首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A unique set of high molecular weight proteins was identified in junctional sarcoplasmic reticulum (SR) vesicles isolated from both cardiac muscle and skeletal muscle. These high Mr proteins were not present in free SR vesicles isolated from either tissue, nor were they observed in purified sarcolemmal fractions. The junctional SR high Mr proteins migrated as doublets in sodium dodecyl sulfate-polyacrylamide gels and exhibited apparent Mr values between 290,000 and 350,000. The high Mr proteins bound calmodulin; they were the principal proteins labeled in the cardiac and skeletal muscle SR subfractions by azido-125I-calmodulin. The high Mr proteins were also substrates for an endogenous Ca2+-calmodulin-dependent protein kinase activity, as well as exogenously added catalytic subunit of cAMP-dependent protein kinase. In addition, the junctional SR high Mr proteins were the major SR proteins degraded by a Ca2+-activated protease purified from smooth muscle. Control experiments verified the separation of junctional SR vesicles and free SR vesicles from both muscle types. Junctional SR vesicles were enriched in calsequestrin, and they exhibited Ca2+ uptake which was stimulated up to 10-fold by either ryanodine or ruthenium red. Free SR vesicles were deficient in calsequestrin and were insensitive to these two agents. Localization of the cardiac and skeletal muscle high Mr proteins to the junctional SR, coupled with demonstration of their nearly identical biochemical properties, suggests that the proteins are homologous and are likely to have similar functions in both types of striated muscle.  相似文献   

2.
The addition of polylysine to a heavy fraction of sarcoplasmic reticulum (SR) vesicles produces a rapid Ca2+ release with no appreciable lag period. The polylysine concentration for half-maximal activation (C1/2) is approximately 0.99 micrograms/ml, or 0.3 microM, the lowest C 1/2 for Ca2+ release-inducing reagents reported in the literature. The time course and the [Ca2+] dependence of polylysine-induced release are similar to those of caffeine-induced Ca2+ release. At higher concentrations of polylysine (e.g., 10 micrograms/ml), however, little or no Ca2+ release occurs. Upon photolysis of SR vesicles with the photocrosslinkable radiolabeled polylysine derivative, [3H]succinimidyl azido benzoate polylysine, 0.28 and 0.52-1.2 mol polylysine were bound to 1 mol of the 400-kDa foot protein at activating (3 micrograms/ml) and inhibitory (10 micrograms/ml) concentrations of polylysine, respectively. On the other hand, the amounts of polylysine bound to the other SR proteins (mol/mol) were negligible (e.g., less than or equal to 0.0127 mol polylysine/mol calsequestrin). This suggests that the binding of polylysine to the foot protein is responsible not only for the induction of release but also for inactivation. These results provide direct evidence that the receptor for the chemical trigger of Ca2+ release is localized within the foot protein. Ruthenium red, which inhibits polylysine-induced Ca2+ release, does not inhibit polylysine binding to the foot protein, suggesting that the polylysine binding domain of the foot protein is different from the channel domain.  相似文献   

3.
Developmental changes in cardiac sarcoplasmic reticulum in sheep   总被引:4,自引:0,他引:4  
Physiologic studies suggest that the myocardium from fetal and newborn sheep functions at a higher contractile state with decreased contractile reserve when compared to the myocardium of adult sheep. To investigate the role of Ca2+ transport by the sarcoplasmic reticulum (SR) in this phenomenon, we studied functional properties and protein composition of cardiac SR vesicles isolated from fetal and maternal sheep. Active accumulation of Ca2+ and the density of the Ca2+ pump protein were decreased 60% (p less than 0.01) in fetal SR vesicles; however Ca2+-dependent ATPase activity was decreased only 30% (p less than 0.01). This decreased difference in Ca2+-dependent ATPase activities was accounted for by the higher turnover number measured for the Ca2+ pump of fetal SR vesicles (1.6-fold increased, p less than 0.01). Ryanodine, an alkaloid which blocks Ca2+ efflux from cardiac SR vesicles, stimulated Ca2+ uptake more effectively in fetal SR vesicles, suggesting that these vesicles had a higher passive Ca2+ permeability during conditions of active Ca2+ transport. Protein compositional studies showed that the content of phospholamban was decreased in fetal SR vesicles and was correlated with the decrease in the density of Ca2+ pumps. In contrast, the content of calsequestrin and the density of [3H]nitrendipine-binding sites were increased approximately 2-fold in fetal SR vesicles. These functional and compositional differences between SR vesicles isolated from fetal and maternal sheep may indicate that there is relatively more junctional SR in fetal hearts. Since the SR regulates muscle contraction by modulating intracellular Ca2+ concentration, it is possible that developmental alterations in cardiac SR may contribute to the decreased myocardial contractile reserve noted in fetal sheep.  相似文献   

4.
HRC (histidine-rich Ca2+ binding protein) has been identified from skeletal and cardiac muscle and shown to bind Ca2+ with low affinity and high capacity that is reminiscent of calsequestrin. The physiological role of HRC is largely unknown. In this study, we show that HRC exists as a multimeric complex (probably larger than a pentamer) under physiological conditions. At higher Ca2+ concentrations, the complex appeared to dissociate into dimers or trimers that form a more relaxed structure. This is in striking contrast to the characteristics of calsequestrin. An earlier immuno-electron microscopic study showed that HRC resides in the lumen of the sarcoplasmic reticulum (SR), but this conclusion has been challenged by other data. By tryptic digestion and biotinylation of SR vesicles, we provide compelling evidence showing that HRC is indeed present in the lumen of the SR.  相似文献   

5.
Longitudinal tubules and junctional sarcoplasmic reticulum (SR) were prepared from heart muscle microsomes by Ca2+-phosphate loading followed by sucrose density gradient centrifugation. The longitudinal SR had a high Ca2+ loading rate (0.93 +/- 0.08 mumol.mg-1.min) which was unchanged by addition of ruthenium red. Junctional SR had a low Ca2+ loading rate (0.16 +/- 0.02 mumol.mg-1.min) which was enhanced about 5-fold by ruthenium red. Junctional SR had feet structures observed by electron microscopy and a high molecular weight protein with Mr of 340,000, whereas longitudinal SR was essentially devoid of both. Thus, these subfractions have similar characteristics to longitudinal and junctional terminal cisternae of SR from fast twitch skeletal muscle. Ryanodine binding was localized to junctional cardiac SR as determined by [3H]ryanodine binding. Scatchard analysis of the binding data showed two types of binding (high affinity, Kd approximately 7.9 nM; low affinity, Kd approximately 1 microM), contrasting with skeletal junctional terminal cisternae where only one site with Kd of approximately 50 nM was observed. The ruthenium red enhancement of Ca2+ loading rate in junctional cardiac SR was blocked by pretreatment with low concentrations of ryanodine as reported for junctional terminal cisternae of skeletal muscle SR. The Ca2+ loading rate of junctional cardiac SR was enhanced by preincubation with high concentrations of ryanodine. The apparent inhibition constant (Ki approximately 7 nM) and stimulation constant (Km approximately 1.1 microM) for ryanodine on junctional SR corresponded to the Kd for high affinity binding (Kd approximately 7.9 nM) and low affinity binding (Kd approximately 1.1 microM), respectively. These results suggest that high affinity ryanodine binding locks the Ca2+ release channels in the open state and that low affinity binding closes the Ca2+ release channels of the junctional cardiac SR. The characteristics of the Ca2+ release channels of junctional cardiac SR appear to be similar to that of skeletal muscle SR, but the Ca2+ release channels of cardiac SR are more sensitive to ryanodine.  相似文献   

6.
Triadin is an integral membrane protein of the junctional sarcoplasmic reticulum that binds to the high capacity Ca(2+)-binding protein calsequestrin and anchors it to the ryanodine receptor. The lumenal domain of triadin contains multiple repeats of alternating lysine and glutamic acid residues, which have been defined as KEKE motifs and have been proposed to promote protein associations. Here we identified the specific residues of triadin responsible for binding to calsequestrin by mutational analysis of triadin 1, the major cardiac isoform. A series of deletional fusion proteins of triadin 1 was generated, and by using metabolically labeled calsequestrin in filter-overlay assays, the calsequestrin-binding domain of triadin 1 was localized to a single KEKE motif comprised of 25 amino acids. Alanine mutagenesis within this motif demonstrated that the critical amino acids of triadin binding to calsequestrin are the even-numbered residues Lys(210), Lys(212), Glu(214), Lys(216), Gly(218), Gln(220), Lys(222), and Lys(224). Replacement of the odd-numbered residues within this motif by alanine had no effect on calsequestrin binding to triadin. The results suggest a model in which residues 210-224 of triadin form a beta-strand, with the even-numbered residues in the strand interacting with charged residues of calsequestrin, stabilizing a "polar zipper" that links the two proteins together. This small, highly charged beta-strand of triadin may tether calsequestrin to the junctional face membrane, allowing calsequestrin to sequester Ca(2+) in the vicinity of the ryanodine receptor during Ca(2+) uptake and Ca(2+) release.  相似文献   

7.
In skeletal muscle, the junctional sarcoplasmic reticulum (JFM) plays a crucial role in excitation-contraction coupling and Ca2+ release. In the present report, the sarcoplasmic reticulum (SR) was fractionated into longitudinal SR (LSR), terminal cisternae (TC), and JFM. Each fraction had a unique protein profile as detected by SDS-polyacrylamide gel electrophoresis as well as specific Ca2+ binding proteins as judged by 45Ca ligand overlay of nitrocellulose blots. Ca2+ binding proteins of LSR were the Ca2+ ATPase (Mr of 115K), an 80K polypeptide, and the intrinsic glycoprotein (Mr of 160K); Ca2+ binding proteins of JFM were polypeptides with the following Mr values: 350K and 325K (feet components), 200K, 170K, a doublet of 140K, 118K, 65K (calsequestrin), and 52K. Measurements of Ca2+ binding to SR fractions by equilibrium dialysis indicated that 8-17 nmol Ca2+/mg of protein was specifically bound. After EDTA extraction of calsequestrin, JFM still bound Ca2+ (5-6 nmol/mg of protein), suggesting the existence of specific Ca2+ binding sites. The Ca2+ binding sites of Ca2+-gated Ca2+ release channels might be on two JFM polypeptides (Mr's of 350K and 170K) which are putative channel constituents (F. Zorzato, A. Margreth, and P. Volpe (1986) J. Biol. Chem. 261, 13252-13257).  相似文献   

8.
The time course of changes in the intravesicular Ca2+ concentration ([Ca2+]i) in terminal cisternal sarcoplasmic reticulum vesicles upon the induction of Ca2+ release was investigated by using tetramethylmurexide (TMX) as an intravesicular Ca2+ probe. Upon the addition of polylysine at the concentration that led to the maximum rate of Ca2+ release, [Ca2+]i decreased monotonically in parallel with Ca2+ release. Upon induction of Ca2+ release by lower concentrations of polylysine, [Ca2+]i first increased above the resting level, followed by a decrease well below it. The release triggers polylysine, and caffeine brought about dissociation of calcium that bound to a nonvesicular membrane segment consisting of the junctional face membrane and calsequestrin bound to it, as monitored with TMX. No Ca2+ dissociation from calsequestrin-free junctional face membranes or from the dissociated calsequestrin was produced by release triggers, but upon reassociation of the dissociated calsequestrin and the junctional face membrane, Ca2+ dissociation by triggers was restored. On the basis of these results, we propose that the release triggers elicit a signal in the junctional face membrane, presumably in the foot protein moiety, which is then transmitted to calsequestrin, leading to the dissociation of the bound calcium; and in SR vesicles, to the transient increase of [Ca2+]i, and subsequently release across the membrane.  相似文献   

9.
Calsequestrin is by far the most abundant Ca(2+)-binding protein in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle. It allows the Ca2+ required for contraction to be stored at total concentrations of up to 20mM, while the free Ca2+ concentration remains at approximately 1mM. This storage capacity confers upon muscle the ability to contract frequently with minimal run-down in tension. Calsequestrin is highly acidic, containing up to 50 Ca(2+)-binding sites, which are formed simply by clustering of two or more acidic residues. The Kd for Ca2+ binding is between 1 and 100 microM, depending on the isoform, species and the presence of other cations. Calsequestrin monomers have a molecular mass of approximately 40 kDa and contain approximately 400 residues. The monomer contains three domains each with a compact alpha-helical/beta-sheet thioredoxin fold which is stable in the presence of Ca2+. The protein polymerises when Ca2+ concentrations approach 1mM. The polymer is anchored at one end to ryanodine receptor (RyR) Ca2+ release channels either via the intrinsic membrane proteins triadin and junctin or by binding directly to the RyR. It is becoming clear that calsequestrin has several functions in the lumen of the SR in addition to its well-recognised role as a Ca2+ buffer. Firstly, it is a luminal regulator of RyR activity. When triadin and junctin are present, calsequestrin maximally inhibits the Ca2+ release channel when the free Ca2+ concentration in the SR lumen is 1mM. The inhibition is relieved when the Ca2+ concentration alters, either because of small changes in the conformation of calsequestrin or its dissociation from the junctional face membrane. These changes in calsequestrin's association with the RyR amplify the direct effects of luminal Ca2+ concentration on RyR activity. In addition, calsequestrin activates purified RyRs lacking triadin and junctin. Further roles for calsequestrin are indicated by the kinase activity of the protein, its thioredoxin-like structure and its influence over store operated Ca2+ entry. Clearly, calsequestrin plays a major role in calcium homeostasis that extends well beyond its ability to buffer Ca2+ ions.  相似文献   

10.
The photooxidizing xanthene dye rose bengal (10 nM to 1 microM) stimulates rapid Ca2+ release from skeletal muscle sarcoplasmic reticulum vesicles. Following fusion of sarcoplasmic reticulum (SR) vesicles to an artificial bilayer, reconstituted Ca2+ channel activity is stimulated by nanomolar concentrations of rose bengal in the presence of a broad-spectrum light source. Rose bengal does not appear to affect K+ channels present in the SR. Following reconstitution of the sulfhydryl-activated 106-kDa Ca2+ channel protein into a bilayer, rose bengal activates the isolated protein in a light-dependent manner. Ryanodine at a concentration of 10 nM is shown to lock the 106-kDa channel protein in a subconductance state which can be reversed by subsequent addition of 500 nM rose bengal. This apparent displacement of bound ryanodine by nanomolar concentrations of rose bengal is also directly observed upon measurement of [3H]ryanodine binding to JSR vesicles. These observations indicate that photooxidation of rose bengal causes a stimulation of the Ca2+ release protein from skeletal muscle sarcoplasmic reticulum by interacting with the ryanodine binding site. Furthermore, similar effects of rose bengal on isolated SR vesicles, on single channel measurements following fusion of SR vesicles, and following incorporation of the isolated 106-kDa protein strongly implicates the 106-kDa sulfhydryl-activated Ca2+ channel protein in the Ca2+ release process.  相似文献   

11.
Characterization of cardiac calsequestrin   总被引:7,自引:0,他引:7  
Calsequestrin, a calcium-binding protein found in the sarcoplasmic reticulum of muscle cells, was purified from rabbit and canine cardiac and skeletal muscle tissue. The amino acid compositions and amino-terminal sequences of skeletal and cardiac calsequestrin from rabbit and dog were determined. The amino acid composition of the cardiac form was very similar to the skeletal form. The amino-terminal sequence of the cardiac form was homologous to, but not identical with, the amino-terminal sequence of the skeletal form of the protein. Few species differences in the amino-terminal sequences were observed. The calcium-binding capacity of the cardiac form was half the capacity of the skeletal form although the affinities of the two forms of calsequestrin for Ca2+ were similar (Kd = 1 mM). Calcium binding to the cardiac form induced structural changes in the protein as determined by circular dichroism and intrinsic fluorescence spectroscopy. The alpha-helical content of cardiac calsequestrin increased from 3.5% to 10.9% upon binding calcium, while the intrinsic fluorescence of the protein increased 14%. Potassium ions also affected the conformation of cardiac calsequestrin.  相似文献   

12.
cDNA cloning was used to deduce the complete amino acid sequence of canine cardiac calsequestrin, the principal Ca2+-binding protein of cardiac junctional sarcoplasmic reticulum. Cardiac calsequestrin contains 391 amino acid residues plus a 19-residue amino-terminal signal sequence. The molecular weight of the mature protein, excluding carbohydrate, is 45,269. Cardiac calsequestrin is highly acidic, and a striking feature is the enrichment of acidic residues (60%) within the 63 carboxyl-terminal residues. No part of the sequence contains EF hand Ca2+-binding structures. The photo-affinity probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine was used to localize the Ca2+-regulated hydrophobic site to amino acid residues 192-223. The cardiac and skeletal muscle isoforms of calsequestrin (Fliegel, L., Ohnishi, M., Carpenter, M. R., Khanna, V. K., Reithmeier, R. A. F., and MacLennan, D. H. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 1167-1171), although the products of different genes, are 65% identical, are acidic, and share one glycosylation site. However, cardiac calsequestrin has several unique features. First, it has a 31-amino acid extension at its carboxyl terminus (residues 361-391), which contains 71% acidic residues and a second glycosylation site. Second, its mRNA contains a second open reading frame with the capacity to code for a 111-amino acid protein. Third, contrary to the restricted expression of the fast skeletal isoform, cardiac calsequestrin mRNA is present in both cardiac and slow skeletal muscle, but not in fast skeletal muscle. We conclude that the deduced amino acid sequence of cardiac calsequestrin is consistent with its ability to bind large amounts of Ca2+ (40 mol of Ca2+/mol of calsequestrin). The protein probably binds Ca2+ by acting as a charged surface rather than by presenting multiple discrete Ca2+-binding sites.  相似文献   

13.
Sarcoplasmic reticulum (SR) terminal cisternae (TC) of frog (Rana esculenta) fast-twitch skeletal muscle have been purified by isopycnic sucrose density gradient centrifugation. Biochemical characteristics and Ca2+ release properties have been investigated and compared to those of the homologous fraction of rabbit skeletal muscle TC. The frog SR fraction obtained at the 38/45% sucrose interface appears to be derived from the terminal cisternae region as judged by: (a) thin section electron microscopy showing vesicles containing electron opaque material and squarelike (feet) projections at the outer surface; (b) protein composition (Ca2+-ATPase, calsequestrin, and high Mr proteins); (c) Ca2+ fluxes properties. The content of calsequestrin was higher in frog TC by 50% and the Ca2+ binding capacity (624 or 45 nmol of Ca2+/mg of TC protein, depending upon experimental conditions) was 3-4 times that of rabbit TC. Species-specific antigenic differences were found between junctional SR proteins of frog and rabbit TC. After active Ca2+ preloading in the presence of pyrophosphate (Palade, P. (1987) J. Biol. Chem. 262, 6135-6141), caffeine and doxorubicin elicited Ca2+ release from either TC fraction but with much faster rates in frog TC than in rabbit TC (14 versus 3 mumol of Ca2+/min/mg of protein). The present results provide new evidence for the existence of marked differences in Ca2+ release properties between TC of amphibian and mammalian fast-twitch muscle. Higher Ca2+ binding capacity and faster release rates in frog TC might compensate for the comparably greater diffusion distance being covered by the released Ca2+ from the Z-line to the actomyosin cross-bridges in the A-I overlap region.  相似文献   

14.
It had been previously demonstrated that endoplasmic reticulum membranes from rat hepatocytes contain a major calsequestrin-like protein, on account of electrophoretic and Stains All-staining properties (Damiani et al., J. Biol. Chem. 263, 340-343). Here we show that a Ca2+-binding protein sharing characteristics in size and biochemical properties with this protein is likewise present in the isolated endoplasmic reticulum from human liver. Human calsequestrin-like protein was characterized as 62 kDa, highly acidic protein (pl 4.5), using an extraction procedure from whole tissue, followed by DEAE-Cellulose chromatography, that was originally developed for purification of skeletal muscle and cardiac calsequestrin. Liver calsequestrin-like protein bound Ca2+ at low affinity (Kd = 4 mM) and in high amounts (Bmax = 1600 nmol Ca2+/mg of protein), as determined by equilibrium dialysis, but differed strikingly from skeletal muscle calsequestrin for the lack of binding to phenyl-Sepharose resin in the absence of Ca2+, and of changes in intrinsic fluorescence upon binding of Ca2+. Thus, these results suggest that liver 62 kDa protein, in spite of its calsequestrin-like Ca2+-binding properties, does not contain a Ca2+-regulated hydrophobic site, which is a specific structural feature of the calsequestrin-class of Ca2+-binding proteins.  相似文献   

15.
Ca2+ binding to rabbit skeletal calsequestrin was studied at physiological ionic strength by equilibrium flow dialysis, Hummel-Dryer gel filtration and microcalorimetry. 31 Ca(2+)-binding sites with a mean dissociation constant (KD) of 0.79 mM were titrated in the absence, and 23 sites with a KD of 0.88 mM in the presence of 3 mM Mg2+. No cooperativity was observed. For Mg2+ binding, the combination of gel filtration and microcalorimetry yielded a stoichiometry of 26 Mg2+/protein with a KD of 2mM. 1 mM Ca2+ decreased the stoichiometry to 20 Mg2+/protein. Binding of Ca2+ in the absence and presence of 3 mM Mg2+ was accompanied by a release of 2.0 and 2.7 H+/protein, respectively. Mg2+ binding did not lead to a significant proton release suggesting a qualitative difference in the Ca(2+)- and Mg(2+)-binding sites. After correction for proton release, the enthalpy change for Ca2+ binding was very low (-1.5 kJ/protein in the absence, and -15 kJ/protein in the presence of 3 mM Mg2+). The entropy change (+59 J/K.site in the absence and +56 J/K.site in the presence of Mg2+) was therefore virtually the sole driving force for Ca2+ binding. Mg2+ binding is slightly more exothermic (-12.6 kJ/protein), but as for Ca2+, the entropy change (+50 J/K.site) constituted the major driving force of the reaction. A fluorimetric study indicates that the conformation of tryptophan in Mg(2+)-saturated calsequestrin was clearly different from that in the Ca(2+)-saturated protein, but that the (Ca2+ + Mg2+)-saturated protein was not distinct from the Ca(2+)-saturated protein. Thus, in addition to the thermodynamic characterization of the Ca2+/calsequestrin interaction, our data indicate that Ca2+ and Mg2+ do not bind to the same sites on calsequestrin. The data also predict considerable proton fluxes upon Ca(2+)-Mg2+ exchange in vivo.  相似文献   

16.
肾上腺髓质素对大鼠损伤性心肌肌浆网功能的改善   总被引:3,自引:0,他引:3  
Li XF  Yang Y  Gao LR  Qi YF  Li ZQ  Tang CS 《生理学报》2001,53(5):364-368
通过观察下述五个指标,评价肾上腺髓质素(adrenomedullin,Adm)对大鼠损伤性心肌肌浆网功能的改善程度左心室压力最大变化速率(±dp/dtmax)、肌浆网钙摄取和释放及钙泵活性.皮下注射异丙肾上腺素(isoproterenol,ISO,69μmol/kg体重)制备大鼠心肌损伤坏死模型.摘取心脏后用Adm灌流,观察左心室压力最大变化速率(±dp/dtmax);制备并提纯心肌肌浆网(sarcoplasmicreticulum,SR)膜,测定SRCa2+摄取和释放速率、SR钙泵活性和钙通道蛋白~3H-ryanodine受体的最大结合量.结果发现,5×10-5mol/LAdm灌流能使ISO损伤的大鼠心脏左室±dp/dtmax分别增加16.9%(2?135±281vs1?980±302)和29.2%(1?375±267vs1?064±355,均P<0.05);SRCa2+摄取和释放率分别增加23.0%(15.0±1.4vs12.2±1.2)和43.5%(6.6±1.0vs4.6±0.6,均P<0.01);SRCa2+-ATPase活性和~3H-ryanodine受体最大结合量(Bmax)分别增加24.2%(P<0.01)和42.2%(P<0.05).提示Adm对ISO诱导的大鼠心肌损伤具有保护作用,其机制可能与Adm增加SRCa2+-ATPase活性、增加~3H-ryanodine所致SRCa2+摄取和释放升高有关.外源性给予Adm对损伤心肌可能具有临床治疗作用.  相似文献   

17.
Heavy metal ions have been shown to induce Ca2+ release from skeletal sarcoplasmic reticulum (SR) by binding to free sulfhydryl groups on a Ca2+ channel protein and are now examined in cardiac SR. Ag+ and Hg2+ (at 10-25 microM) induced Ca2+ release from isolated canine cardiac SR vesicles whereas Ni2+, Cd2+, and Cu2+ had no effect at up to 200 microM. Ag(+)-induced Ca2+ release was measured in the presence of modulators of SR Ca2+ release was compared to Ca2(+)-induced Ca2+ release and was found to have the following characteristics. (i) Ag(+)-induced Ca2+ release was dependent on free [Mg2+], such that rates of efflux from actively loaded SR vesicles increased by 40% in 0.2 to 1.0 mM Mg2+ and decreased by 50% from 1.0 to 10.0 mM Mg2+. (ii) Ruthenium red (2-20 microM) and tetracaine (0.2-1.0 mM), known inhibitors of SR Ca2+ release, inhibited Ag(+)-induced Ca2+ release. (iii) Adenine nucleotides such as cAMP (0.25-2.0 mM) enhanced Ca2(+)-induced Ca2+ release, and stimulated Ag(+)-induced Ca2+ release. (iv) Low Ag+ to SR protein ratios (5-50 nmol Ag+/mg protein) stimulated Ca2(+)-dependent ATPase activity in Triton X-100-uncoupled SR vesicles. (v) At higher ratios of Ag+ to SR proteins (50-250 nmol Ag+/mg protein), the rate of Ca2+ efflux declined and Ca2(+)-dependent ATPase activity decreased gradually, up to a maximum of 50% inhibition. (vi) Ag+ stimulated Ca2+ efflux from passively loaded SR vesicles (i.e., in the absence of ATP and functional Ca2+ pumps), indicating a site of action distinct from the SR Ca2+ pump. Thus, at low Ag+ to SR protein ratios, Ag+ is very selective for the Ca2+ release channel. At higher ratios, this selectivity declines as Ag+ also inhibits the activity of Ca2+,Mg2(+)-ATPase pumps. Ag+ most likely binds to one or more sulfhydryl sites "on" or "adjacent" to the physiological Ca2+ release channel in cardiac SR to induce Ca2+ release.  相似文献   

18.
The subcellular distribution of the Ca(2+)-release channel/ryanodine receptor in adult rat papillary myofibers has been determined by immunofluorescence and immunoelectron microscopical studies using affinity purified antibodies against the ryanodine receptor. The receptor is confined to the sarcoplasmic reticulum (SR) where it is localized to interior and peripheral junctional SR and the corbular SR, but it is absent from the network SR where the SR-Ca(2+)-ATPase and phospholamban are densely distributed. Immunofluorescence labeling of sheep Purkinje fibers show that the ryanodine receptor is confined to discrete foci while the SR-Ca(2+)-ATPase is distributed in a continuous network-like structure present at the periphery as well as throughout interior regions of these myofibers. Because Purkinje fibers lack T- tubules, these results indicate that the ryanodine receptor is localized not only to the peripheral junctional SR but also to corbular SR densely distributed in interfibrillar spaces of the I-band regions. We have previously identified both corbular SR and junctional SR in cardiac muscle as potential Ca(2+)-storage/Ca(2+)-release sites by demonstrating that the Ca2+ binding protein calsequestrin and calcium are very densely distributed in these two specialized domains of cardiac SR in situ. The results presented here provide strong evidence in support of the hypothesis that corbular SR is indeed a site of Ca(2+)-induced Ca2+ release via the ryanodine receptor during excitation contraction coupling in cardiac muscle. Furthermore, these results indicate that the function of the cardiac Ca(2+)-release channel/ryanodine receptor is not confined to junctional complexes between SR and the sarcolemma.  相似文献   

19.
A new low molecular weight calcium binding protein, designated 12-kDa CaBP, has been isolated from chicken gizzard using a phenyl-Sepharose affinity column followed by ion-exchange and gel filtration chromatographies. The isolated protein was homogeneous and has a molecular weight of 12,000 based on sodium dodecyl sulfate-gel electrophoresis. The amino acid composition of this protein is similar to but distinct from other known low molecular weight Ca2+ binding proteins. Ca2+ binding assays using Arsenazo III (Sigma) indicated that the protein binds 1 mol of Ca2+/mol of protein. The 12-kDa CaBP underwent a conformational change upon binding Ca2+, as revealed by uv difference spectroscopy and circular dichroism studies in the aromatic and far-ultraviolet range. Addition of Ca2+ to the 12-kDa CaBP labeled with 2-p-toluidinylnaphthalene-6-sulfonate (TNS) resulted in a sevenfold increase in fluorescence intensity, accompanied by a blue shift of the emission maximum from 463 to 445 nm. Hence, the probe in the presence of Ca2+ moves to a more nonpolar microenvironment. Like calmodulin and other related Ca2+ binding proteins, this protein also exposes a hydrophobic site upon binding calcium. Fluorescence titration with Ca2+ using TNS-labeled protein revealed the presence of a single high affinity calcium binding site (kd approximately 1 x 10(-6) M).  相似文献   

20.
Calsequestrin, the major calcium storage protein of both cardiac and skeletal muscle, binds and releases large numbers of Ca(2+) ions for each contraction and relaxation cycle. Here we show that two crystal structures for skeletal and cardiac calsequestrin are nearly superimposable not only for their subunits but also their front-to-front-type dimers. Ca(2+) binding curves were measured using atomic absorption spectroscopy. This method enables highly accurate measurements even for Ca(2+) bound to polymerized protein. The binding curves for both skeletal and cardiac calsequestrin were complex, with binding increases that correlated with protein dimerization, tetramerization, and oligomerization. The Ca(2+) binding capacities of skeletal and cardiac calsequestrin are directly compared for the first time, with approximately 80 Ca(2+) ions bound per skeletal calsequestrin and approximately 60 Ca(2+) ions per cardiac calsequestrin, as compared with net charges for these molecules of -80 and -69, respectively. Deleting the negatively charged and disordered C-terminal 27 amino acids of cardiac calsequestrin results in a 50% reduction of its calcium binding capacity and a loss of Ca(2+)-dependent tetramer formation. Based on the crystal structures of rabbit skeletal muscle calsequestrin and canine cardiac calsequestrin, Ca(2+) binding capacity data, and previous light-scattering data, a mechanism of Ca(2+) binding coupled with polymerization is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号