首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiomyocytes (CMs) generated from human pluripotent stem cells (hPSCs) are immature in their structure and function, limiting their potential in disease modeling, drug screening, and cardiac cellular therapies. Prior studies have demonstrated that coculture of hPSC‐derived CMs with other cardiac cell types, including endothelial cells (ECs), can accelerate CM maturation. To address whether the CM differentiation stage at which ECs are introduced affects CM maturation, the authors coculture hPSC‐derived ECs with hPSC‐derived cardiac progenitor cells (CPCs) and CMs and analyze the molecular and functional attributes of maturation. ECs have a more significant effect on acceleration of maturation when cocultured with CPCs than with CMs. EC coculture with CPCs increases CM size, expression of sarcomere, and ion channel genes and proteins, the presence of intracellular membranous extensions, and chronotropic response compared to monoculture. Maturation is accelerated with an increasing EC:CPC ratio. This study demonstrates that EC incorporation at the CPC stage of CM differentiation expedites CM maturation, leading to cells that may be better suited for in vitro and in vivo applications of hPSC‐derived CMs.  相似文献   

2.
3.
Human pluripotent stem cell‐derived cardiomyocytes (hPSC‐CMs) have emerged as an exciting new tool for cardiac research and can serve as a preclinical platform for drug development and disease modeling studies. However, these aspirations are limited by current culture methods in which hPSC‐CMs resemble fetal human cardiomyocytes in terms of structure and function. Herein we provide a novel in vitro platform that includes patterned extracellular matrix with physiological substrate stiffness and is amenable to both mechanical and electrical analysis. Micropatterned lanes promote the cellular and myofibril alignment of hPSC‐CMs while the addition of micropatterned bridges enable formation of a functional cardiac syncytium that beats synchronously over a large two‐dimensional area. We investigated the electrophysiological properties of the patterned cardiac constructs and showed they have anisotropic electrical impulse propagation, as occurs in the native myocardium, with speeds 2x faster in the primary direction of the pattern as compared to the transverse direction. Lastly, we interrogated the mechanical function of the pattern constructs and demonstrated the utility of this platform in recording the strength of cardiomyocyte contractions. This biomimetic platform with electrical and mechanical readout capabilities will enable the study of cardiac disease and the influence of pharmaceuticals and toxins on cardiomyocyte function. The platform also holds potential for high throughput evaluation of drug safety and efficacy, thus furthering our understanding of cardiovascular disease and increasing the translational use of hPSC‐CMs.  相似文献   

4.
Pluripotent stem cell‐derived cardiomyocytes (PSC‐CMs) are a potentially unlimited source of cardiomyocytes (CMs) for cardiac transplantation therapies. The establishment of pure PSC‐CM populations is important for this application, but is hampered by a lack of CM‐specific surface markers suitable for their identification and sorting. Contemporary purification techniques are either non‐specific or require genetic modification. We report a second harmonic generation (SHG) signal detectable in PSC‐CMs that is attributable to sarcomeric myosin, dependent on PSC‐CM maturity, and retained while PSC‐CMs are in suspension. Our study demonstrates the feasibility of developing a SHG‐activated flow cytometer for the non‐invasive purification of PSC‐CMs. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Patient-derived human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are increasingly being used for disease modeling, drug screening and regenerative medicine. However, to date, an immature, fetal-like, phenotype of hPSC-CMs restrains their full potential. Increasing evidence suggests that the metabolic state, particularly important for provision of sufficient energy in highly active contractile CMs and anabolic and regulatory processes, plays an important role in CM maturation, which affects crucial functional aspects of CMs, such as contractility and electrophysiology. During embryonic development the heart is subjected to metabolite concentrations that differ substantially from that of hPSC-derived cardiac cell cultures. A deeper understanding of the environmental and metabolic cues during embryonic heart development and how these change postnatally, will provide a framework for optimizing cell culture conditions and maturation of hPSC-CMs. Maturation of hPSC-CMs will improve the predictability of disease modeling, drug screening and drug safety assessment and broadens their applicability for personalized and regenerative medicine.  相似文献   

6.
Human pluripotent stem cells (hPSC) are self‐renewing cells with the potential to differentiate into a variety of human cells. They hold great promise for regenerative medicine and serve as useful in vitro models for studying human biology. For the past few years, there is vast interest in applying these cells to advance cardiovascular medicine. Human cardiomyocytes can be readily generated from hPSC and they have been characterized extensively with regards to molecular and functional properties. They have been transplanted into animal models of cardiovascular diseases and also shown to be potentially useful reagents for drug discovery. Yet, despite great progress in this field, significant technical hurdles remain before these cells could be used clinically or for pharmaceutical research and development. Further research using novel approaches will be required to overcome these bottlenecks. J. Cell. Biochem. 114: 39–46, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Cardiomyocytes (CMs) fuse with various cells including endothelial cells, cardiac fibroblasts (CFs). In addition, recent studies have shown that stem cells fuse spontaneously with cells remaining in the damaged tissues, and restore tissue functions after myocardial infarction. In this study, we investigated whether cultured cardiomyocytes fused with proliferative cardiac fibroblasts maintained the phenotype of functional myocytes by analyzing the spontaneous contraction rhythm after fusion with CFs lacking a beating capability. CMs and CFs cultured for 4 days in vitro were used in this study. The fusion of cultured CMs and CFs was achieved with polyethylene glycol (PEG) and hemagglutinating virus of Japan (HVJ). Analyses of CMs fused with CFs by using either PEG or HVJ to imitate spontaneous fusion in vivo demonstrated that CMs and CFs actually fused together and fused cells expressed lineage marker proteins of both CMs and CFs. In addition, fused cells reentered the G2-M phase of the cell cycle. Furthermore, fused cells retained the spontaneous contraction activity. The present study demonstrated that CMs fused with proliferative CFs showed the phenotype of both CMs and CFs and spontaneous rhythmic contraction.  相似文献   

8.
An adult heart injured by an ischemic episode has a limited capacity to regenerate. We administered three types of adult guinea pig cells [cardiomyocytes (CMs), cardiac fibroblasts (CFs), and skeletal myoblasts (Mbs)] to compare their suitability for repair of acute myocardial infarction. We used confocal fluorescent microscopy and a variety of specific immunomarkers and echocardiography to provide anatomic evidence for the viability of such cells and their possible functional beneficial effects. All cells were transfected with adenovirus-containing beta-galactosidase gene so that migration from the injection sites could be traced. Both freshly isolated CMs as well as CFs were found concentrated in the infarcted zone; these cells survived for at least 2 wk posttransplantation. Transplanted CMs were regularly striated and grew long projections that could form gap junctions with native CMs, which was evidenced by connexin43 labeling. In addition, CM transplantation resulted in increased angiogenesis in the infarcted areas. In contrast, transplanted CFs did not appear to make any gap junctional contacts with native CMs nor did they enhance local angiogenesis. Mbs cultured for 7 days and transfected Mbs were identified 7 days posttransplantation in the infarcted area. During that time and thereafter, Mbs proliferated and differentiated into myotubes that formed new, regularly striated myofibers that occupied most (50-70%) of the infarcted area by 2-3 wk. These newly formed myofibers maintained their Mb skeletal muscle origin as evidenced by their capacity to express myogenin and fast skeletal myosin. This skeletal phenotype appeared to downregulate with time, and Mbs partially transdifferentiated into a cardiac phenotype as indicated by labeling for cardiac-specific troponin T and cardiac myosin heavy chain. By the third week posttransplantation, new myofibers formed apparent contacts with the native CMs via putative gap junctions that expressed connexin43. Myocardial performance of animals that were successfully transplanted with Mbs was improved.  相似文献   

9.
Macrophages (Mφs) are involved in a variety of physiological and pathological events including wound healing and tissue regeneration, in which they play both positive and negative roles depending on their polarization state. In this study, we investigated the cellular behaviours of bone marrow mesenchymal stem cells (BMMSCs) after incubation in different conditioned media (CMs) generated by unpolarized Mφs (M0) or polarized Mφs (M1 and M2). Mφ polarization was induced by stimulation with various cytokines, and CMs were obtained from in vitro Mφ cultures termed CM0, CM1 and CM2 based on each Mφ phenotype. We found that CM1 supported the proliferation and adipogenic differentiation of BMMSCs, whereas CM0 had a remarkable effect on cell osteogenic differentiation. To a certain degree, CM2 also facilitated BMMSC osteogenesis; in particular, cells incubated with CM2 exhibited an enhanced capacity to form robust stem cell sheets. Although incubation with CM1 also increased production of extracellular matrix components, such as fibronectin, COL‐1 and integrin β1during sheet induction, the sheets generated by CM2‐incubated cells were thicker than those generated by CM1‐incubated cells (P < 0.001). Our data suggest that each Mφ phenotype has a unique effect on BMMSCs. Fine‐tuning Mφ polarization following transplantation may serve as an effective method to modulate the therapeutic potential of BMMSCs.  相似文献   

10.
11.
The mechanism of induction of cardiomyocyte (CM) dedifferentiation, as seen in chronic hibernating myocardium, is largely unknown. Recently, a cellular model was proposed consisting of long-term cocultures of adult rabbit CMs and cardiac fibroblasts in which typical structural characteristics of hibernation-like dedifferentiation could be induced. Only CMs in close contact with fibroblasts underwent these changes. In this study, we further investigated the characteristics of the fibroblast-CM interaction to seek for triggers and phenomena involved in CM dedifferentiation. Adult rabbit CMs were cocultured with cardiac or 3T3 fibroblasts. Heterocellular interactions and the structural adaptation of the CMs were quantified and studied with vital microscopy and electron microscopy. Immunocytochemical analysis of several adhesion molecules, i.e., N-cadherin, vinculin, β1-integrin, and desmoplakin, were examined. Upon contact with CMs, fibroblasts attached firmly and pulled the former cells, resulting in anisotropic stretch. Quantification of the attachment sites revealed a predominant binding of the fibroblast to the distal ends of the CM in d 1 cocultures and a shift towards the lateral sides of the CMs on d 2 of coculture, suggesting a redistribution of CM membrane proteins. Immunocytochemical analysis of cell adhesion proteins showed that these were upregulated at the heterocellular contact sites. Addition of autologous and nonautologous fibroblasts to the CM culture similarly induced a progressive and accelerated structural adaptation of the CM. Dynamic passive stretch invoked by the fibroblasts and/or intercellular communication involving cell adhesion molecule expression at the interaction sites may play an important role in the induction of hibernation-like dedifferentiation of the cocultured adult rabbit CMs. These authors contributed equally to this study.  相似文献   

12.
Long noncoding RNAs (lncRNAs) can participate in various biological behaviors, including regulating cell differentiation, proliferation, and apoptosis. The investigators have previously confirmed that highly conserved lncRNA NR_045363 controls cardiomyocyte (CM) proliferation and cardiac repair. The present study investigates the effects of NR_045363 on CM apoptosis. Seven‐day‐old mice were subjected to permanent left anterior descending coronary artery ligation (LAD), and the NR_045363 expression was analyzed by quantitative real‐time polymerase chain reaction (qRT‐PCR). The expression of NR_045363 in the MI group significantly exceeded the Sham group during the first week after the operation. The NR_045363 expression was knocked down in primary cultured CMs using an NR_045363‐targeting lncRNA Smart silencer, and the apoptosis of CMs was analyzed by terminal‐deoxynucleoitidyl transferase mediated nick end labeling and Annexin‐V/PI double staining. These present results indicate that the NR_045363 knockdown significantly promoted the apoptosis of CMs. In order to investigate the underlying mechanism, RNA‐sequencing (RNA‐seq) was performed, and ingenuity pathway analysis (IPA) was used to analyze the RNA‐seq results. The RNA‐seq data revealed that a total of 2,291 genes were upregulated or downregulated in NR_045363 knockdown CMs, and the IPA analysis indicated that tumor protein 53 (p53) was the upstream regulator. In vivo, the NR_045363 overexpression through the AAV9 system improved the heart function after MI in 7‐day‐old mice and inhibited the CM apoptosis. These data suggest that NR_045363 is involved in CM apoptosis and that NR_045363 overexpression exerts positive effects on cardiac repair by alleviating CM apoptosis through the inhibition of the p53 pathway.  相似文献   

13.
In view of the therapeutic potential of cardiomyocytes derived from induced pluripotent stem (iPS) cells (iPS‐derived cardiomyocytes), in the present study we investigated in iPS‐derived cardiomyocytes, the functional properties related to [Ca2+]i handling and contraction, the contribution of the sarcoplasmic reticulum (SR) Ca2+ release to contraction and the b‐adrenergic inotropic responsiveness. The two iPS clones investigated here were generated through infection of human foreskin fibroblasts (HFF) with retroviruses containing the four human genes: OCT4, Sox2, Klf4 and C‐Myc. Our major findings showed that iPS‐derived cardiomyocytes: (i) express cardiac specific RNA and proteins; (ii) exhibit negative force–frequency relations and mild (compared to adult) post‐rest potentiation; (iii) respond to ryanodine and caffeine, albeit less than adult cardiomyocytes, and express the SR‐Ca2+ handling proteins ryanodine receptor and calsequestrin. Hence, this study demonstrates that in our cardiomyocytes clones differentiated from HFF‐derived iPS, the functional properties related to excitation–contraction coupling, resemble in part those of adult cardiomyocytes.  相似文献   

14.
Methods that increase cardiomyocyte survival upon exposure to ischemia, hypoxia and reoxygenation injuries are required to improve the efficacy of cardiac cell therapy and enhance the viability and function of engineered tissues. We investigated the effect of combined hypoxia/NaNO2 pretreatment on rat neonatal cardiomyocyte (CM), cardiac fibroblast, and human embryonic stem cell‐derived CM (hESC‐CM) survival upon exposure to hypoxia/reoxygenation (H/R) injury in vitro. Cells were pretreated with and without hypoxia and/or various concentrations of NaNO2 for 20 min, then incubated for 2 h under hypoxic conditions, followed by 2 h in normoxia. The control cells were maintained under normoxia for 4 h. Pretreatment with either hypoxia or NaNO2 significantly increased CM viability but had no effect on cardiac fibroblast viability. Combined hypoxia/NaNO2 pretreatment significantly increased CM viability but significantly decreased cardiac fibroblast viability. In rat neonatal CMs, cell death, as determined by lactate dehydrogenase (LDH) activity, was significantly reduced with hypoxia/NaNO2 pretreatment; and in hESC‐CMs, hypoxia/NaNO2 pretreatment increased the BCL‐2/BAX gene expression ratio, suggesting that hypoxia/NaNO2 pretreatment promotes cell viability by downregulating apoptosis. Additionally, we found a correlation between the prosurvival effect of hypoxia/NaNO2 pretreatment and the myoglobin content of the cells by comparing neonatal rat ventricular and atrial CMs, which express high and low myoglobin respectively. Functionally, hypoxia/NaNO2 pretreatment significantly improved the excitation threshold upon H/R injury to the level observed for uninjured cells, whereas pretreatment did not affect the maximum capture rate. Hence, hypoxia/NaNO2 pretreatment may serve as a strategy to increase CM survival in cardiac regenerative therapy applications and tissue engineering. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:482–492, 2015  相似文献   

15.
Stem cell‐conditioned medium (CM), which contains angiogenic factors that are secreted by stem cells, represents a potential therapy for ischemic diseases. Along with stem cells, tumor cells also secrete various angiogenic factors. Here, tumor cells as a cell source of CM for therapeutic angiogenesis was evaluated and the therapeutic efficacy of tumor cell CM in mouse hindlimb ischemia models was demonstrated. CM obtained from a human fibrosarcoma HT1080 cell line culture was compared with CM obtained from a human bone marrow‐derived mesenchymal stem cell (MSC) culture. HT1080 CM contained higher concentrations of angiogenic factors compared with MSC CM, which was attributable to the higher cell density that resulted from a much faster growth rate of HT1080 cells compared with MSCs. For use in in vitro and in vivo angiogenesis studies, HT1080 CM was diluted such that HT1080 CM and MSC CM would have the same cell number basis. The two types of CMs induced the same extent of human umbilical vein endothelial cell (HUVEC) proliferation in vitro. The injection of HT1080 CM into mouse ischemic limbs significantly improved capillary density and blood perfusion compared with the injection of fresh medium. Although the therapeutic outcome of HT1080 CM was similar to that of MSC CM, the preparation of CM by tumor cell line culture would be much more efficient due to the faster growth and unlimited life‐time of the tumor cell line. These data suggest the potential application of tumor cell CM as a therapeutic modality for angiogenesis and ischemic diseases. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:456–464, 2016  相似文献   

16.
H Nawa  D W Sah 《Neuron》1990,4(2):279-287
An intriguing question regarding neuronal development is how neurons choose which neurotransmitter and/or peptide to express among over 40 candidates. We find that heart cell conditioned medium (CM) induces a number of neuropeptides and/or their precursor mRNAs, as well as acetylcholine, in cultured rat sympathetic neurons: substance P, somatostatin, vasoactive intestinal polypeptide, enkephalin derivatives, and cholecystokinin, but not neuropeptide Y. Different patterns of peptide induction were observed for CMs from primary cultures of heart, gut, and skin. Acetylcholine and substance P were induced most effectively by serum-free heart cell CM; enkephalin derivatives were induced most effectively by skin cell CM; and somatostatin and vasoactive intestinal polypeptide were induced equally well by all of the CMs. These observations suggest the possibility that many distinct, diffusible factors can influence the choice of transmitter and/or peptide phenotype in developing neurons.  相似文献   

17.
Cardiomyocytes (CMs) derived from human pluripotent stem cells (hPSCs) offer immense value in studying cardiovascular regenerative medicine. However, intrinsic biases and differential responsiveness of hPSCs towards cardiac differentiation pose significant technical and logistic hurdles that hamper human cardiomyocyte studies. Tandem modulation of canonical and non-canonical Wnt signaling pathways may play a crucial role in cardiac development that can efficiently generate cardiomyocytes from pluripotent stem cells. Our Wnt signaling expression profiles revealed that phasic modulation of canonical/non-canonical axis enabled orderly recapitulation of cardiac developmental ontogeny. Moreover, evaluation of 8 hPSC lines showed marked commitment towards cardiac-mesoderm during the early phase of differentiation, with elevated levels of canonical Wnts (Wnt3 and 3a) and Mesp1. Whereas continued activation of canonical Wnts was counterproductive, its discrete inhibition during the later phase of cardiac differentiation was accompanied by significant up-regulation of non-canonical Wnt expression (Wnt5a and 11) and enhanced Nkx2.5+ (up to 98%) populations. These Nkx2.5+ populations transited to contracting cardiac troponin T-positive CMs with up to 80% efficiency. Our results suggest that timely modulation of Wnt pathways would transcend intrinsic differentiation biases of hPSCs to consistently generate functional CMs that could facilitate their scalable production for meaningful clinical translation towards personalized regenerative medicine.  相似文献   

18.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia characterized by syncope and sudden death occurring during exercise or acute emotion. CPVT is caused by abnormal intracellular Ca2+ handling resulting from mutations in the RyR2 or CASQ2 genes. Because CASQ2 and RyR2 are involved in different aspects of the excitation‐contraction coupling process, we hypothesized that these mutations are associated with different functional and intracellular Ca²+ abnormalities. To test the hypothesis we generated induced Pluripotent Stem Cell‐derived cardiomyocytes (iPSC‐CM) from CPVT1 and CPVT2 patients carrying the RyR2R420Q and CASQ2D307H mutations, respectively, and investigated in CPVT1 and CPVT2 iPSC‐CM (compared to control): (i) The ultrastructural features; (ii) the effects of isoproterenol, caffeine and ryanodine on the [Ca2+]i transient characteristics. Our major findings were: (i) Ultrastructurally, CASQ2 and RyR2 mutated cardiomyocytes were less developed than control cardiomyocytes. (ii) While in control iPSC‐CM isoproterenol caused positive inotropic and lusitropic effects, in the mutated cardiomyocytes isoproterenol was either ineffective, caused arrhythmias, or markedly increased diastolic [Ca2+]i. Importantly, positive inotropic and lusitropic effects were not induced in mutated cardiomyocytes. (iii) The effects of caffeine and ryanodine in mutated cardiomyocytes differed from control cardiomyocytes. Our results show that iPSC‐CM are useful for investigating the similarities/differences in the pathophysiological consequences of RyR2 versus CASQ2 mutations underlying CPVT1 and CPVT2 syndromes.  相似文献   

19.
Doxorubicin (DOX) is widely used to treat various cancers affecting adults and children; however, its clinical application is limited by its cardiotoxicity. Previous studies have shown that children are more susceptible to the cardiotoxic effects of DOX than adults, which may be related to different maturity levels of cardiomyocyte, but the underlying mechanisms are not fully understood. Moreover, researchers investigating DOX‐induced cardiotoxicity caused by human‐induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) have shown that dexrazoxane, the recognized cardioprotective drug for treating DOX‐induced cardiotoxicity, does not alleviate the toxicity of DOX on hiPSC‐CMs cultured for 30 days. We have suggested that this may be ascribed to the immaturity of the 30 days hiPSC‐CMs. In this study, we investigated the mechanisms of DOX induced cardiotoxicity in cardiomyocytes of different maturity. We selected 30‐day‐old and 60‐day‐old hiPSC‐CMs (day 30 and day 60 groups), which we term ‘immature’ and ‘relatively mature’ hiPSC‐CMs, respectively. The day 30 CMs were found to be more susceptible to DOX than the day 60 CMs. DOX leads to more ROS (reactive oxygen species) production in the day 60 CMs than in the relatively immature group due to increased mitochondria number. Moreover, the day 60 CMs mainly expressed topoisomerase IIβ presented less severe DNA damage, whereas the day 30 CMs dominantly expressed topoisomerase IIα exhibited much more severe DNA damage. These results suggest that immature cardiomyocytes are more sensitive to DOX as a result of a higher concentration of topoisomerase IIα, which leads to more DNA damage.  相似文献   

20.
Comprehensive functioning of Ca2+ cycling is crucial for excitation–contraction coupling of cardiomyocytes (CMs). Abnormal Ca2+ cycling is linked to arrhythmogenesis, which is associated with cardiac disorders and heart failure. Accordingly, we have generated spontaneously beating CMs from induced pluripotent stem cells (iPSC) derived from patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), which is an inherited and severe cardiac disease. Ca2+ cycling studies have revealed substantial abnormalities in these CMs. Ca2+ transient analysis performed manually lacks accepted analysis criteria, and has both low throughput and high variability. To overcome these issues, we have developed a software tool, AnomalyExplorer based on interactive visualization, to assist in the classification of Ca2+ transient patterns detected in CMs. Here, we demonstrate the usability and capability of the software, and we also compare the analysis efficiency to manual analysis. We show that AnomalyExplorer is suitable for detecting normal and abnormal Ca2+ transients; furthermore, this method provides more defined and consistent information regarding the Ca2+ abnormality patterns and cell line specific differences when compared to manual analysis. This tool will facilitate and speed up the analysis of CM Ca2+ transients, making it both more accurate and user-independent. AnomalyExplorer can be exploited in Ca2+ cycling analysis to study basic disease pathology and the effects of different drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号