首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 607 毫秒
1.
Stem cell–derived cardiomyocytes (CMs) hold great hopes for myocardium regeneration because of their ability to produce functional cardiac cells in large quantities. They also hold promise in dissecting the molecular principles involved in heart diseases and also in drug development, owing to their ability to model the diseases using patient‐specific human pluripotent stem cell (hPSC)–derived CMs. The CM properties essential for the desired applications are frequently evaluated through morphologic and genotypic screenings. Even though these characterizations are necessary, they cannot in principle guarantee the CM functionality and their drug response. The CM functional characteristics can be quantified by phenotype assays, including electrophysiological, optical, and/or mechanical approaches implemented in the past decades, especially when used to investigate responses of the CMs to known stimuli (eg, adrenergic stimulation). Such methods can be used to indirectly determine the electrochemomechanics of the cardiac excitation‐contraction coupling, which determines important functional properties of the hPSC‐derived CMs, such as their differentiation efficacy, their maturation level, and their functionality. In this work, we aim to systematically review the techniques and methodologies implemented in the phenotype characterization of hPSC‐derived CMs. Further, we introduce a novel approach combining atomic force microscopy, fluorescent microscopy, and external electrophysiology through microelectrode arrays. We demonstrate that this novel method can be used to gain unique information on the complex excitation‐contraction coupling dynamics of the hPSC‐derived CMs.  相似文献   

2.
3.
Cardiomyocytes (CMs) generated from human pluripotent stem cells (hPSCs) are immature in their structure and function, limiting their potential in disease modeling, drug screening, and cardiac cellular therapies. Prior studies have demonstrated that coculture of hPSC‐derived CMs with other cardiac cell types, including endothelial cells (ECs), can accelerate CM maturation. To address whether the CM differentiation stage at which ECs are introduced affects CM maturation, the authors coculture hPSC‐derived ECs with hPSC‐derived cardiac progenitor cells (CPCs) and CMs and analyze the molecular and functional attributes of maturation. ECs have a more significant effect on acceleration of maturation when cocultured with CPCs than with CMs. EC coculture with CPCs increases CM size, expression of sarcomere, and ion channel genes and proteins, the presence of intracellular membranous extensions, and chronotropic response compared to monoculture. Maturation is accelerated with an increasing EC:CPC ratio. This study demonstrates that EC incorporation at the CPC stage of CM differentiation expedites CM maturation, leading to cells that may be better suited for in vitro and in vivo applications of hPSC‐derived CMs.  相似文献   

4.
Cardiomyocytes (CMs) derived from human pluripotent stem cells (hPSCs) offer immense value in studying cardiovascular regenerative medicine. However, intrinsic biases and differential responsiveness of hPSCs towards cardiac differentiation pose significant technical and logistic hurdles that hamper human cardiomyocyte studies. Tandem modulation of canonical and non-canonical Wnt signaling pathways may play a crucial role in cardiac development that can efficiently generate cardiomyocytes from pluripotent stem cells. Our Wnt signaling expression profiles revealed that phasic modulation of canonical/non-canonical axis enabled orderly recapitulation of cardiac developmental ontogeny. Moreover, evaluation of 8 hPSC lines showed marked commitment towards cardiac-mesoderm during the early phase of differentiation, with elevated levels of canonical Wnts (Wnt3 and 3a) and Mesp1. Whereas continued activation of canonical Wnts was counterproductive, its discrete inhibition during the later phase of cardiac differentiation was accompanied by significant up-regulation of non-canonical Wnt expression (Wnt5a and 11) and enhanced Nkx2.5+ (up to 98%) populations. These Nkx2.5+ populations transited to contracting cardiac troponin T-positive CMs with up to 80% efficiency. Our results suggest that timely modulation of Wnt pathways would transcend intrinsic differentiation biases of hPSCs to consistently generate functional CMs that could facilitate their scalable production for meaningful clinical translation towards personalized regenerative medicine.  相似文献   

5.
Embryonic stem cell (ESC) derivatives are a promising cell source for cardiac cell therapy. Mechanistic studies upon cell injection in conventional animal models are limited by inefficient delivery and poor cell survival. As an alternative, we have used an engineered heart tissue (EHT) based on neonatal rat cardiomyocytes (CMs) cultivated with electrical field stimulation as an in vitro model to study cell injection. We injected (0.001, 0.01, and 0.1 million) and tracked (by qPCR and histology) undifferentiated yellow‐fluorescent protein transgenic mouse ESCs and Flk1 + /PDGFRα+ cardiac progenitor (CPs) cells, to investigate the effect of the cardiac environment on cell differentiation, as well as to test whether our in vitro model system could recapitulate the formation of teratoma‐like structures commonly observed upon in vivo ESC injection. By 8 days post‐injection, ESCs were spatially segregated from the cardiac cell population; however, ESC injection increased survival of CMs. The presence of ESCs blocked electrical conduction through the tissue, resulting in a 46% increase in the excitation threshold. Expression of mouse cardiac troponin I, was markedly increased in CP injected constructs compared to ESC injected constructs at all time points and cell doses tested. As early as 2 weeks, epithelial and ganglion‐like structures were observed in ESC injected constructs. By 4 weeks of ESC injection, teratoma‐like structures containing neural, epithelial, and connective tissue were observed in the constructs. Non‐cardiac structures were observed in the CP injected constructs only after extended culture (4 weeks) and only at high cell doses, suggesting that these cells require further enrichment or differentiation prior to transplantation. Our data indicate that the cardiac environment of host tissue and electrical field stimulation did not preferentially guide the differentiation of ESCs towards the cardiac lineage. In the same environment, injection of CP resulted in a more robust cardiac differentiation than injection of ESC. Our data demonstrate that the model‐system developed herein can be used to study the functional effects of candidate stem cells on the host myocardium, as well as to measure the residual activity of undifferentiated cells present in the mixture. Biotechnol. Bioeng. 2011; 108:704–719. © 2010 Wiley Periodicals, Inc.  相似文献   

6.
Doxorubicin (DOX) is widely used to treat various cancers affecting adults and children; however, its clinical application is limited by its cardiotoxicity. Previous studies have shown that children are more susceptible to the cardiotoxic effects of DOX than adults, which may be related to different maturity levels of cardiomyocyte, but the underlying mechanisms are not fully understood. Moreover, researchers investigating DOX‐induced cardiotoxicity caused by human‐induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) have shown that dexrazoxane, the recognized cardioprotective drug for treating DOX‐induced cardiotoxicity, does not alleviate the toxicity of DOX on hiPSC‐CMs cultured for 30 days. We have suggested that this may be ascribed to the immaturity of the 30 days hiPSC‐CMs. In this study, we investigated the mechanisms of DOX induced cardiotoxicity in cardiomyocytes of different maturity. We selected 30‐day‐old and 60‐day‐old hiPSC‐CMs (day 30 and day 60 groups), which we term ‘immature’ and ‘relatively mature’ hiPSC‐CMs, respectively. The day 30 CMs were found to be more susceptible to DOX than the day 60 CMs. DOX leads to more ROS (reactive oxygen species) production in the day 60 CMs than in the relatively immature group due to increased mitochondria number. Moreover, the day 60 CMs mainly expressed topoisomerase IIβ presented less severe DNA damage, whereas the day 30 CMs dominantly expressed topoisomerase IIα exhibited much more severe DNA damage. These results suggest that immature cardiomyocytes are more sensitive to DOX as a result of a higher concentration of topoisomerase IIα, which leads to more DNA damage.  相似文献   

7.
The composition and the stiffness of cardiac microenvironment change during development and/or in heart disease. Cardiomyocytes (CMs) and their progenitors sense these changes, which decides over the cell fate and can trigger CM (progenitor) proliferation, differentiation, de-differentiation or death. The field of mechanobiology has seen a constant increase in output that also includes a wealth of new studies specific to cardiac or cardiomyocyte mechanosensing. As a result, mechanosensing and transduction in the heart is increasingly being recognised as a main driver of regulating the heart formation and function. Recent work has for instance focused on measuring the molecular, physical and mechanical changes of the cellular environment - as well as intracellular contributors to the passive stiffness of the heart. On the other hand, a variety of new studies shed light into the molecular machinery that allow the cardiomyocytes to sense these properties. Here we want to discuss the recent work on this topic, but also specifically focus on how the different components are regulated at various stages during development, in health or disease in order to highlight changes that might contribute to disease progression and heart failure.  相似文献   

8.
The in vitro generation of a three‐dimensional (3‐D) myocardial tissue‐like construct employing cells, biomaterials, and biomolecules is a promising strategy in cardiac tissue regeneration, drug testing, and tissue engineering applications. Despite significant progress in this field, current cardiac tissue models are not yet able to stably maintain functional characteristics of cardiomyocytes for long‐term culture and therapeutic purposes. The objective of this study was to fabricate bioactive 3‐D chitosan nanofiber scaffolds using an electrospinning technique and exploring its potential for long‐term cardiac function in the 3‐D co‐culture model. Chitosan is a natural polysaccharide biomaterial that is biocompatible, biodegradable, non‐toxic, and cost effective. Electrospun chitosan was utilized to provide structural scaffolding characterized by scale and architectural resemblance to the extracellular matrix (ECM) in vivo. The chitosan fibers were coated with fibronectin via adsorption in order to enhance cellular adhesion to the fibers and migration into the interfibrous milieu. Ventricular cardiomyocytes were harvested from neonatal rats and studied in various culture conditions (i.e., mono‐ and co‐cultures) for their viability and function. Cellular morphology and functionality were examined using immunofluorescent staining for alpha‐sarcomeric actin (SM‐actin) and gap junction protein, Connexin‐43 (Cx43). Scanning electron microscopy (SEM) and light microscopy were used to investigate cellular morphology, spatial organization, and contractions. Calcium indicator was used to monitor calcium ion flux of beating cardiomyocytes. The results demonstrate that the chitosan nanofibers retained their cylindrical morphology in long‐term cell cultures and exhibited good cellular attachment and spreading in the presence of adhesion molecule, fibronectin. Cardiomyocyte mono‐cultures resulted in loss of cardiomyocyte polarity and islands of non‐coherent contractions. However, the cardiomyocyte‐fibroblast co‐cultures resulted in polarized cardiomyocyte morphology and retained their morphology and function for long‐term culture. The Cx43 expression in the fibroblast co‐culture was higher than the cardiomyocytes mono‐culture and endothelial cells co‐culture. In addition, fibroblast co‐cultures demonstrated synchronized contractions involving large tissue‐like cellular networks. To our knowledge, this is the first attempt to test chitosan nanofiber scaffolds as a 3‐D cardiac co‐culture model. Our results demonstrate that chitosan nanofibers can serve as a potential scaffold that can retain cardiac structure and function. These studies will provide useful information to develop a strategy that allows us to generate engineered 3‐D cardiac tissue constructs using biocompatible and biodegradable chitosan nanofiber scaffolds for many tissue engineering applications. Biotechnol. Bioeng. 2013; 110: 637–647. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
The use of primary cardiomyocytes (CMs) in culture has provided a powerful complement to murine models of heart disease in advancing our understanding of heart disease. In particular, the ability to study ion homeostasis, ion channel function, cellular excitability and excitation-contraction coupling and their alterations in diseased conditions and by disease-causing mutations have led to significant insights into cardiac diseases. Furthermore, the lack of an adequate immortalized cell line to mimic adult CMs, and the limitations of neonatal CMs (which lack many of the structural and functional biomechanics characteristic of adult CMs) in culture have hampered our understanding of the complex interplay between signaling pathways, ion channels and contractile properties in the adult heart strengthening the importance of studying adult isolated cardiomyocytes. Here, we present methods for the isolation, culture, manipulation of gene expression by adenoviral-expressed proteins, and subsequent functional analysis of cardiomyocytes from the adult mouse. The use of these techniques will help to develop mechanistic insight into signaling pathways that regulate cellular excitability, Ca2+ dynamics and contractility and provide a much more physiologically relevant characterization of cardiovascular disease.  相似文献   

10.
11.
心肌细胞是心脏结构和功能的基本单位,约占心脏细胞总数的三分之一,是心脏发育、生理病理研究的重点对象,然而传统的在体和体外研究技术存在诸多困难,无法实现细胞微环境的有效控制和生理功能的实时动态监测,制约着心肌细胞功能研究的快速发展。近年来迅速发展的微加工技术,尤其是微流控芯片技术为心肌细胞功能研究提供了便利。微流控芯片技术具有微米尺度的细胞及其微环境的时空控制功能,有效提高了体外细胞研究的组织相关性,是心肌细胞生理功能和力学特性研究的重要工具,如实时监测单个心肌细胞的代谢活性、表征细胞的电生理特性和力学特性、研究细胞微环境和力学微环境对心肌细胞形态和功能的影响。本文从前述几个方面对微流控芯片在心肌细胞生理功能研究中的应用进行综述和对其应用前景进行了展望。  相似文献   

12.
Pluripotent stem cell‐derived cardiomyocytes (PSC‐CMs) are a potentially unlimited source of cardiomyocytes (CMs) for cardiac transplantation therapies. The establishment of pure PSC‐CM populations is important for this application, but is hampered by a lack of CM‐specific surface markers suitable for their identification and sorting. Contemporary purification techniques are either non‐specific or require genetic modification. We report a second harmonic generation (SHG) signal detectable in PSC‐CMs that is attributable to sarcomeric myosin, dependent on PSC‐CM maturity, and retained while PSC‐CMs are in suspension. Our study demonstrates the feasibility of developing a SHG‐activated flow cytometer for the non‐invasive purification of PSC‐CMs. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Induced pluripotent stem cells (iPSCs) have been proposed as novel cell sources for genetic disease models and revolutionary clinical therapies. Accordingly, human iPSC-derived cardiomyocytes are potential cell sources for cardiomyocyte transplantation therapy. We previously developed a novel generation method for human peripheral T cell-derived iPSCs (TiPSCs) that uses a minimally invasive approach to obtain patient cells. However, it remained unknown whether TiPSCs with genomic rearrangements in the T cell receptor (TCR) gene could differentiate into functional cardiomyocyte in vitro. To address this issue, we investigated the morphology, gene expression pattern, and electrophysiological properties of TiPSC-derived cardiomyocytes differentiated by floating culture. RT-PCR analysis and immunohistochemistry showed that the TiPSC-derived cardiomyocytes properly express cardiomyocyte markers and ion channels, and show the typical cardiomyocyte morphology. Multiple electrode arrays with application of ion channel inhibitors also revealed normal electrophysiological responses in the TiPSC-derived cardiomyocytes in terms of beating rate and the field potential waveform. In this report, we showed that TiPSCs successfully differentiated into cardiomyocytes with morphology, gene expression patterns, and electrophysiological features typical of native cardiomyocytes. TiPSCs-derived cardiomyocytes obtained from patients by a minimally invasive technique could therefore become disease models for understanding the mechanisms of cardiac disease and cell sources for revolutionary cardiomyocyte therapies.  相似文献   

14.
Cardiac hypertrophy is a compensatory response of myocardial tissue upon increased mechanical load. Of the mechanical factors, stretch is rapidly followed by hypertrophic responses. We tried to elucidate the role of angiotensin II (AII), endothelin-1 (ET-1) and transforming growth factor- (TGF-) as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. We collected conditioned medium (CM) from stretched cardiomyocytes and from other stretched cardiac cells, such as cardiac fibroblasts, endothelial cells and vascular smooth muscle cells (VSMCs). These CMs were administered to stationary cardiomyocytes with or without an AII type 1 (AT1) receptor antagonist (losartan), an ET-1 type A (ETA) receptor antagonist (BQ610), or anti-TGF- antibodies. By measuring the mRNA levels of the proto-oncogene c-fos and the hypertrophy marker gene atrial natriuretic peptide (ANP), the molecular phenotype of the CM-treated stationary cardiomyocytes was characterized.Our results showed that c-fos and ANP expression in stationary cardiomyocytes was increased by AII release from cardiomyocytes that had been stretched for 60 min. Stretched cardiomyocytes, cardiac fibroblasts and endothelial cells released ET-1 which led to increased c-fos and ANP expression in stationary cardiomyocytes. ET-1 released by stretched VSMCs, and TGF- released by stretched cardiac fibroblasts and endothelial cells, appeared to be paracrine mediators of ANP expression in stationary cardiomyocytes.These results indicate that AII, ET-1 and TGF- (released by cardiac and vascular cell types) act as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. Therefore, it is likely that in stretched myocardium the cardiomyocytes, cardiac fibroblasts, endothelial cells and VSMCs take part in intercellular interactions contributing to cardiomyocyte hypertrophy.  相似文献   

15.
The most advanced in vitro cardiac models are today based on the use of induced pluripotent stem cells (iPSCs); however, the maturation of cardiomyocytes (CMs) has not yet been fully achieved. Therefore, there is a rising need to move towards models capable of promoting an adult-like cardiomyocytes phenotype. Many strategies have been applied such as co-culture of cardiomyocytes, with fibroblasts and endothelial cells, or conditioning them through biochemical factors and physical stimulations. Here, we focus on mechanical stimulation as it aims to mimic the different mechanical forces that heart receives during its development and the post-natal period. We describe the current strategies and the mechanical properties necessary to promote a positive response in cardiac tissues from different cell sources, distinguishing between passive stimulation, which includes stiffness, topography and static stress and active stimulation, encompassing cyclic strain, compression or perfusion. We also highlight how mechanical stimulation is applied in disease modelling.  相似文献   

16.
Doxorubicin (Dox) is a highly effective antitumor antibiotic, however myocardial toxicity severely limits its use clinically. The pathogenesis of doxorubicin‐induced cardiomyopathy is unclear. In Dox cardiomyopathy mice, there is a decline in cardiac function, a change in myocardial pathology and a reduction in miR378* expression. Expression changes in calumenin, an endoplasmic reticulum stress (ERS) chaperone protein and pathway factor, as well as apoptosis, were observed in cardiomyocytes after doxorubicin‐induced injury. However, miR378* increased calumenin expression, eased ERS, and reduced cardiomyocyte apoptosis, while, silencing miR378* reduced calumenin expression, aggravated ERS, and increased cardiomyocyte apoptosis. The above results indicate that miR378* alleviates ERS and inhibits the activation of the ERS‐mediated apoptosis signaling pathway in cardiomyocytes via regulating calumenin expression, thereby reducing cardiomyocyte apoptosis after doxorubicin‐induced injury. Increasing miR378* expression may be a new way to improve cardiac function and quality of life in patients with Dox cardiomyopathy.  相似文献   

17.
We have successfully developed both spontaneous and inductive cardiomyocyte differentiation of iPS cells reprogrammed from human foreskin fibroblasts. The reprogrammed iPS cells morphologically resemble human cardiomyocytes which can beat. RT-PCR and immunostaining show that cardiac markers are expressed that are comparable to the differentiation pattern of authentic human embryonic stem cells, indicating the existence of both immature and mature differentiated cardiomyocytes. 5-Azacytidine greatly enhanced the efficiency of cardiomyocyte differentiation, whereas dimethylsulfoxide had no effect. Low serum and bone morphogenetic protein-2 marginally improved differentiation efficiency. iPS cell-derived cardiomyocytes changed their beat frequency in response to cardiac drugs, which included ion channel blockers and α/β adrenergic stimulators. Derived cardiomyocytes look promising as an in vitro system for potential drug screen and/or toxicity, making this system closer to practical use in the near future.  相似文献   

18.
Cardiomyocyte remodeling, which includes partial dedifferentiation of cardiomyocytes, is a process that occurs during both acute and chronic disease processes. Here, we demonstrate that oncostatin M (OSM) is a major mediator of cardiomyocyte dedifferentiation and remodeling during acute myocardial infarction (MI) and in chronic dilated cardiomyopathy (DCM). Patients suffering from DCM show a strong and lasting increase of OSM expression and signaling. OSM treatment induces dedifferentiation of cardiomyocytes and upregulation of stem cell markers and improves cardiac function after MI. Conversely, inhibition of OSM signaling suppresses cardiomyocyte remodeling after MI and in a mouse model of DCM, resulting in deterioration of heart function after MI but improvement of cardiac performance in DCM. We postulate that dedifferentiation of cardiomyocytes initially protects stressed hearts but fails to support cardiac structure and function upon continued activation. Manipulation of OSM signaling provides a means to control the differentiation state of cardiomyocytes and cellular plasticity.  相似文献   

19.
Proper cardiac function requires the synchronous mechanical and electrical coupling of individual cardiomyocytes. The intercalated disc (ID) mediates coupling of neighboring myocytes through intercellular signaling. Intercellular communication is highly regulated via intracellular signaling, and signaling pathways originating from the ID control cardiomyocyte remodeling and function. Herein, we present an overview of the inter- and intracellular signaling that occurs at and originates from the intercalated disc in normal physiology and pathophysiology. This review highlights the importance of the intercalated disc as an integrator of signaling events regulating homeostasis and stress responses in the heart and the center of several pathophysiological processes mediating the development of cardiomyopathies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号