首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
It is now well established that calreticulin is a high capacity Ca(2+)-binding protein which is a major Ca2+ storage protein of the lumen of endoplasmic reticulum membranes in a wide variety of tissues with the exception of skeletal and cardiac muscles. However, in nervous tissue, confusion exists regarding the nature of the intracellular Ca2+ stores, as the organelle responsible for Ca2+ storage has been identified as the endoplasmic reticulum by some investigators and as the specialized organelle, calciosome by others. Calreticulin, calsequestrin, and calsequestrin-like proteins have all been, on different occasions, reported to be present in calciosomes. Cerebral and cerebellar tissues, moreover, have been shown to contain somewhat different systems of Ca(2+)-buffering proteins. In the present paper we discuss evidence that the Ca2+ storage systems of the retina may prove to be more complex than those of other neuronal tissues. Biochemical and immunocytochemical evidence indicates the presence of either an isoform of calreticulin or another protein that is antigenically similar to calreticulin, but of slightly higher molecular weight, in the endoplasmic reticulum of both neurons and Müller glia from rabbit neural retina. However, as retinal neurons express Purkinje cell markers, one may expect to observe the presence of calsequestrin in these cells as well. Secondly, antibodies against the onchocercal RAL-1 antigen recognize a protein sharing 62-65% amino acid sequence identity with calreticulin. The anti-RAL-1 antibodies show specificity for the retina. Whether or not the RAL-1 antigen is an active part of the Ca2+ storage systems of the retina remains to be verified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The distribution of calsequestrin and calreticulin in smooth muscle and non-muscle tissues was investigated. Immunoblots of endoplasmic reticulum proteins probed with anti-calreticulin and anti-calsequestrin antibodies revealed that only calreticulin is present in the rat liver endoplasmic reticulum. Membrane fractions isolated from uterine smooth muscle, which are enriched in sarcoplasmic reticulum, contain a protein band which is immunoreactive with anti-calreticulin but not with anti-calsequestrin antibodies. The presence of calreticulin in these membrane fractions was further confirmed by 45Ca2+ overlay and "Stains-All" techniques. Calreticulin was also localized to smooth muscle sarcoplasmic reticulum by the indirect immunofluorescence staining of smooth muscle cells with anti-calreticulin antibodies. Furthermore, both liver and uterine smooth muscle were found to contain high levels of mRNA encoding calreticulin, whereas no mRNA encoding calsequestrin was detected. We have employed an ammonium sulfate precipitation followed by Mono Q fast protein liquid chromatography, as a method by which calsequestrin and calreticulin can be isolated from whole tissue homogenates, and by which they can be clearly resolved from one another, even where present in the same tissue. Calreticulin was isolated from rabbit and bovine liver, rabbit brain, rabbit and porcine uterus, and bovine pancreas and was identified by its amino-terminal amino acid sequence. Calsequestrin cannot be detected in preparations from whole liver tissue, and only very small amounts of calsequestrin are detectable in ammonium sulfate extracts of uterine smooth muscle. We conclude that calreticulin, and not calsequestrin, is a major Ca2+ binding protein in liver endoplasmic reticulum and in uterine smooth muscle sarcoplasmic reticulum. Calsequestrin and calreticulin may perform parallel functions in the lumen of the sarcoplasmic and endoplasmic reticulum.  相似文献   

3.
In a search for the non-muscle equivalent of calsequestrin (the low-affinity high-capacity Ca2(+)-binding protein responsible for Ca2+ storage within the terminal cisternae of the sarcoplasmic reticulum), acidic proteins were extracted from rat liver and brain microsomal preparations and purified by column chromatography. No calsequestrin was observed in these extracts, but the N-terminal amino acid sequence of the major Ca2(+)-binding protein of the liver microsomal fraction was determined and found to correspond to that of calreticulin. This protein was found to bind approx. 50 mol of Ca2+/mol of protein, with low affinity (average Kd approx. 1.0 mM). A monoclonal antibody, C6, raised against skeletal-muscle calsequestrin cross-reacted with calreticulin in SDS/PAGE immunoblots, but polyclonal antibodies reacted with native calreticulin only weakly, or not at all, after SDS denaturation. Immuno-gold decoration of liver ultrathin cryosections with affinity-purified antibodies against liver calreticulin revealed luminal labelling of vacuolar profiles indistinguishable from calciosomes, the subcellular structures previously identified by the use of anti-calsequestrin antibodies. We conclude that calreticulin is the Ca2(+)-binding protein segregated within the calciosome lumen, previously described as being calsequestrin-like. Because of its properties and intraluminal location, calreticulin might play a critical role in Ca2+ storage and release in non-muscle cells, similar to that played by calsequestrin in the muscle sarcoplasmic reticulum.  相似文献   

4.
Histidine-rich Ca(2+)-binding protein (HRC) is a 170 kDa protein that can be identified in the isolated sarcoplasmic reticulum from rabbit skeletal muscle by its ability to bind [125I]low-density lipoprotein on blots after SDS-PAGE and that appears to be bound to the junctional membrane through calcium bridges. Molecular cDNA cloning of this protein predicts the existence of a Ca(2+)-binding domain and of a distinct heavy-metal binding domain at the cystein-rich COOH-terminus. Here we demonstrate, using radioactive ligand blot techniques, that HRC protein binds 45Ca at low affinity, as well as being able to bind 65Zn, but at different sites, that are largely inhibitable by prior reductive alkylation of the protein. In contrast to Ca(2+)-binding protein calsequestrin not having detectable 65Zn-binding sites, HRC protein bound selectively to immobilized Zn2+ on IDA-agarose affinity columns. Our results also indicate that rabbit and human 140 kDa HRC protein have common properties.  相似文献   

5.
Calciosomes are intracellular organelles in HL-60 cells, neutrophils and various other cell types, characterized by their content of a Ca2+-binding protein that is biochemically and immunologically similar to calsequestrin (CS) from muscle cells. In subcellular fractionation studies the CS-like protein copurifies with functional markers of the inositol 1,4,5-trisphosphate (IP3) releasable Ca2+-store. These markers (ATP-dependent Ca2+-uptake and IP3-induced Ca2+-release) show a subcellular distribution which is clearly distinct from the endoplasmic reticulum and other organelles. In morphological studies, antibodies against rabbit skeletal muscle CS protein specifically stained hitherto unrecognized vesicles with a diameter between 50 and 250 nm. Thus both, biochemical and morphological studies indicate that the calsequestrin containing intracellular Ca2+-store, now referred to as the calciosome, is distinct from other known organelles such as endoplasmic reticulum. Calciosomes are likely to play an important role in intracellular Ca2+-homeostasis. They are possibly the intracellular target of inositol 1,4,5-trisphosphate and thus the source of Ca2+ that is redistributed into the cytosol following surface receptor activation in non-muscle cells.  相似文献   

6.
Membrane fractions prepared from smooth muscle of the pig stomach (antral part) contain two Ca2+-dependent phosphoprotein intermediates belonging to different Ca2+-transport ATPases. These alkali-labile phosphoproteins can be separated by electrophoresis in acid medium. The 130 kDa phosphoprotein resembles a corresponding protein in the erythrocyte membrane, whereas the 100 kDa protein resembles that of the Ca2+-transport ATPase in sarcoplasmic reticulum from skeletal muscle. These resemblances are expressed in terms of Mr, reaction to La3+ and in a similar proteolytic degradation pattern. The presence of the calmodulin-stimulated ATPase in mixed membranes from smooth muscle is confirmed by its binding of calmodulin and antibodies against erythrocyte Ca2+-transport ATPase, whereas such binding does not occur with proteins present in the presumed endoplasmic reticulum from smooth muscle.  相似文献   

7.
Calsequestrin is by far the most abundant Ca(2+)-binding protein in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle. It allows the Ca2+ required for contraction to be stored at total concentrations of up to 20mM, while the free Ca2+ concentration remains at approximately 1mM. This storage capacity confers upon muscle the ability to contract frequently with minimal run-down in tension. Calsequestrin is highly acidic, containing up to 50 Ca(2+)-binding sites, which are formed simply by clustering of two or more acidic residues. The Kd for Ca2+ binding is between 1 and 100 microM, depending on the isoform, species and the presence of other cations. Calsequestrin monomers have a molecular mass of approximately 40 kDa and contain approximately 400 residues. The monomer contains three domains each with a compact alpha-helical/beta-sheet thioredoxin fold which is stable in the presence of Ca2+. The protein polymerises when Ca2+ concentrations approach 1mM. The polymer is anchored at one end to ryanodine receptor (RyR) Ca2+ release channels either via the intrinsic membrane proteins triadin and junctin or by binding directly to the RyR. It is becoming clear that calsequestrin has several functions in the lumen of the SR in addition to its well-recognised role as a Ca2+ buffer. Firstly, it is a luminal regulator of RyR activity. When triadin and junctin are present, calsequestrin maximally inhibits the Ca2+ release channel when the free Ca2+ concentration in the SR lumen is 1mM. The inhibition is relieved when the Ca2+ concentration alters, either because of small changes in the conformation of calsequestrin or its dissociation from the junctional face membrane. These changes in calsequestrin's association with the RyR amplify the direct effects of luminal Ca2+ concentration on RyR activity. In addition, calsequestrin activates purified RyRs lacking triadin and junctin. Further roles for calsequestrin are indicated by the kinase activity of the protein, its thioredoxin-like structure and its influence over store operated Ca2+ entry. Clearly, calsequestrin plays a major role in calcium homeostasis that extends well beyond its ability to buffer Ca2+ ions.  相似文献   

8.
As recently demonstrated by overlay assays using calsequestrin-peroxidase conjugates, the major 63 kDa Ca(2+)-binding protein of the sarcoplasmic reticulum forms complexes with itself, and with junctin (26 kDa), triadin (94 kDa) and the ryanodine receptor (560 kDa) [Glover, L., Culligan, K., Cala, S., Mulvey, C. & Ohlendieck, K. (2001) Biochim. Biophys. Acta1515, 120-132]. Here, we show that variations in the relative abundance of these four central elements of excitation-contraction coupling in different fiber types, and during chronic electrostimulation-induced fiber type transitions, are reflected by distinct alterations in the calsequestrin overlay binding patterns. Comparative immunoblotting with antibodies to markers of the junctional sarcoplasmic reticulum, in combination with the calsequestrin overlay binding patterns, confirmed a lower ryanodine receptor expression in slow soleus muscle compared to fast fibers, and revealed a drastic reduction of the RyR1 isoform in chronic low-frequency stimulated tibialis anterior muscle. The fast-to-slow transition process included a distinct reduction in fast calsequestrin and triadin and a concomitant reduction in calsequestrin binding to these sarcoplasmic reticulum elements. The calsequestrin-binding protein junctin was not affected by the muscle transformation process. The increase in calsequestrin and decrease in junctin expression during postnatal development resulted in similar changes in the intensity of binding of the calsequestrin conjugate to these sarcoplasmic reticulum components. Aged skeletal muscle fibers tended towards reduced protein interactions within the calsequestrin complex. This agrees with the physiological concept that the key regulators of Ca(2+) homeostasis exist in a supramolecular membrane assembly and that protein-protein interactions are affected by isoform shifting underlying the finely tuned adaptation of muscle fibers to changed functional demands.  相似文献   

9.
The interaction of ruthenium red, [(NH3)5Ru-O-Ru(NH3)4-O-Ru(NH3)5]Cl6.4H2O, with various Ca2(+)-binding proteins was studied. Ruthenium red inhibited Ca2+ binding to the sarcoplasmic reticulum protein, calsequestrin, immobilized on Sepharose 4B. Furthermore, ruthenium red bound to calsequestrin with high affinity (Kd = 0.7 microM; Bmax = 218 nmol/mg protein). The dye stained calsequestrin in sodium dodecyl sulfate-polyacrylamide gels or on nitrocellulose paper and was displaced by Ca2+ (Ki = 1.4 mM). The specificity of ruthenium red staining of several Ca2(+)-binding proteins was investigated by comparison with two other detection methods, 45Ca2+ autoradiography and the Stains-all reaction. Ruthenium red bound to the same proteins detected by the 45Ca2+ overlay technique. Ruthenium red stained both the erythrocyte Band 3 anion transporter and the Ca2(+)-ATPase of skeletal muscle sarcoplasmic reticulum. Ruthenium red also stained the EF hand conformation Ca2(+)-binding proteins, calmodulin, troponin C, and S-100. This inorganic dye provides a simple, rapid method for detecting various types of Ca2(+)-binding proteins following electrophoresis.  相似文献   

10.
Treatment of cardiac or skeletal muscle sarcoplasmic reticulum vesicles with 0.1 M sodium carbonate selectively extracts both the Ca2+-binding protein calsequestrin and the two "intrinsic glycoproteins," while leaving the Ca2+-dependent ATPase membrane bound. Phenyl-Sepharose chromatography in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and high salt (0.5 M NaCl) readily fractionates these solubilized proteins into a Ca2+-elutable fraction, which contains purified calsequestrin, and a low ionic strength elutable fraction, which contains one of the two intrinsic glycoproteins. Elution of calsequestrin from phenyl-Sepharose occurs near 1 mM Ca2+. Copurifying with calsequestrin are an homologous set of high molecular weight proteins, which like calsequestrin stain blue with Stains-All. These proteins are present in trace amounts and do not correspond to any sarcoplasmic reticulum proteins previously identified. Elution of calsequestrin from phenyl-Sepharose is consistent with the Ca2+-binding protein losing its hydrophobic character in the presence of millimolar Ca2+. This behavior is converse to that observed for several calmodulin-like proteins, which are eluted from hydrophobic gels in the presence of EGTA. The high yield and purity of calsequestrin prepared by this method makes possible a unique system for studying what may be a distinct class of Ca2+-binding proteins.  相似文献   

11.
The chronic stimulation of predominantly fast-twitch mammalian skeletal muscle causes a transformation to physiological characteristics of slow-twitch skeletal muscle. Here, we report the effects of chronic stimulation on the protein components of the sarcoplasmic reticulum and transverse tubular membranes which are directly involved in excitation-contraction coupling. Comparison of protein composition of microsomal fractions from control and chronically stimulated muscle was performed by immunoblot analysis and also by staining with Coomassie blue or the cationic carbocyanine dye Stains-all. Consistent with previous experiments, a greatly reduced density was observed for the fast-twitch isozyme of Ca(2+)-ATPase, while the expression of the slow-twitch Ca(2+)-ATPase was found to be greatly enhanced. Components of the sarcolemma (Na+/K(+)-ATPase, dystrophin-glycoprotein complex) and the free sarcoplasmic reticulum (Ca(2+)-binding protein sarcalumenin and a 53-kDa glycoprotein) were not affected by chronic stimulation. The relative abundance of calsequestrin was slightly reduced in transformed skeletal muscle. However, the expression of the ryanodine receptor/Ca(Ca2+)-release channel from junctional sarcoplasmic reticulum and the transverse tubular dihydropyridine-sensitive Ca2+ channel, as well as two junctional sarcoplasmic reticulum proteins of 90 kDa and 94 kDa, was greatly suppressed in transformed muscle. Thus, the expression of the major protein components of the triad junction involved in excitation-contraction coupling is suppressed, while the expression of other muscle membrane proteins is not affected in chronically stimulated muscle.  相似文献   

12.
Ca(2+)-handling proteins are important regulators of the excitation-contraction-relaxation cycle in skeletal muscle fibres. Although domain binding studies suggest protein coupling between various Ca(2+)-regulatory elements of triad junctions, no direct biochemical evidence exists demonstrating high-molecular-mass complex formation in native microsomal membranes. Calsequestrin represents the protein backbone of the luminal Ca(2+) reservoir and thereby occupies a central position in Ca(2+) homeostasis; we therefore used calsequestrin blot overlay assays in order to determine complex formation between sarcoplasmic reticulum components. Peroxidase-conjugated calsequestrin clearly labelled four major protein bands in one-dimensional (1D) and 2D electrophoretically separated membrane preparations from adult skeletal muscle. Immunoblotting identified the calsequestrin-binding proteins of approximately 26, 63, 94 and 560 kDa as junctin, calsequestrin itself, triadin and the ryanodine receptor, respectively. Protein-protein coupling could be modified by ionic detergents, non-ionic detergents, changes in Ca(2+) concentration, as well as antibody and purified calsequestrin binding. Importantly, complex formation as determined by blot overlay assays was confirmed by differential co-immunoprecipitation experiments and chemical crosslinking analysis. Hence, the key Ca(2+)-regulatory membrane components of skeletal muscle form a supramolecular membrane assembly. The formation of this tightly associated junctional sarcoplasmic reticulum complex seems to underlie the physiological regulation of skeletal muscle contraction and relaxation, which supports the biochemical concept that Ca(2+) homeostasis is regulated by direct protein-protein interactions.  相似文献   

13.
Intralumenal sarcoplasmic reticulum Ca(2+)-binding proteins   总被引:3,自引:0,他引:3  
The sarcoplasmic reticulum (SR) controls the level of intracellular Ca2+ in cardiac and skeletal muscle by storing and releasing Ca2+. A set of intralumenal SR Ca(2+)-binding proteins has been identified that may serve important roles in SR Ca2+ storage and mobilization. The most prominent of these SR proteins, calsequestrin, is discretely localized to junctional SR. Other intralumenal proteins are more widely distributed throughout the SR. All of these intralumenal SR Ca(2+)-binding proteins are acidic, stain blue with dye Stains-All, and appear to be substrates for casein kinase II. The biochemistry and cell biology of lumenal SR proteins may conform to a paradigm now emerging from the study of endoplasmic reticulum proteins.  相似文献   

14.
HL-60 cells possess a 60 kDa Ca2(+)-binding protein that is contained in a discrete subcellular compartment, referred to as calciosomes. Subcellular fractionation studies have suggested that, in HL-60 cells, this intracellular compartment is an Ins(1,4,5)P3-sensitive Ca2+ store. In order to investigate the structural relationship of the 60 kDa Ca2(+)-binding protein of HL-60 cells to other Ca2(+)-binding proteins, we have purified the protein by ammonium sulphate extraction, acid precipitation, and DEAE-cellulose and phenyl-Sepharose column chromatography. The N-terminal sequence of the protein shows 93% identity with rabbit muscle calreticulin, a recently cloned sarcoplasmic reticulum Ca2(+)-binding protein. No amino acid sequence similarity with calsequestrin was found, although the purified protein cross-reacted with anti-calsequestrin antibodies. The calreticulin-related protein of HL-60 cells might play a role as an intravesicular Ca2(+)-binding protein of an Ins(1,4,5)P3-sensitive Ca2+ store.  相似文献   

15.
Identification of a calsequestrin-like protein from sea urchin eggs   总被引:7,自引:0,他引:7  
Following studies on calcium transport by isolated smooth endoplasmic reticulum from unfertilized sea urchin eggs (Oberdorf, J. A., Head, J. F., and Kaminer, B. (1986) J. Cell Biol. 102, 2205-2210) we have purified and partially characterized a calsequestrin-like protein from this organelle isolated from eggs from Strongylocentrotus droebachiensis and Arbacia punctulata. Muscle calsequestrin from sarcoplasmic reticulum is well characterized as a calcium storage protein. The egg protein resembles calsequestrin in its behavior in purification steps, electrophoretic mobility, blue staining with Stains-all on polyacrylamide gels, and its calcium binding and amino acid composition. Purification was attained with DEAE-cellulose and hydroxyapatite chromatography. The egg protein Mr of 58,000 in the Laemmli gel system is reduced to 54,000 under Weber-Osborn (neutral) conditions, thus showing a pH dependence in its mobility, although less than occurs with muscle calsequestrins. 25% of its amino acids are acidic and 10% basic. It binds 309 nmol of Ca2+/mg of protein, within the range reported for cardiac calsequestrin. Antigenically, the sea urchin egg protein is related to cardiac calsequestrin capable of binding anti-cardiac calsequestrin antibody.  相似文献   

16.
Human spermatozoa were investigated for the presence of protein(s) recognized by antibodies against calsequestrin, the high capacity, moderate affinity Ca2(+)-binding protein, originally described in striated muscle fibers. Western immunoblots of detergent-soluble sperm extracts probed with polyclonal antibodies raised against human skeletal muscle calsequestrin identified a strongly cross-reactive protein. This protein resembles muscle calsequestrin in many respects. In fact, its migration in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is pH dependent, its apparent molecular mass being 64 kDa in alkaline SDS-PAGE and 44 kDa in neutral SDS-PAGE; its isoelectric point is acidic (4.6); it is metachromatically stained blue by the carboxycyanine dye, Stains-All; it is a Ca2(+)-binding protein (45Ca blot overlay). Indirect immunofluorescence experiments showed that the immunoreactive protein has an intracellular localization confined to the tail mid-piece. From these findings we conclude that human sperm cells express a protein structurally and antigenically related to skeletal muscle calsequestrin; a basis for a novel interpretation of Ca2(+)-mediated events in spermatozoa is thus provided.  相似文献   

17.
Calsequestrin is a Ca2+-binding protein located intraluminally in the junctional sarcoplasmic reticulum (SR) of striated muscle. In this study, Ca2+ binding to cardiac calsequestrin was assessed directly by equilibrium dialysis and correlated with effects on protein conformation and calsequestrin's ability to interact with other SR proteins. Cardiac calsequestrin bound 800-900 nmol of Ca2+/mg of protein (35-40 mol of Ca2+/mol of calsequestrin). Associated with Ca2+ binding to cardiac calsequestrin was a loss in protein hydrophobicity, as revealed with use of absorbance difference spectroscopy, fluorescence emission spectroscopy, and photoaffinity labeling with the hydrophobic probe 3-(trifluoromethyl)-3-(m-[125]iodophenyl)diazirine. Ca2+ binding to cardiac calsequestrin also caused a large change in its hydrodynamic character, almost doubling the sedimentation coefficient. We observed that cardiac calsequestrin was very resistant to several proteases after binding Ca2+, consistent with a global effect of Ca2+ on protein conformation. Moreover, Ca2+ binding to cardiac calsequestrin completely prevented its interaction with several calsequestrin-binding proteins, which we identified in cardiac junctional SR vesicles for the first time. The principal calsequestrin-binding protein identified in junctional SR vesicles exhibited an apparent Mr of 26,000 in sodium dodecyl sulfate-polyacrylamide gels. This 26-kDa calsequestrin-binding protein was greatly reduced in free SR vesicles and absent from sarcolemmal vesicles and was different from phospholamban, an SR regulatory protein exhibiting a similar molecular weight. Our results suggest that the specific interaction of calsequestrin with this 26-kDa protein may be regulated by Ca2+ concentration in intact cardiac muscle, when the Ca2+ concentration inside the junctional SR falls to submillimolar levels during coupling of excitation to contraction.  相似文献   

18.
cDNA cloning was used to deduce the complete amino acid sequence of canine cardiac calsequestrin, the principal Ca2+-binding protein of cardiac junctional sarcoplasmic reticulum. Cardiac calsequestrin contains 391 amino acid residues plus a 19-residue amino-terminal signal sequence. The molecular weight of the mature protein, excluding carbohydrate, is 45,269. Cardiac calsequestrin is highly acidic, and a striking feature is the enrichment of acidic residues (60%) within the 63 carboxyl-terminal residues. No part of the sequence contains EF hand Ca2+-binding structures. The photo-affinity probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine was used to localize the Ca2+-regulated hydrophobic site to amino acid residues 192-223. The cardiac and skeletal muscle isoforms of calsequestrin (Fliegel, L., Ohnishi, M., Carpenter, M. R., Khanna, V. K., Reithmeier, R. A. F., and MacLennan, D. H. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 1167-1171), although the products of different genes, are 65% identical, are acidic, and share one glycosylation site. However, cardiac calsequestrin has several unique features. First, it has a 31-amino acid extension at its carboxyl terminus (residues 361-391), which contains 71% acidic residues and a second glycosylation site. Second, its mRNA contains a second open reading frame with the capacity to code for a 111-amino acid protein. Third, contrary to the restricted expression of the fast skeletal isoform, cardiac calsequestrin mRNA is present in both cardiac and slow skeletal muscle, but not in fast skeletal muscle. We conclude that the deduced amino acid sequence of cardiac calsequestrin is consistent with its ability to bind large amounts of Ca2+ (40 mol of Ca2+/mol of calsequestrin). The protein probably binds Ca2+ by acting as a charged surface rather than by presenting multiple discrete Ca2+-binding sites.  相似文献   

19.
Duchenne muscular dystrophy represents one of the most common hereditary diseases. Abnormal ion handling is believed to render dystrophin-deficient muscle fibres more susceptible to necrosis. Although a reduced Ca(2+) buffering capacity has been shown to exist in the dystrophic sarcoplasmic reticulum, surprisingly no changes in the abundance of the main luminal Ca(2+) reservoir protein calsequestrin have been observed in microsomal preparations. To address this unexpected finding and eliminate potential technical artefacts of subcellular fractionation protocols, we employed a comparative subproteomics approach with total mouse skeletal muscle extracts. Immunoblotting, mass spectrometry and labelling of the entire muscle protein complement with the cationic carbocyanine dye 'Stains-All' was performed in order to evaluate the fate of major Ca(2+)-binding proteins in dystrophin-deficient skeletal muscle fibres. In contrast to a relatively comparable expression pattern of the main protein population in normal vs. dystrophic fibres, our analysis showed that the expression of key Ca(2+)-binding proteins of the luminal sarcoplasmic reticulum is drastically reduced. This included the main terminal cisternae constituent, calsequestrin, and the previously implicated Ca(2+)-shuttle element, sarcalumenin. In contrast, the 'Stains-All'-positive protein spot, representing the cytosolic Ca(2+)-binding component, calmodulin, was not changed in dystrophin-deficient fibres. The reduced 2D 'Stains-All' pattern of luminal Ca(2+)-binding proteins in mdx preparations supports the calcium hypothesis of muscular dystrophy. The previously described impaired Ca(2+) buffering capacity of the dystrophic sarcoplasmic reticulum is probably caused by a reduction in luminal Ca(2+)-binding proteins, including calsequestrin.  相似文献   

20.
m-Maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) was used to cross-link the protein components of rabbit skeletal muscle sarcoplasmic reticulum. Analysis of cross-linked material by SDS-polyacrylamide gel electrophoresis showed that both the (Ca(2+)-Mg2+)-ATPase and the 53 kDa glycoprotein could be cross-linked, since the amount of protein at the locations on the gel corresponding to uncross-linked material was reduced in the presence of 1.0 mM MBS. Cross-linked products of 130 kDa, 200-260 kDa and approx. 300 kDa were identified. Probing the cross-linked products with monoclonal antibodies against ATPase, 53 kDa glycoprotein and calsequestrin revealed no cross-linked products containing the ATPase and either calsequestrin or the 53 kDa glycoprotein over the range of molecular weights examined here. Possible interactions between the ATPase and calsequestrin or the 53 kDa glycoprotein were also investigated by studying the ATPase activity for the purified ATPase and for the ATPase in sarcoplasmic reticulum vesicles made permeable to Ca2+ with A23187. Effects of Ca2+ and ATP on the two systems were indistinguishable, providing no evidence for a major modulatory role of calsequestrin or the 53 kDa glycoprotein on the ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号