首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aim Assessing potential response of alpine plant species distribution to different future climatic and land‐use scenarios. Location Four mountain ranges totalling 150 km2 in the north‐eastern Calcareous Alps of Austria. Methods Ordinal regression models of eighty‐five alpine plant species based on environmental constraints and land use determining their abundance. Site conditions are simulated spatially using a GIS, a Digital Terrain Model, meteorological station data and existing maps. Additionally, historical records were investigated to derive data on time spans since pastures were abandoned. This was then used to assess land‐use impacts on vegetation patterns in combination with climatic changes. Results A regionalized GCM scenario for 2050 (+ 0.65 °C, ?30 mm August precipitation) will only lead to local loss of potential habitat for alpine plant species. More profound changes (+ 2 °C, ?30 mm August precipitation; + 2 °C, ?60 mm August precipitation) however, will bring about a severe contraction of the alpine, non‐forest zone, because of range expansion of the treeline conifer Pinus mugo Turra and many alpine species will loose major parts of their habitat. Precipitation change significantly influences predicted future habitat patterns, mostly by enhancing the general trend. Maintenance of summer pastures facilitates the persistence of alpine plant species by providing refuges, but existing pastures are too small in the area to effectively prevent the regional extinction risk of alpine plant species. Main conclusions The results support earlier hypotheses that alpine plant species on mountain ranges with restricted habitat availability above the treeline will experience severe fragmentation and habitat loss, but only if the mean annual temperature increases by 2 °C or more. Even in temperate alpine regions it is important to consider precipitation in addition to temperature when climate impacts are to be assessed. The maintenance of large summer farms may contribute to preventing the expected loss of non‐forest habitats for alpine plant species. Conceptual and technical shortcomings of static equilibrium modelling limit the mechanistic understanding of the processes involved.  相似文献   

2.
Question: We asked how landscape configuration and present management influence plant species richness and abundance of habitat specialists in grasslands in a ‘modern’(much exploited and transformed) agricultural Swedish landscape. Location: Selaön, south‐eastern Sweden (59°24’ N, 17°10’ E). Methods: Present and past (150 and 50 years ago) landscape pattern was analysed in a 25 km2 area. Species richness was investigated in 63 different grassland patches; grazed and abandoned semi‐natural grasslands, and grazed ex‐arable fields. Influence of landscape variables; area, past and present grassland connectivity, present management on total species richness, density and abundance of 25 grassland specialists was analysed. Results: Semi‐natural grasslands (permanent unfertilised pastures or meadows formed by traditional agricultural methods) had declined from 60% 150 years ago to 5% today. There was a significant decline in species richness and density in abandoned semi‐natural grasslands. Total species richness was influenced by present management, size and connectivity to present and past grassland pattern. Landscape variables did not influence species density in grazed semi‐natural grassland suggesting that maintained grazing management makes grassland patches independent of landscape context. The abundance of 16 grassland specialists was mainly influenced by management and to some extent also by landscape variables. Conclusion: Although species richness pattern reflect management and to some extent landscape variables, the response of individual species may be idiosyncratic. The historical signal from past landscapes is weak on present‐day species richness in highly transformed, agricultural landscapes. Generalizations of historical legacies on species diversity in grasslands should consider also highly transformed landscapes and not only landscapes with a high amount of diversity hotspots left.  相似文献   

3.
Abstract: Rock outcrops are considered as habitat or ecological islands discordant from the adjacent matrix. The floras of 24 aggregated outcrop regions within the New England Batholith of eastern Australia were sampled and investigations made into species range differences. A measure is developed to describe differences in species range sizes across floras (range saturation: RS). Range sizes increased in areas with higher incident radiation (higher available energy) and concordantly in regions with a greater proportion of hemi‐parasites, epiphytes and herbs (which were demonstrated to have large range sizes). Differences in species’ range sizes of granite outcrop occurring species on the New England Batholith of eastern Australia at different scales and extents are regressed against selected environmental variables and against local species richness and abundance. Although species’ range size has been linked in a number of systems with increased species richness and local species abundance, such correlations were not obtained in this investigation. Analyses of species’ range sizes could not be used to infer directly on processes that maintain species richness or abundance within the granitic outcrop flora of the New England Batholith.  相似文献   

4.
We explored how a woody plant invader affected riparian bird assemblages. We surveyed 15 200‐m‐long transects in riparian zones in a much‐changed landscape of eastern Victoria, Australia. Abundance, species‐richness, foraging‐guild richness and composition of birds were compared in transects in three habitat types: (i) riparian zones dominated by the invasive willow Salix × rubens; (ii) riparian zones lined with native woody species; and (iii) riparian zones cleared of almost all woody vegetation. We also measured abundance and richness of arthropods and habitat structure to explore further the effects of food resources and habitat on the avifauna. We observed 67 bird species from 14 foraging guilds. Native riparian transects had more birds, bird species and foraging guilds than willow‐invaded or cleared transects. Habitat complexity increased from cleared to willow‐invaded to native riparian transects, as did abundance of native and woodland‐dependent birds. Native shrub and trees species had more foliage and branch‐associated arthropods than did willows, consistent with a greater abundance and variety of foraging guilds of birds dependent on this resource. Willow spread into cleared areas is unlikely to facilitate greatly native bird abundance and diversity even though habitat complexity is increased. Willow invasion into the native riparian zone, by decreasing food resources and altering habitat, is likely to reduce native bird biodiversity and further disrupt connectivity of the riparian zone.  相似文献   

5.
Global climate and land-use changes are the most significant causes of the current habitat loss and biodiversity crisis. Although there is information measuring these global changes, we lack a full understanding of how they impact community assemblies and species interactions across ecosystems. Herein, we assessed the potential distribution of eight key woody plant species associated with the habitat of the endangered Lilac-crowned Amazon (Amazon finschi) under global changes scenarios (2050′s and 2070′s), to answer the following questions: (1) how do predicted climate and land-use changes impact these species’ individual distributions and co-distribution patterns?; and (2) how effective is the existing Protected Area network for safeguarding the parrot species, the plant species, and their biological interactions? Our projections were consistent identifying the species that are most vulnerable to climate change. The distribution ranges of most of the species tended to decrease under future climates. These effects were strongly exacerbated when incorporating land-use changes into models. Even within existing protected areas, >50 % of the species’ remaining distribution and sites with the highest plant richness were predicted to be lost in the future under these combined scenarios. Currently, both individual species ranges and sites of highest richness of plants, shelter a high proportion (ca. 40 %) of the Lilac-crowned Amazon distribution. However, this spatial congruence could be reduced in the future, potentially disrupting the ecological associations among these taxa. We provide novel evidence for decision-makers to enhance conservation efforts to attain the long-term protection of this endangered Mexican endemic parrot and its habitat.  相似文献   

6.
Aim We aimed to describe the large‐scale patterns in population density of roe deer Caprelous capreolus in Europe and to determine the factors shaping variation in their abundance. Location Europe. Methods We collated data on roe deer population density from 72 localities spanning 25° latitude and 48° longitude and analysed them in relation to a range of environmental factors: vegetation productivity (approximated by the fraction of photosynthetically active radiation) and forest cover as proxies for food supply, winter severity, summer drought and presence or absence of large predators (wolf, Canis lupus, and Eurasian lynx, Lynx lynx), hunter harvest and a competitor (red deer, Cervus elaphus). Results Roe deer abundance increased with the overall productivity of vegetation cover and with lower forest cover (sparser forest cover means that a higher proportion of overall plant productivity is allocated to ground vegetation and thus is available to roe deer). The effect of large predators was relatively weak in highly productive environments and in regions with mild climate, but increased markedly in regions with low vegetation productivity and harsh winters. Other potentially limiting factors (hunting, summer drought and competition with red deer) had no significant impact on roe deer abundance. Main conclusions The analyses revealed the combined effect of bottom‐up and top‐down control on roe deer: on a biogeographical scale, population abundance of roe deer has been shaped by food‐related factors and large predators, with additive effects of the two species of predators. The results have implications for management of roe deer populations in Europe. First, an increase in roe deer abundance can be expected as environmental productivity increases due to climate change. Secondly, recovery plans for large carnivores should take environmental productivity and winter severity into account when predicting their impact on prey.  相似文献   

7.
How strong‐beaked frugivores such as parrots affect other frugivores is poorly understood. This study quantitated six indices of habitat quality for the facultatively frugivorous Bananaquit (Coereba flaveola) using two habitat types and three treatments of habitat quality, namely old growth forest versus citrus orchards in Dominica, the latter habitat type with and without parrot frugivory. The study also controlled for elevation, rainfall and citrus fruit maturity. The results indicate that both the quantity of parrot frugivory and fruit maturity at the time of frugivory influenced the habitat quality for Bananaquits. Their abundance was higher, individuals stored more fat, and parasite loads were lower on farms with more parrot frugivory. Fruit quality mediated the influence of the quantity of parrot frugivory insofar as Bananaquit body condition was tightly correlated with the fruit chemistry at the time of frugivory or harvest. This study provides empirical evidence of a commensal association and underscores the important ecological role of Neotropical psittacines as mediators of habitat quality for other animal. The findings further suggest that loss of these apex consumers may have triggered previously unappreciated trophic cascades, particularly in island ecosystems lacking large mammalian canopy frugivores.  相似文献   

8.
9.
Coral reefs have recently experienced an unprecedented decline as the world's oceans continue to warm. Yet global climate models reveal a heterogeneously warming ocean, which has initiated a search for refuges, where corals may survive in the near future. We hypothesized that some turbid nearshore environments may act as climate‐change refuges, shading corals from the harmful interaction between high sea‐surface temperatures and high irradiance. We took a hierarchical Bayesian approach to determine the expected distribution of 12 coral species in the Indian and Pacific Oceans, between the latitudes 37°N and 37°S, under representative concentration pathway 8.5 (W m?2) by 2100. The turbid nearshore refuges identified in this study were located between latitudes 20–30°N and 15–25°S, where there was a strong coupling between turbidity and tidal fluctuations. Our model predicts that turbidity will mitigate high temperature bleaching for 9% of shallow reef habitat (to 30 m depth) – habitat that was previously considered inhospitable under ocean warming. Our model also predicted that turbidity will protect some coral species more than others from climate‐change‐associated thermal stress. We also identified locations where consistently high turbidity will likely reduce irradiance to <250 μmol m?2 s?1, and predict that 16% of reef‐coral habitat ≤30 m will preclude coral growth and reef development. Thus, protecting the turbid nearshore refuges identified in this study, particularly in the northwestern Hawaiian Islands, the northern Philippines, the Ryukyu Islands (Japan), eastern Vietnam, western and eastern Australia, New Caledonia, the northern Red Sea, and the Arabian Gulf, should become part of a judicious global strategy for reef‐coral persistence under climate change.  相似文献   

10.
The formation and maintenance of biogeographic regions and the latitudinal gradient of species richness are thought to be influenced, in part, by the spatial distribution of physical habitat (habitat continuity). But the importance of habitat continuity in relation to other variables for shaping richness gradients and delimiting biogeographic regions has not been well established. Here, we show that habitat continuity is a top predictor of biogeographic structure and the richness gradient of eastern Pacific rocky shore gastropods (spanning c. 23 000 km, from 43°S to 48°N). Rocky shore habitat continuity is generally low within tropical/subtropical regions (compared to extratropical regions), but particularly at biogeographic boundaries where steep richness gradients occur. Regions of high rocky shore habitat continuity are located towards the centres of biogeographic regions where species turnover tends to be relatively low. Our study highlights the importance of habitat continuity to help explain patterns and processes shaping the biogeographic organisation of species.  相似文献   

11.
Parrots (Psittaciformes) are among the most threatened bird orders with 28 % (111 of 398) of extant species classified as threatened under IUCN criteria. We confirmed that parrots have a lower Red List Index (higher aggregate extinction risk) than other comparable bird groups, and modeled the factors associated with extinction risk. Our analyses included intrinsic biological, life history and ecological attributes, external anthropogenic threats, and socio-economic variables associated with the countries where the parrot species occur, while we controlled for phylogenetic dependence among species. We found that the likelihood of parrot species being classified as threatened was less for species with larger historical distribution size, but was greater for species with high forest dependency, large body size, long generation time, and greater proportion of the human population living in urban areas in the countries encompassing the parrots’ home ranges. The severity of extinction risk (from vulnerable to critically endangered) was positively related to the per capita gross domestic product (GDP) of the countries of occurrence, endemism to a single country, and lower for species used as pets. A disproportionate number of 16 extinct parrot species were endemic to islands and single countries, and were large bodied, habitat specialists. Agriculture, hunting, trapping, and logging are the most frequent threats to parrots worldwide, with variation in importance among regions. We use multiple methods to rank countries with disproportionately high numbers of threatened parrot species. Our results promote understanding of global and regional factors associated with endangerment in this highly threatened taxonomic group, and will enhance the prioritization of conservation actions.  相似文献   

12.
Aim We aimed to redress a current limitation of local ecological studies (i.e. piecemeal information on specific taxa) by integrating existing ecological knowledge with quantifiable patterns in primary habitat (i.e. composition, distribution and cover) from local to continental scales. By achieving this aim, we sought to provide a biogeographical framework for the interpretation of variation in the ecology of, and threats to, subtidal rocky landscapes. Location The subtidal rocky coast of continental Australia, with longitudinal comparisons spanning > 4000 km of southern coast (115°03′ E–153°60′ E) between latitudes of 33°05′ S and 35°36′ S, and latitudinal comparisons across 26°40′ S to 37°08′ S of eastern Australia. Methods The frequency and size of patches of major benthic habitat were quantified to indicate contemporary function (ecology) and to establish patterns that may result from contrasting regional‐scale processes (biogeography). This was achieved by quantifying the composition and patchiness of key subtidal habitats across the continent and relating them to the known ecology of subsets of locations in each region. A nested design of several spatial scales (1000s, 100s, 10–1 km) was adopted to distinguish patterns at local through to biogeographical scales. Results We show biogeography (in terms of longitude and latitude) to have a fundamental influence on the patterns of abundance and composition of subtidal habitats across regional (1000s of kilometres) to local (10s of kilometres to metres) scales. Across the continent, the most fundamental patterns related to (1) the proportion of rock covered by kelp forests, as related to particular functional groups of herbivores, and (2) the small‐scale heterogeneity (metres) that characterizes these forests. Main conclusions We interpret these results within a framework of alternative processes known to maintain habitat heterogeneity across these regions (e.g. productivity versus consumption as shapers of habitat structure). These interpretations illustrate how regional differences in ecological patterns and processes can create contradictory outcomes for the management of natural resources. We suggest that researchers and managers of natural resources alike may benefit from understanding local issues (e.g. the effects of fishing and its synergies with water pollution) in their biogeographical contexts.  相似文献   

13.
Feral Horse (Equus caballus) impacts in northern Kosciuszko National Park, New South Wales, Australia are directly occurring in habitat of the nationally threatened Broad‐toothed Rat (Mastacomys fuscus). This species is endemic primarily to the mountain regions of south‐eastern mainland Australia and Tasmania, with a disjunct population at Barrington Tops. The Broad‐toothed Rat's preferred habitat is being increasingly impacted by browsing and trampling associated with the expansion of feral horse populations. This study surveyed 180 sites supporting preferred habitat for this species to determine Broad‐toothed Rat presence and relative abundance in relation to the level of feral horse impacts within the reserve. There was a significant negative relationship between feral horse impacts and both Broad‐toothed Rat presence and abundance. No scats were identified at localities where feral horse impacts were severe, and at moderate horse impact sites, there was a proportion (34%) without scats found. Locations with low horse impacts had little impact on Broad‐toothed Rat occurrence. As feral horse populations increase, Broad‐toothed Rat populations may be further impacted. Such impacts will be due to the loss of vegetation cover from feral horse trampling and grazing, making animals more vulnerable to predation by predators or impacting on their ability to disperse to more suitable habitat. Habitat remnants and vegetation corridors along drainage lines require protection from feral horses to prevent localized extinctions of Broad‐toothed Rat.  相似文献   

14.
Replacing Sources with Sinks: When Do Populations Go Down the Drain?   总被引:1,自引:0,他引:1  
We investigate the scenario in which some amount of higher quality habitat is destroyed and is then replaced by some undetermined amount of lower quality habitat. We examined how much low‐quality habitat would need to be created to maintain the equilibrium population abundance in the entire geographic area. Using a source–sink model, we find that (1) the number of hectares of created habitat per hectare of destroyed habitat must equal the ratio of the high‐quality habitat's productivity to the low‐quality habitat's productivity, however, (2) if the created habitat is a sink, then there is a threshold fraction of destroyed high‐quality habitat below which the initial population abundance cannot be maintained through the creation of habitat. We illustrate these results using data on Red‐winged Blackbirds (Agelaius phoeniceus) in two different regions where high‐quality habitat is being replaced by or converted into lower quality habitat.  相似文献   

15.
Aim To assess whether eight factors thought to be involved in the extinction process can explain the pattern of recent decline in Australia's mammal fauna. Location Australia. Methods We compiled the first comprehensive lists of mammal species extant at the time of European settlement in each of Australia's 76 mainland regions, and assigned a current conservation status to each species in each region to derive an index of faunal attrition. We then sought to explain the observed region‐to‐region variation in attrition (the dependent variable) by building a series of models using variables representing the eight factors. Results A strong geographically based pattern of attrition emerged, with faunal losses being greatest in arid regions and least in areas of high rainfall. The Akaike information criterion showed support for one model that explained 93% of the region‐to‐region variation in attrition. Its six variables all made independent contributions towards explaining the observed variation. Two were environmental variables, namely mean annual rainfall (a surrogate for regional productivity) and environmental change (a measure of post‐European disturbance). The other four were faunal variables, namely phylogenetic similarity, body‐weight distribution, area (as a surrogate for extent of occurrence), and proportion of species that usually shelter on the ground (rather than in rock piles, burrows or trees). Main conclusions In combination with historical evidence, the analysis provides an explicit basis for setting priorities among regions and species. It also shows that the long‐term recovery of populations of many species of Australian mammals will require introduced predator suppression as well as extensive habitat management that includes controlling feral herbivores. Specifically, habitat management should restore aspects of productivity relevant to the types of species at risk and ensure the continual availability of suitable refuges from physiological stressors.  相似文献   

16.
Abstract Changes in the abundance, species richness and assemblage composition of vertebrates due to grazing by domestic stock were investigated in the semi‐arid woodlands of eastern Australia. Analyses were based on the differences found at 10 fenceline contrast sites. Two species of amphibians, 22 species of reptiles and two species of small mammal were captured in pit traps during the surveys. Kangaroos (red and eastern grey), sheep, goats and 66 species of birds were recorded along line transects. Analyses revealed that abundance of diurnal reptiles and species richness of diurnal reptiles and birds were significantly lower on heavily grazed sites than they were on lightly grazed sites. At a local scale, the gecko, Gehyra variegata, was more abundant where grazing was heavier, while Diplodactylus conspicillatus, Diplodactylus steindachneri and Rhynchoedura ornata responded to variables indirectly related to grazing intensity (kangaroo density, sheep and goat dung mass and sheep density, respectively). Birds more commonly sighted on lightly grazed areas than heavily grazed areas were the apostlebird, brown treecreeper, crested bellbird, grey butcherbird, hooded robin, jacky winter, little woodswallow, Australian magpie‐lark, mulga parrot, splendid wren, white‐browed treecreeper and yellow‐rumped thornbill. Birds more commonly sighted on heavily grazed areas than on lightly grazed areas were the Australian raven and chestnut‐crowned babbler. Most variation in species composition between sites was due to spatial separation and no regional‐level indicator species of grazing were evident. A combination of direct grazing‐related changes (e.g. loss of ground cover) and indirect effects of the pastoral industry (e.g. introduction of artificial sources of water) lead to changes in fauna at different scales of analysis across regions.  相似文献   

17.
The pace and scale of reclamation in Alberta's oil sands region are increasing, and techniques to measure and validate the ecological function of developing habitats are needed. In Alberta, achievement of equivalent land capability to that present before disturbance is a regulatory requirement of reclamation certification. We compared landbird abundance and productivity indices from mist‐netting data collected in 2011–2013 using the Monitoring Avian Productivity and Survivorship (MAPS) protocol with local habitat covariates at 35 monitoring stations in natural, reclaimed, and disturbed habitats. Principal component analysis of habitat covariates explained 83% of the variation in 20 habitat‐structure variables. We found significant relationships between habitat covariates and captures of adult birds, young birds, and/or the probability of capturing a young bird (productivity) for 12 landbird species; in some cases, capture responses contrasted with productivity responses to habitat variables. Responses to reclamation age were as expected, given habitat preferences of our target species. Positive responses to reclamation age from obligate forest‐dwelling species take more years to become evident than those for species preferring successional‐stage habitats, while one species that prefers open, grassland habitats appeared to decline with reclamation age, presumably due to habitat succession. Application of the MAPS protocol as a tool to evaluate and track the performance of reclaimed and disturbed habitats is demonstrated, with landbird abundance and productivity indices in natural habitats being useful indicators of equivalent land capability.  相似文献   

18.
Aim To compare the ability of island biogeography theory, niche theory and species–energy theory to explain patterns of species richness and density for breeding bird communities across islands with contrasting characteristics. Location Thirty forested islands in two freshwater lakes in the boreal forest zone of northern Sweden (65°55′ N to 66°09′ N; 17°43′ E to 17°55′ E). Methods We performed bird censuses on 30 lake islands that have each previously been well characterized in terms of size, isolation, habitat heterogeneity (plant diversity and forest age), net primary productivity (NPP), and invertebrate prey abundance. To test the relative abilities of island biogeography theory, niche theory and species–energy theory to describe bird community patterns, we used both traditional statistical approaches (linear and multiple regressions) and structural equation modelling (SEM; in which both direct and indirect influences can be quantified). Results Using regression‐based approaches, area and bird abundance were the two most important predictors of bird species richness. However, when the data were analysed by SEM, area was not found to exert a direct effect on bird species richness. Instead, terrestrial prey abundance was the strongest predictor of bird abundance, and bird abundance in combination with NPP was the best predictor of bird species richness. Area was only of indirect importance through its positive effect on terrestrial prey abundance, but habitat heterogeneity and spatial subsidies (emerging aquatic insects) also showed important indirect influences. Thus, our results provided the strongest support for species–energy theory. Main conclusions Our results suggest that, by using statistical approaches that allow for analyses of both direct and indirect influences, a seemingly direct influence of area on species richness can be explained by greater energy availability on larger islands. As such, animal community patterns that seem to be in line with island biogeography theory may be primarily driven by energy availability. Our results also point to the need to consider several aspects of habitat quality (e.g. heterogeneity, NPP, prey availability and spatial subsidies) for successful management of breeding bird diversity at local spatial scales and in fragmented or insular habitats.  相似文献   

19.
Summary Assessment of the conservation significance of a species at a particular site involves estimating the population size. Generally this is based on a single survey. However, where plant species vary greatly in abundance in response to disturbance regimes, there will be uncertainty associated with the use of single estimates of abundance. The interpretation of such estimates is dependent on an understanding of the ecology of the species and the disturbance regimes that impact on it. We examined the usefulness of abundance estimates in the endangered shrub Grevillea caleyi (a fire‐sensitive shrub with a persistent soil seed bank) from south‐eastern Australia, where fire is a major landscape disturbance. Comparisons of estimates of abundance before and after fire showed very large changes in the number of plants of G. caleyi above ground. Changes in abundance of over two orders of magnitude were observed. The longer the site was left unburnt, the greater the magnitude of change in abundance after the next fire. Above‐ground plants may be rare or absent at sites unburnt for over 15–20 years, but were abundant after fire, due to re‐establishment from the soil seed bank. Sites burnt by two fires in quick succession showed declines in population abundance, most likely due to the soil seed bank not being replenished between such short interval fires. Assessments of the conservation significance of remnant sites of G. caleyi and similar species based on a single sample of above‐ground plant abundance at one time are considered inappropriate. The amount of available habitat for G. caleyi, either as area of occupancy or preferably extent of available habitat, was a moderate predictor of the likely magnitude of abundance in the species after fire. However, the usefulness of these measures for species whose biology is comparable to Grevillea caleyi, will be limited due to factors relating to the degree of species‐specific habitat requirements, local site fire history and the impact of any one fire on resultant post‐fire germination levels. Any assessment of conservation significance will require the interpretation of available information in relation to the ecology of a species.  相似文献   

20.
Plebejus argyrognomon is one of the grassland‐dwelling butterflies undergoing rapid decline in recent decades. Grassland habitats for butterflies are generally threatened by fragmentation and invasive species, hence are among the most vulnerable ecosystems. We studied the seasonal abundance of P. argyrognomon at habitat patches along the banks of the Kinugawa River in eastern Japan, to identify environmental factors suitable for population persistence of this species, including habitat patch connectivity. Results showed that the patch's host plant cover had a positive effect on abundance in all three seasons, while the shading of the host plants by surrounding non‐host plants and nearby forested area showed negative effects. Additionally, habitat patch connectivity and nectar richness could be considered as positive factors in autumn and summer, respectively. Analysis of habitat connectivity also showed that the Kinugawa River did not appear to act as a dispersal barrier for P. argyrognomon. Our findings emphasize the importance of understanding environmental factors that may vary among seasons, and such understanding could contribute to habitat management of multivoltine butterflies in fragmented landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号