sequences of cultivars ??Aseel?? and ??Khalas?? showed following intervarietal variations in the LSC region; (a) two SNPs in intergenic spacers and one SNP in the rpoc1 gene, (b) polymorphism in two mono-nucleotide simple sequence repeats (SSR), and (c) a 4-bp indel in the accD-psaI intergenic spacer. The SSC region has a polymorphic site in the mono-nucleotide SSR located at position 120,710. We also compared cv. ??Aseel?? cpDNA sequence with partial P. dactylifera cpDNA sequence entries deposited in Genbank and identified a number of potentially useful polymorphisms in this species. Analysis of date palm cpDNA sequences revealed a close relationship with Typha latifolia. Occurrence of small numbers of forward and inverted repeats in date palm cpDNA indicated conserved genome arrangement.  相似文献   

12.
The sequence of the chloroplast genome, which is inherited maternally, contains useful information for many scientific fields such as plant systematics, biogeography and biotechnology because its characteristics are highly conserved among species. There is an increase in chloroplast genomes of angiosperms that have been sequenced in recent years. In this study, the nucleotide sequence of the chloroplast genome (cpDNA) of Veratrum patulum Loes. (Melanthiaceae, Liliales) was analyzed completely. The circular double-stranded DNA of 153,699 bp consists of two inverted repeat (IR) regions of 26,360 bp each, a large single copy of 83,372 bp, and a small single copy of 17,607 bp. This plastome contains 81 protein-coding genes, 30 distinct tRNA and four genes of rRNA. In addition, there are six hypothetical coding regions (ycf1, ycf2, ycf3, ycf4, ycf15 and ycf68) and two open reading frames (ORF42 and ORF56), which are also found in the chloroplast genomes of the other species. The gene orders and gene contents of the V. patulum plastid genome are similar to that of Smilax china, Lilium longiflorum and Alstroemeria aurea, members of the Smilacaceae, Liliaceae and Alstroemeriaceae (Liliales), respectively. However, the loss rps16 exon 2 in V. patulum results in the difference in the large single copy regions in comparison with other species. The base substitution rate is quite similar among genes of these species. Additionally, the base substitution rate of inverted repeat region was smaller than that of single copy regions in all observed species of Liliales. The IR regions were expanded to trnH_GUG in V. patulum, a part of rps19 in L. longiflorum and A. aurea, and whole sequence of rps19 in S. china. Furthermore, the IGS lengths of rbcL-accD-psaI region were variable among Liliales species, suggesting that this region might be a hotspot of indel events and the informative site for phylogenetic studies in Liliales. In general, the whole chloroplast genome of V. patulum, a potential medicinal plant, will contribute to research on the genetic applications of this genus.  相似文献   

13.
Apple (Malus × domestica) is one of the most important temperate fruits. To better understand the molecular basis of this species, we characterized the complete chloroplast (cp) genome sequence downloaded from Genome Database for Rosaceae. The cp genome of apple is a circular molecule of 160068bp in length with a typical quadripartite structure of two inverted repeats (IRs) of 26352bp, separated by a small single copy region of 19180bp (SSC) and a large single copy region (LSC) of 88184bp. A total of 135 predicted genes (115 unique genes, and another 20 genes were duplicated in the IR) were identified, including 81 protein coding genes, four rRNA genes and 30 tRNA genes. Three genes of ycf15, ycf68 and infA contain several internal stop codons, which were interpreted as pseudogenes. The genome structure, gene order, GC content and codon usage of apple are similar to the typical angiosperm cp genomes. Thirty repeat regions (≥30bp) were detected, twenty one of which are tandem, six are forward and three are inverted repeats. Two hundred thirty seven simple sequence repeat (SSR) loci were revealed and most of them are composed of A or T, contributing to a distinct bias in base composition. Additionally, average 10000bp non coding region contains 24 SSR sites, while protein coding region contains five SSR sites, indicating an uneven distribution of SSRs. The complete cp genome sequence of apple reported in this paper will facilitate the future studies of its population genetics, phylogenetics and chloroplast genetic engineering.  相似文献   

14.
李巧丽  延娜  宋琼  郭军战 《植物学报》2018,53(1):94-103
鲁桑(Morus multicaulis)是亚洲地区栽培的重要经济作物。以鲁桑品种日本胡橙为实验材料, 利用高通量测序技术对鲁桑叶绿体基因组进行测序, 获得NCBI登录号(KU355297), 并研究鲁桑的叶绿体基因组结构。结合前人对蒙桑(M. mongolica)、印度桑(M. indica)和川桑(M. notabilis)的研究结果, 对鲁桑的系统进化关系进行了探讨。研究结果表明: 鲁桑叶绿体基因组是一个典型的四部分结构, 全长159 154 bp, 共注释130个基因, 包含85个蛋白质编码基因(18个基因在反向重复区重复)、37个转运RNA (tRNA)基因和8个核糖体RNA (rRNA)基因。生物信息学分析表明, 在鲁桑中共搜索到82个SSR位点, 单核苷酸、二核苷酸、三核苷酸、四核苷酸和五核苷酸重复基序个数分别为63、7、2、9和1个, 并没有发现六核苷酸; 其中单核苷酸重复在鲁桑的叶绿体基因组SSR中占76.8%。采用MEGA 6.0软件, 通过最大似然法和近邻结合法对包括4个桑属物种在内的15个物种的叶绿体基因组序列进行聚类分析, 2种方法得到的聚类结果均为鲁桑和蒙桑聚在一起。研究结果对叶绿体基因组工程研究及桑属种间的分子标记开发和优良品种培育具有一定的参考价值。  相似文献   

15.
The complete chloroplast genome of Chionographis japonica (Willd.) Maxim. (Melanthiaceae, Liliales) was mapped using polymerase chain reaction and the Sanger method. The circular double-stranded DNA was a typical quadripartite structure consisting of two inverted repeated regions (27,397 bp), a small single copy region (18,205 bp), and a large single-copy region (81,646 bp), with a total length of 154,645 bp. The genome consisted of 137 coding genes, including 91 protein-coding genes, 38 distinct tRNA, and 8 rRNA genes. The ycf15 and ycf68 genes had several internal stop codons interpreted as pseudogenes. The inverted repeat (IR) region expanded to part of the rps3 gene in the junction between large single-copy and IRA regions in C. japonica. We designed 785 primers, of which 481 were used to map the entire chloroplast genome of C. japonica. Primers were compared with the complete chloroplast sequence of Smilax china (Smilacaceae) to identify primers that could be used for other Liliales members and whole chloroplast genome sequencing. Of the primers used for C. japonica, 398 could be used with other smaller species within the order.  相似文献   

16.
To better understand organelle genome evolution of the ulvophycean green alga Capsosiphon fulvescens, we sequenced and characterized its complete chloroplast genome. The circular chloroplast genome was 111,561 bp in length with 31.3% GC content that contained 108 genes including 77 protein‐coding genes, two copies of rRNA operons, and 27 tRNAs. In this analysis, we found the two types of isoform, called heteroplasmy, were likely caused by a flip‐flop organization. The flip‐flop mechanism may have caused structural variation and gene conversion in the chloroplast genome of C. fulvescens. In a phylogenetic analysis based on all available ulvophycean chloroplast genome data, including a new C. fulvescens genome, we found three major conflicting signals for C. fulvescens and its sister taxon Pseudoneochloris marina within 70 individual genes: (i) monophyly with Ulotrichales, (ii) monophyly with Ulvales, and (iii) monophyly with the clade of Ulotrichales and Ulvales. Although the 70‐gene concatenated phylogeny supported monophyly with Ulvales for both species, these complex phylogenetic signals of individual genes need further investigations using a data‐rich approach (i.e., organelle genome data) from broader taxon sampling.  相似文献   

17.
Prasinophytes form a paraphyletic assemblage of early diverging green algae, which have the potential to reveal the traits of the last common ancestor of the main two green lineages: (i) chlorophyte algae and (ii) streptophyte algae. Understanding the genetic composition of prasinophyte algae is fundamental to understanding the diversification and evolutionary processes that may have occurred in both green lineages. In this study, we sequenced the chloroplast genome of Pyramimonas parkeae NIES254 and compared it with that of P. parkeae CCMP726, the only other fully sequenced P. parkeae chloroplast genome. The results revealed that P. parkeae chloroplast genomes are surprisingly variable. The chloroplast genome of NIES254 was larger than that of CCMP726 by 3,204 bp, the NIES254 large single copy was 288 bp longer, the small single copy was 5,088 bp longer, and the IR was 1,086 bp shorter than that of CCMP726. Similarity values of the two strains were almost zero in four large hot spot regions. Finally, the strains differed in copy number for three protein‐coding genes: ycf20, psaC, and ndhE. Phylogenetic analyses using 16S and 18S rDNA and rbcL sequences resolved a clade consisting of these two P. parkeae strains and a clade consisting of these plus other Pyramimonas isolates. These results are consistent with past studies indicating that prasinophyte chloroplast genomes display a higher level of variation than is commonly found among land plants. Consequently, prasinophyte chloroplast genomes may be less useful for inferring the early history of Viridiplantae than has been the case for land plant diversification.  相似文献   

18.
多花海棠(Malus floribunda Siebold.)是世界范围内广泛栽培的苹果属物种,具有较高的观赏价值和育种意义。对其进行叶绿体基因组比较分析,有利于完善苹果属系统进化以及种质利用的研究内容。基于全基因组测序数据,组装获得一个完整的具有四分体结构的多花海棠叶绿体基因组。该基因组包括大单拷贝区(88 142 bp)、反向重复区B (26 353 bp)、小单拷贝区(19 189 bp)与反向重复区A (26 353 bp),共计160 037 bp。多花海棠叶绿体全基因组共注释到111个基因,包括78个蛋白编码基因、29个tRNA基因和4个rRNA基因。此外,在其基因组中识别到大量的重复序列,与三叶海棠和变叶海棠略有差异。通过计算相对同义密码子使用度,发现其高频密码子共30种,并且密码子具有偏向A/T结尾的使用模式。种间序列比对、边界分析的结果表明,大单拷贝区序列变异较大,8种苹果属植物SC区与IR区扩张收缩情况整体上较为相似。基于叶绿体基因组序列的系统进化分析,将多花海棠、湖北海棠和变叶海棠聚为一类。多花海棠叶绿体基因组的研究可为今后遗传标记开发与种质资源利用等提供数据支持。  相似文献   

19.
The chloroplast genome sequence of Coffea arabica L., the first sequenced member of the fourth largest family of angiosperms, Rubiaceae, is reported. The genome is 155 189 bp in length, including a pair of inverted repeats of 25 943 bp. Of the 130 genes present, 112 are distinct and 18 are duplicated in the inverted repeat. The coding region comprises 79 protein genes, 29 transfer RNA genes, four ribosomal RNA genes and 18 genes containing introns (three with three exons). Repeat analysis revealed five direct and three inverted repeats of 30 bp or longer with a sequence identity of 90% or more. Comparisons of the coffee chloroplast genome with sequenced genomes of the closely related family Solanaceae indicated that coffee has a portion of rps19 duplicated in the inverted repeat and an intact copy of infA . Furthermore, whole-genome comparisons identified large indels (> 500 bp) in several intergenic spacer regions and introns in the Solanaceae, including trnE (UUC)– trnT (GGU) spacer, ycf4 – cemA spacer, trnI (GAU) intron and rrn5 – trnR (ACG) spacer. Phylogenetic analyses based on the DNA sequences of 61 protein-coding genes for 35 taxa, performed using both maximum parsimony and maximum likelihood methods, strongly supported the monophyly of several major clades of angiosperms, including monocots, eudicots, rosids, asterids, eurosids II, and euasterids I and II. Coffea (Rubiaceae, Gentianales) is only the second order sampled from the euasterid I clade. The availability of the complete chloroplast genome of coffee provides regulatory and intergenic spacer sequences for utilization in chloroplast genetic engineering to improve this important crop.  相似文献   

20.
Lack of complete chloroplast genome sequences is still one of the major limitations to extending chloroplast genetic engineering technology to useful crops. Therefore, we sequenced the soybean chloroplast genome and compared it to the other completely sequenced legumes, Lotus and Medicago. The chloroplast genome of Glycine is 152,218 basepairs (bp) in length, including a pair of inverted repeats of 25,574 bp of identical sequence separated by a small single copy region of 17,895 bp and a large single copy region of 83,175 bp. The genome contains 111 unique genes, and 19 of these are duplicated in the inverted repeat (IR). Comparisons of Glycine, Lotus and Medicago confirm the organization of legume chloroplast genomes based on previous studies. Gene content of the three legumes is nearly identical. The rpl22 gene is missing from all three legumes, and Medicago is missing rps16 and one copy of the IR. Gene order in Glycine, Lotus, and Medicago differs from the usual gene order for angiosperm chloroplast genomes by the presence of a single, large inversion of 51 kilobases (kb). Detailed analyses of repeated sequences indicate that many of the Glycine repeats that are located in the intergenic spacer regions and introns occur in the same location in the other legumes and in Arabidopsis, suggesting that they may play some functional role. The presence of small repeats of psbA and rbcL in legumes that have lost one copy of the IR indicate that this loss has only occurred once during the evolutionary history of legumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号