首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Pronounced rises in frequency of toxic cyanobacterial blooms are recently observed worldwide, particularly when temperatures increase. Different strains of cyanobacterial species vary in their potential to produce toxins but driving forces are still obscure. Our study examines effects of hydrogen peroxide on toxic and non-toxic (including a non-toxic mutant) strains of M. aeruginosa. Here we show that hydrogen peroxide diminishes chlorophyll a content and growth of cyanobacteria and that this reduction is significantly lower for toxic than for non-toxic strains. This indicates that microcystins protect from detrimental effects of oxygen radicals. Incubation of toxic and non-toxic strains of M. aeruginosa with other bacteria or without (axenic) at three temperatures (20, 26 and 32°C) reveals a shift toward toxic strains at higher temperatures. In parallel to increases in abundance of toxic (i.e. toxin gene possessing) strains and their actual toxin expression, concentrations of microcystins rise with temperature, when amounts of radicals are expected to be enhanced. Field samples from three continents support the influence of radicals and temperature on toxic potential of M. aeruginosa. Our results imply that global warming will significantly increase toxic potential and toxicity of cyanobacterial blooms which has strong implications for socio-economical assessments of global change.  相似文献   

2.
With exception of South Africa, very little is known about the presence and abundance of toxic cyanobacteria and cyanobacterial blooms on the African continent. The close proximity between society and nature, and the use of the sparse water resources as drinking water in large parts of Africa, lead to the recognition that more knowledge on toxic cyanobacterial blooms is of major importance. The bloom forming cyanobacterium Microcystis aeruginosa is known to produce cyclic heptatoxins (microcystins) which can be toxic to humans. In this study the morphological, genetic, and chemical characters of 24 strains of M. aeruginosa from several water bodies in Kenya and Uganda, some of them used as drinking water sources, were examined. The M. aeruginosa strains possessed different levels of diversity depending on characterisation method. Four morphotypes were identified based on the traditional morphological approach, 10 genotypes by DNA sequence comparison of the PC-IGS and ITS1 rDNA regions, and 10 chemotypes based on MALDI-TOF-MS oligopeptide analysis. Only 4 of the 24 isolated strains from East Africa were found to produce microcystins, while oligopeptides belonging to the aeruginosin and cyanopeptolin class were detected in most strains.  相似文献   

3.
Abstract Toxic strains of Microcystis aeruginosa produce cyclic heptatoxins (microcystins) that are believed to be synthesized non-ribosomally by peptide synthetases. We analysed toxin-producing and non-toxic strains of M. aeruginosa with respect to the presence of DNA sequences potentially encoding peptide synthetases. Hybridizations of genomic DNA of various M. aeruginosa strains with PCR-amplificated fragments possessing homologies to adenylate-forming domains of peptide synthetase genes provided first evidence for the existence of corresponding genes in cyanobacteria. Furthermore we isolated and sequenced from genomic libraries overlapping fragments of M. aeruginosa DNA with a total length of 2982 bp showing significant homology to genes encoding peptide synthetases and hybridizing exclusively with DNA from toxic strains. Our results indicate that both toxic and non-toxic strains of M. aeruginosa possess genes coding for peptide synthetases and that hepatotoxin-producing and non-toxic strains differ in their content of genes for specific peptide synthetases.  相似文献   

4.
The cyanobacterium Microcystis aeruginosa is known to proliferate in freshwater ecosystems and to produce microcystins. It is now well established that much of the variability of bloom toxicity is due to differences in the relative proportions of microcystin-producing and non-microcystin-producing cells in cyanobacterial populations. In an attempt to elucidate changes in their relative proportions during cyanobacterial blooms, we compared the fitness of the microcystin-producing M. aeruginosa PCC 7806 strain (WT) to that of its non-microcystin-producing mutant (MT). We investigated the effects of two light intensities and of limiting and non-limiting nitrate concentrations on the growth of these strains in monoculture and co-culture experiments. We also monitored various physiological parameters, and microcystin production by the WT strain. In monoculture experiments, no significant difference was found between the growth rates or physiological characteristics of the two strains during the exponential growth phase. In contrast, the MT strain was found to dominate the WT strain in co-culture experiments under favorable growth conditions. Moreover, we also found an increase in the growth rate of the MT strain and in the cellular MC content of the WT strain. Our findings suggest that differences in the fitness of these two strains under optimum growth conditions were attributable to the cost to microcystin-producing cells of producing microcystins, and to the putative existence of cooperation processes involving direct interactions between these strains.  相似文献   

5.
This paper describes the occurrence of toxic cyanobacteria along the Guadiana River over its course between Mérida and Badajoz (Extremadura, Spain). Water sampling for phytoplankton quantification and toxin analysis was carried out regularly between 1999 and 2001 in six different locations, including two shallow, slow-flowing river sites, two streamed river sites and two drinking water reservoirs. The cyanobacterial community differed significantly between these locations, especially during the summer. The predominant genera were Microcystis, Oscillatoria, Aphanizomenon and Anabaena. Using an ELISA assay the total microcystin contents of natural water samples from the most eutrophic locations ranged from 0.10 - 21.86 microg mcyst-LR equivalent x L(-1) in Valdelacalzada and 0.10-11.3 microg mcyst-LR equivalent x L(-1) in Vitonogales, and a seasonal variation of toxin content was observed. The amount of microcystins produced by each strain was determined by ELISA assay and the detection and identification of microcystin variants of three toxic strains of Microcystis aeruginosa was performed by high performance liquid chromatography (HPLC). The analysis of microcystins of the cultured strains revealed that toxin production was variable among different strains of M. aeruginosa isolated either from different blooms or from the same bloom.  相似文献   

6.
Global warming was believed to accelerate the expansion of cyanobacterial blooms. However, the impact of changes due to the allelopathic effects of cyanobacterial blooms with or without algal toxin production on the ecophysiology of its coexisting phytoplankton species arising from global warming were unknown until recently. In this study, the allelopathic effects of toxic and non-toxic Microcystis aeruginosa strains on the growth of green alga Chlorella vulgaris and photosynthesis of the co-cultivations of C. vulgaris and toxic M. aeruginosa FACHB-905 or non-toxic M. aeruginosa FACHB-469 were investigated at different temperatures. The growth of C. vulgaris, co-cultured with the toxic or non-toxic M. aeruginosa strains, was promoted at 20 °C but inhibited at temperatures ≥25 °C. The inhibitory effects of the toxic and non-toxic M. aeruginosa strains on of the co-cultivations (C. vulgaris and non-toxic M. aeruginosa FACHB-469 or toxic M. aeruginosa FACHB-905) also linearly increased with elevated temperatures. Furthermore, toxic M. aeruginosa FACHB-905 induced more inhibition toward growth of C. vulgaris or Pmax and Rd of the mixtures than non-toxic M. aeruginosa FACHB-469. C. vulgaris dominated over non-toxic M. aeruginosa FACHB-469 but toxic M. aeruginosa FACHB-905 overcame C. vulgaris when they were co-cultured in mesocosms in water temperatures from 20 to 25 °C. The results indicate that allelopathic effects of M. aeruginosa strains on C. vulgaris are both temperature- and species-dependent: it was stimulative for C. vulgaris at low temperatures such as 20 °C, but inhibitory at high temperatures (≥25 °C); the toxic strain was determined to be more harmful to C. vulgaris than the non-toxic one. This suggests that global warming may aggravate the ecological risk of cyanobacteria blooms, especially those with toxic species as the main contributors.  相似文献   

7.
AIMS: The aim of this study was to investigate toxicological differences between strains of the cyanobacterium Microcystis aeruginosa isolated from a potable water supply in the north of Portugal over a 2-month period. METHODS AND RESULTS: Twenty-six strains of M. aeruginosa were isolated, grown in pure culture, and tested using a range of techniques including matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), ELISA and a PCR procedure targeting the genes implicated in the production of toxic microcystins. There was considerable variation with respect to the amounts of microcystin produced by each of the strains as measured by ELISA, with values ranging from 0.02 to 0.53% dry weight. The results of the MALDI-TOF MS analysis demonstrated the presence of several chemically distinct forms of microcystin as well as aeruginosins, anabaenopeptins and several other unidentified peptide-like compounds. CONCLUSIONS: The growth of individual strains that comprise bloom populations, with unique 'chemotypes' can potentially be an important factor affecting the toxicity of bloom populations. Molecular probes, targeting the genes responsible for microcystin production were shown to be useful for distinguishing between toxic and nontoxic strains and showed good agreement with the results obtained from the other analyses. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this study show that the analysis of cyanobacterial bloom populations at the subspecies (strain) level can potentially provide important information regarding the toxin-producing potential of a cyanobacterial bloom and could be used as an 'early warning' for toxic bloom development.  相似文献   

8.
Small (10 g) tilapia ( Oreochromis niloticus ) were exposed to pure and mixed populations of toxic and non-toxic strains of the cyanobacterium Microcystis aeruginosa (100% toxic, 50% toxic, 25% toxic, 0% toxic) at two particle concentrations (1 × 106 and 5 × 10sparticles ml−1). At both concentrations there was a progressive decrease in grazing rate as the percentage of toxic cells increased. Differences in opercular beat rates, and hence the volumes of water passed over the gills, were also recorded among treatments, opercular beat rates decreasing as the percentage of toxic cells increased. Although in all treatment groups with toxic cells present, the medium had detectable levels (>250 ng I−1) of extracellular microcystin-LR toxin present, grazing was correlated with particle-bound rather than extracellular levels.  相似文献   

9.
All samples of cyanobacterial blooms collected from 1986 to 1989 from Lake Kasumigaura, Ibaraki Prefecture, Japan, were hepatotoxic. The 50% lethal doses (LD50s) of the blooms to mice ranged from 76 to 556 mg/kg of body weight. Sixty-eight Microcystis cell clones (67 Microcystis aeruginosa and 1 M. viridis) were isolated from the blooms. Twenty-three strains (including the M. viridis strain) were toxic. However, the ratio of toxic to nontoxic strains among the blooms varied (6 to 86%). Microcystins were examined in six toxic strains. Five toxic strains produced microcystin-RR, -YR, and -LR, with RR being the dominant toxin in these strains. Another strain produced 7-desmethylmicrocystin-LR and an unknown microcystin. This strain showed the highest toxicity. Establishment of axenic strains from the Microcystis cells exhibiting extracellularly mucilaginous materials was successful by using a combination of the agar plate technique and two-step centrifugation.  相似文献   

10.
All samples of cyanobacterial blooms collected from 1986 to 1989 from Lake Kasumigaura, Ibaraki Prefecture, Japan, were hepatotoxic. The 50% lethal doses (LD50s) of the blooms to mice ranged from 76 to 556 mg/kg of body weight. Sixty-eight Microcystis cell clones (67 Microcystis aeruginosa and 1 M. viridis) were isolated from the blooms. Twenty-three strains (including the M. viridis strain) were toxic. However, the ratio of toxic to nontoxic strains among the blooms varied (6 to 86%). Microcystins were examined in six toxic strains. Five toxic strains produced microcystin-RR, -YR, and -LR, with RR being the dominant toxin in these strains. Another strain produced 7-desmethylmicrocystin-LR and an unknown microcystin. This strain showed the highest toxicity. Establishment of axenic strains from the Microcystis cells exhibiting extracellularly mucilaginous materials was successful by using a combination of the agar plate technique and two-step centrifugation.  相似文献   

11.
Toxin production in algal blooms presents a significant problem for the water industry. Of particular concern is microcystin, a potent hepatotoxin produced by the unicellular freshwater species Microcystis aeruginosa. In this study, the proteomes of six toxic and nontoxic strains of M. aeruginosa were analyzed to gain further knowledge in elucidating the role of microcystin production in this microorganism. This represents the first comparative proteomic study in a cyanobacterial species. A large diversity in the protein expression profiles of each strain was observed, with a significant proportion of the identified proteins appearing to be strain-specific. In total, 475 proteins were identified reproducibly and of these, 82 comprised the core proteome of M. aeruginosa. The expression of several hypothetical and unknown proteins, including four possible operons was confirmed. Surprisingly, no proteins were found to be produced only by toxic or nontoxic strains. Quantitative proteome analysis using the label-free normalized spectrum abundance factor approach revealed nine proteins that were differentially expressed between toxic and nontoxic strains. These proteins participate in carbon-nitrogen metabolism and redox balance maintenance and point to an involvement of the global nitrogen regulator NtcA in toxicity. In addition, the switching of a previously inactive toxin-producing strain to microcystin synthesis is reported.  相似文献   

12.
The cyanobacterial diversity of Sidi Boughaba, a Moroccan coastal lagoon and Ramsar site, was evaluated and its potentially toxic species were isolated and characterised. This study was the first time that cyanobacterial diversity and cyanotoxin production have been characterised in a Moroccan coastal lagoon. Samples collected in June 2004, July 2008 and August 2013 contained 41 species. Three strains of cyanobacteria were isolated, cultured and assessed for their potentially toxic levels of microcystins. Only Microcystis flos-aquae exhibited the presence of microcystins, at a concentration of 823.41 µg g?1 as MC-LR equivalents. MC-RR and MC-WR were also detected. The presence of toxic Microcystis and other potentially toxic strains, especially in periods of bloom proliferations, could pose environmental and health hazards. Cyanotoxin monitoring of this lagoon is highly recommended.  相似文献   

13.
文章研究了低浓度范围内不同浓度梯度的阴离子表面活性剂直链烷基苯磺酸盐(LAS)对产毒微囊藻(Microcystis aeruginosa, FACHB905)和无毒微囊藻(Microcystis wesenbergii, FACHB908)生长、光合特性、种间竞争及毒素合成的影响。结果表明,在0.05—5.0 mg/L LAS浓度梯度处理下,产毒微囊藻的生物量、产毒基因mcyD表达量和每细胞MCs含量均在培养12d后显著增加。产毒微囊藻胞内和胞外MCs含量在各LAS浓度处理后分别为0.069、0.052、0.061、0.038和0.037 fg/fg Chl.a及107.1、103.7、127.1、99.6和113.7 ng/L。即使在0.5 mg/L低浓度LAS处理条件下,上述3个参数也分别比对照组显著增加了24.2%、12.4倍和10.4%。浓度为0—0.2 mg/L LAS对无毒微囊藻的生物量无明显影响,而较高浓度的LAS(0.5—5.0 mg/L)明显抑制了无毒微囊藻的生长。在两株微囊藻混合培养时, 0.2—1.0 mg/L LAS处理组的产毒铜绿微囊藻mcy D的表达对LAS...  相似文献   

14.
Lethal toxicity (intraperitoneal, mouse) was examined in relation to Species composition of samples containing bloom-forming Microcystis populations from natural waters and correlated with toxicity of laboratory strains of four Microcystis formas and species. Toxicity was not always associated with the presence of M. aeruginosa f . aeruginosa Elenkin. A sample with almost all cells of M. aeruginosa f . aeruginosa showed no toxicity, However samples comprised of a high percentage of M. viridis Lemmermann often showed lethal toxicity. Toxicity tests were done on culture strains M. aeruginosa f aeruginosa, M. aeruginosa f flos-aquae Elenkin , M. viridis and M. wesenbergii Kamárek. All five cultured strains of M. viridis were found to be toxic, while only one out of nine strains of M. aeruginosa f . aeruginosa was toxic. Six strains of M. wesenbergii showed no toxicity, It is recommended that attention should be paid to the occurrences and possibility of toxic bloom of M. viridis from the standpoint of water management and public health .  相似文献   

15.
Brown trout were exposed for 63 days to five treatments: a control; the purified cyanobacterial hepatotoxin microcystin—LR (MC—LR) (41—57 μg MC—LR 1?1); lysed toxic Microcystis aeruginosa cells (41–68 μg MC—LR 1?1 and 288 μg chlorophyll a 1?1); lysed non—toxic M. aeruginosa cells (non—MC—LR containing and 288 μg chlorophyll a 1?1); ammonia (65–325 μg NH3 1?1). All treatments produced significantly reduced growth compared to controls (P<0·05, Fisher test). Exposure to ammonia resulted weight loss over the first 7 days followed by weight increase, though at a significantly lower level than in the other treatments. First exposed to lysed toxic M. aeruginosa cells grew less than those exposed to lysed non—toxic cyanobacteria or purified MC—LR. Sodium influx rates after 63 days exposure to purified MC—LR, lysed toxic M. aeruginosa cells, or ammonia showed a significant increase compared to control fish or those exposed to lysed non—toxic M. aeruginosa cells. There were no significant differences in Na+ efflux or net Na+ uptake rates between treatments. Significant increases in body Na+ and Cl were seen in fish exposed to lysed toxic M. aeruginosa cells or ammonia. Only fish exposed to ammonia showed a significant increase in body ammonia. Short—term exposure, over 4 h, to lysed toxic cells, non—toxic cells or purified MC—LR resulted in insignificant changes in Na+ flux rates compared to controls although there was a significant net Na+ loss in fish exposed to ammonia. Chronic exposure of fish to toxic cyanobacterial blooms may result in ionic imbalance and reduced growth.  相似文献   

16.
Gravity-driven membrane (GDM) filtration is a promising tool for low-cost decentralized drinking water production. The biofilms in GDM systems are able of removing harmful chemical components, particularly toxic cyanobacterial metabolites such as microcystins (MCs). This is relevant for the application of GDM filtration because anthropogenic nutrient input and climate change have led to an increase of toxic cyanobacterial blooms. However, removal of MCs in newly developing GDM biofilms is only established after a prolonged period of time. Since cyanobacterial blooms are transient phenomena, it is important to understand MC removal in mature biofilms with or without prior toxin exposure. In this study, the microbial community composition of GDM biofilms was investigated in systems fed with water from a lake with periodic blooms of MC-producing cyanobacteria. Two out of three experimental treatments were supplemented with dead biomass of a MC-containing cyanobacterial strain, or of a non-toxic mutant, respectively. Analysis of bacterial rRNA genes revealed that both biomass-amended treatments were significantly more similar to each other than to a non-supplemented control. Therefore, it was hypothesized that biofilms could potentially be ‘primed’ for rapid MC removal by prior addition of non-toxic biomass. A subsequent experiment showed that MC removal developed significantly faster in mature biofilms that were pre-fed with biomass from the mutant strain than in unamended controls, indicating that MC degradation was a facultative trait of bacterial populations in GDM biofilms. The significant enrichment of bacteria related to both aerobic and anaerobic MC degraders suggested that this process might have occurred in parallel in different microniches.  相似文献   

17.
The South African impoundments of Hartbeespoort and Roodeplaat experience excessive blooms of Microcystis species each year. Microcystins, produced primarily by strains of cyanobacteria belonging to the genera Microcystis, Anabaena and Planktothrix, are harmful cyanobacterial hepatotoxins. These bloom-forming cyanobacteria form toxic and non-toxic strains that co-occur and are visually indistinguishable, but can be identified and quantified molecularly. We described the relationships between microcystin production and the genotypic composition of the Microcystis community involved together with environmental conditions in both the Roodeplaat and Hartbeespoort reservoirs using quantitative real time PCR. DNA copy number of the Microcystis-specific 16S rRNA and toxin biosynthesis genes, mcyE and mcyB, were measured. Planktothrix spp. occurred in both reservoirs during autumn, but no toxin-producing species was present as measured with mcyE specific primers, whereas both toxic and non-toxic strains of Microcystis were recorded in both reservoirs, with Microcystis spp. dominating in the summer months. Water-surface temperature correlated strongly with microcystin concentration, mcyE and mcyB copy number. Microcystin production was associated by temperatures higher than 23 °C. This suggests that should current environmental trends persist with surface water temperatures continuing to rise and more and more nutrients continued to be loaded into fresh water systems toxic Microcystis may outgrow non-toxic Microcystis and synthesise even more microcystins.  相似文献   

18.
The occurrence of toxic cyanobacterial blooms is a serious problem for fast‐developing countries in Africa, such as Ethiopia, that are struggling with significant degradation of the natural environment and limited access to water of good quality. Research undertaken on Lake Tana in Ethiopia between 2009 and 2011 was intended to assess the seasonal threat from cyanobacteria and to select methods for tracking of this threat in the future. The cyanobacterial genus Microcystis was found to be present throughout the monitoring period, and M. aeruginosa was determined as the dominant species. Moreover, in all samples, toxigenic cyanobacteria with the potential to produce microcystins were detected. High levels of microcystins, ranging from 0.58 to 2.65 μg L?1, were detected each November, which indicates that in the postrainy season, water usage should be limited. The correlation between concentrations of chlorophyll‐a and microcystins suggested that chlorophyll‐a could be used as an indicator of the potential presence of cyanobacterial‐derived hepatotoxins in Lake Tana in the future. Furthermore, for quick quantitative confirmation of the presence of microcystins, a simple and rapid ELISA test was recommended.  相似文献   

19.
Cyanobacteria can produce toxic metabolites known as cyanotoxins. Common and frequently investigated cyanotoxins include microcystins (MCs), nodularin (NOD) and saxitoxins (STXs). During the summer of 2011 extensive cyanobacterial growth was found in several fishponds in Serbia. Sampling of the water and fish (common carp, Cyprinus carpio) was performed. Water samples from 13 fishponds were found to contain saxitoxin, microcystin, and/or nodularin. LC–MS/MS showed that MC-RR was present in samples of fish muscle tissue. Histopathological analyses of fish grown in fishponds with cyanotoxin production showed histopathological damage to liver, kidney, gills, intestines and muscle tissues. This study is among the first so far to report severe hyperplasia of intestinal epithelium and severe degeneration of muscle tissue of fish after cyanobacterial exposure. These findings emphasize the importance of cyanobacterial and cyanotoxin monitoring in fishponds in order to recognize cyanotoxins and their potential effects on fish used for human consumption and, further, on human health.  相似文献   

20.
Microcystins are small hepatotoxic peptides produced by a number of cyanobacteria. They are synthesized non-ribosomally by multifunctional enzyme complex synthetases encoded by the mcy genes. Primers deduced from mcy genes were designed to discriminate between toxic microcystin-producing strains and non-toxic strains. Thus, PCR-mediated detection of mcy genes could be a simple and efficient means to identify potentially harmful genotypes among cyanobacterial populations in bodies of water. We surveyed the distribution of the mcyB gene in different Microcystis strains isolated from Chinese bodies of water and confirmed that PCR can be reliably used to identify toxic strains. By omitting any DNA purification steps, the modified PCR protocol can greatly simplify the process. Cyanobacterial cells enriched from cultures, field samples, or even sediment samples could be used in the PCR assay. This method proved sensitive enough to detect mcyB genes in samples with less than 2,000 Microcystis cells per ml. Its accuracy, specificity and applicability were confirmed by sequencing selected DNA amplicons, as well as by HPLC, ELISA and mouse bioassay as controls for toxin production of every strain used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号