首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Species composition, number of emerging seedlings, species diversity and functional group of the soil seed banks, and the influence of grazing on the similarity between the soil seed banks and aboveground vegetation, were studied in 2008 and 2009 in a semi‐arid savanna of Ethiopia. We tested whether the availability of persistent seeds in the soil could drive the transition from a degraded system under heavy grazing to healthy vegetation with ample perennial grasses. A total of 77 species emerged from the soil seed bank samples: 21 annual grasses, 12 perennial grasses, 4 herbaceous legumes, 39 forbs, and 1 woody species. Perennial grass species dominated the lightly grazed sites, whereas the heavily grazed sites were dominated by annual forbs. Heavy grazing reduced the number of seeds that can germinate in the seed bank. Species richness in the seed bank was, however, not affected by grazing. With increasing soil depth, the seed density and its species richness declined. There was a higher similarity in species composition between the soil seed bank and aboveground vegetation at the lightly grazed sites compared with the heavily grazed sites. The mean similarity between the seed banks and aboveground vegetation was relatively low, indicating the effect of heavy grazing. Moreover, seeds of perennial grasses were less abundant in the soil seed banks under heavy grazing. We concluded that restoration of grass and woody species from the soil seed banks in the heavily grazed areas could not be successful in semi‐arid savannas of Ethiopia.  相似文献   

2.
An initially uniform Holcus lanatus-dominated sward came partly under hay-making and partly under sheep-grazing. Preferential grazing by sheep resulted in grazing at different intensities giving rise to a macro-pattern of various plant communities. Besides this macro-pattern a micro-pattern developed in the grazed area, which was absent under hay-making. In the micro-pattern short, heavily grazed areas alternated with taller, lightly grazed patches, both having the same species composition. The heavily grazed area was characterized by equal amounts of monocots and dicots. The lightly grazed patches were dominated by Agrostis tenuis, and had a large amount of litter which probably causes the absence of mosses. The protein percentage of green material is higher in the heavily grazed areas than in the lightly grazed patches.Sequential charting indicated that the micro-pattern was more or less stable. An interaction between the vegetation micro-pattern and grazing patterns is suggested. Heavy grazing results in forage with a high protein content and hence attracts animals. Light grazing results in forage with a relatively low protein content, animals avoid the area and litter accumulates.Nomenclature follows Heukels & van Ooststroom (1977) Flora van Nederland.Mrs J. O'Brien corrected the English text  相似文献   

3.
The effect of different levels of cattle grazing on an arid Australian small terrestrial mammal and lizard assemblage was assessed in a long‐tem series of cross‐fence comparisons. Cross‐fenced sites were closely matched for edaphic and vegetation characteristics and experienced near identical weather patterns, to ensure that cattle grazing pressure was the principal determinant of any differences in fauna assemblages. In addition, the effects of removal of cattle, cats, foxes and rabbits from three of these long‐term monitoring sites were assessed to determine the relative impacts of cattle grazing and feral animals. Small mammal captures, with the exception of Mus musculus, revealed a significant negative response to cattle grazing pressure but this response was of a considerably lower magnitude than the dramatic increase in rodent captures and species richness within the feral animal‐proof Arid Recovery Reserve. Higher kangaroo numbers in ungrazed controls, compared with treatments grazed by cattle, possibly negated the benefits to small mammals of removing cattle grazing. No reptile species responded significantly to the grazing treatments although reptile richness and captures of geckos and skinks were the lowest and agamid captures were the highest at heavily grazed sites. Nephrurus levis was the only reptile species to increase significantly, while captures of some smaller geckoes declined, within the feral‐proof treatment. Feral predation exerted a more significant effect on most small mammal species than the levels of cattle grazing assessed in this study, yet reptile responses to grazing or feral animals were less apparent and were likely primarily driven by changes in vegetation cover or secondary trophic impacts.  相似文献   

4.
The effects of stock grazing on native grassy ecosystems in temperate southern Australia are well documented. However, less is known about the potential of ecosystems to recover after a long history of stock grazing and, in particular, whether the removal of stock will have positive, negative or neutral impacts on biodiversity. We examined the response of understorey vegetation to the removal of sheep grazing in a herb‐rich Eucalyptus camaldulensis (red gum) woodland in western Victoria. Using a space‐for‐time chronosequence, woodlands were stratified into groups based on their time‐since‐grazing removal; these were long‐ungrazed (>20 years), intermediate‐time‐since‐grazing (9–14 years), recently ungrazed (5 years) and continuously grazed. We found significantly higher species density in long‐ungrazed sites relative to sites with a more recent grazing history. No differences were found in species density between continuously grazed sites and those ungrazed in the previous 14 years. Species composition differed with time‐since‐grazing removal and indicator species analysis detected several native species (including tall native geophytes and herbs) associated with long‐ungrazed sites that were absent or in low abundance in the more recently grazed sites. Seven of the eight species significantly associated with continuously grazed sites were exotic. Removal of sheep grazing in red gum woodlands can have positive benefits for understorey diversity but it is likely that recovery of key indicators such as native species will be slow.  相似文献   

5.
放牧对脆弱的荒漠草原生态系统有着重要影响,且随放牧强度及持续时间不同而变化。鞘翅目昆虫是环境监测与生物多样性变化的指示生物。利用巴氏罐诱法对短花针茅荒漠草原不同放牧强度草地的甲虫群落组成和多样性进行调查,探究放牧对荒漠草原甲虫群落的影响。结果表明:(1)步甲科、金龟科为短花针茅荒漠草原甲虫群落优势类群,埋葬甲科、芫菁科、拟步甲科和花金龟科为常见类群。(2)放牧强度增加不利于维持更多的捕食性甲虫;对照和轻度放牧样地可维持更多的腐食性甲虫。(3)甲虫数量随放牧强度增加而递减;群落多样性以重度放牧草地最大,轻度放牧草地最小;群落优势度为对照、中度、重度显著高于轻度放牧草地。各甲虫类群在不同放牧强度草地出现时间、高峰期均不同。(4)对照、轻度、重度放牧样地的甲虫优势类群群落结构不同于其他生境,但均与中度放牧样地存在相似性。轻度、中度、重度放牧样地的甲虫稀有类群群落结构不同于其他生境,但均与对照样地存在相似性。(5)甲虫群落个体数与植物群落物种丰富度、盖度、植物平均高度、生物量呈显著正相关。Shannon-Wiener多样性指数、Margalef丰富度指数均与植物群落物种丰富度、生物量显著负相关。研究结果为荒漠草原甲虫多样性保护提供参考依据。  相似文献   

6.
Changes in grazing management are believed to be responsible for declines in populations of birds breeding in grassland over the last decades. The relationships between grazing management regimes, vegetation structure and composition and the availability of invertebrate food resources to passerine birds remain poorly understood. In this study, we investigated the foraging site selection of meadow pipits (Anthus pratensis L.) breeding in high intensity sheep-grazed plots or low intensity mixed (i.e. sheep and cattle)-grazed plots. We sampled above-ground invertebrates, measured vegetation height and density and conducted a vegetation survey in areas where meadow pipits were observed to forage and areas that were randomly selected. Birds foraged in areas with a lower vegetation height and density and in areas containing a lower proportion of the dominant, tussock-forming grass species Molinia caerulea. They did not forage in areas with a total higher invertebrate biomass but at areas with preferred vegetation characteristics invertebrate biomass tended to be higher in foraging sites than random sites. The foraging distance of meadow pipits was higher in the intensively grazed plots. Our findings support the hypothesis that resource-independent factors such as food accessibility and forager mobility may determine patch selection and are of more importance as selection criteria than food abundance per se. Food accessibility seems to become an even more important selection criterion under high grazing intensity, where prey abundance and size decrease. In our upland grazing system, a low intensity, mixed grazing regime seems to provide a more suitable combination of sward height, plant diversity, structural heterogeneity and food supply for meadow pipit foraging activity compared to a more intensive grazing regime dominated by sheep.  相似文献   

7.
Abstract: Livestock grazing is common and widespread throughout North America, yet few studies have evaluated its effects on small mammals. We studied small mammals in mixed-conifer forests and oak woodlands on the Cascade-Siskiyou National Monument in southern Oregon, USA, to 1) evaluate small-mammal microhabitat associations, 2) identify riparian-associated species, and 3) test the hypothesis that grazing does not influence small mammals after accounting for microhabitat associations. We live-trapped small mammals at 16 study sites and used logistic regression to model probability of capture on measured habitat characteristics at each trap station and to evaluate effects of grazing. Over 2 years, we trapped 1,270 individual small mammals representing 18 species. Odds of capturing western harvest mice (Reithrodontomys megalotis), dusky-footed woodrats (Neotoma fuscipes), and long-tailed voles (Microtus longicaudus) were lower (P < 0.05) on heavily versus lightly grazed sites. Odds of capture for deer mice (Peromyscus maniculatus) were lower (P < 0.05) on heavily versus lightly grazed sites in woodlands, but there was less difference in the odds of capture between grazing intensities in conifer forests. Odds of capturing Townsend's vole (Microtus townsendii) were lower on heavily versus lightly grazed riparian areas. Western harvest mice, long-tailed voles, and Townsend's voles were associated with, but not obligated to, riparian areas. Deer mice were ubiquitous, but captures were also higher (P < 0.05) in riparian areas compared with uplands. Siskiyou chipmunks (Tamias siskiyou) and piñon mice (Peromyscus truei) were associated with uplands (P < 0.05) rather than riparian areas. Trowbridge's shrews (Sorex trowbridgii), Siskiyou chipmunks, and bushy-tailed woodrats (Neotoma cinerea) were positively associated with coarse woody debris. Land managers should anticipate that small mammals associated with herbaceous or shrub cover, particularly in riparian areas, will decline when cattle remove this cover.  相似文献   

8.
《环境昆虫学报》2013,35(5):572-577
采用无底样框法对四子王旗荒漠草原不同放牧强度下的蝗虫群落进行了取样调查,比较了不同放牧强度下荒漠草原蝗虫群落的丰富度、多样性和均匀度指数及群落中蝗虫种类和数量随季节的动态变化,并对蝗虫种群分布与植物群落特征进行了相关性分析。结果表明,在不同放牧强度下蝗虫的群落结构及时间动态均存在一定差异,说明放牧活动对蝗虫群落结构有明显影响,其中,轻度放牧和重度放牧样地中蝗虫种群总数显著高于其他样地。不同种类的蝗虫群落与放牧强度之间关系表现复杂。  相似文献   

9.
Grazing is one of the most important factors influencing community structure and productivity in natural grasslands. Understanding why and how grazing pressure changes species diversity is essential for the preservation and restoration of biodiversity in grasslands. We use heavily grazed subalpine meadows in the Qinghai‐Tibetan Plateau to test the hypothesis that grazer exclusion alters plant diversity by changing inter‐ and intraspecific species distributions. Using recently developed spatial analyses combined with detailed ramet mapping of entire plant communities (91 species), we show striking differences between grazed and fenced areas that emerged at scales of just one meter. Species richness was similar at very small scales (0.0625 m2), but at larger scales diversity in grazed areas fell below 75% of corresponding fenced areas. These differences were explained by differences in spatial distributions; intra‐ and interspecific associations changed from aggregated at small scales to overdispersed in the fenced plots, but were consistently aggregated in the grazed ones. We conclude that grazing enhanced inter‐ and intraspecific aggregations and maintained high diversity at small scales, but caused decreased turnover in species at larger scales, resulting in lower species richness. Our study provides strong support to the theoretical prediction that inter‐ and intraspecific aggregation produces local spatial patterns that scale‐up to affect species diversity in a community. It also demonstrates that the impacts of grazing can manifest through this mechanism, lowering diversity by reducing spatial turnover in species. Finally, it highlights the ecological and physiological plant processes that are likely responding to grazing and thereby altering aggregation patterns, providing new insights for monitoring, and mediating the impacts of grazing.  相似文献   

10.
In 1997, we conducted a vegetation survey in three semi-arid natural grasslands (steppes) with different livestock grazing intensities in Southwest Heilongjiang Province, China, The dominant grassland species was the grass Stipa baicalensis Roshev. Grasslands with light, intermediate, and heavy grazing intensities were located 10, 5, and 2 km from a village, respectively. Villagers use the steppe to raise cattle, horses, sheep, and goats. Each of the three grasslands was surveyed by placing 100 quadrats (50 cm×50 cm) along a 50 m line transect. Each quadrat was divided into four equal areas (25 cm×25 cm; S-quadrats) and all plant species occurring in each of these smaller areas were identified and recorded. These data were summarized into frequency distributions and the percentage of S-quadrats containing a given species and the variance of each species were estimated. The power law was applied to these estimates. The power law was used to evaluate the spatial heterogeneity and frequency of occurrence for each species in the grassland community. The lightly grazed grassland exhibited high spatial heterogeneity (caused by large plant size), the highest species diversity, and a high occurrence of S. baicalensis. In contrast, the heavily grazed grassland exhibited high spatial heterogeneity (caused by patchy populations of small plant size), low species diversity, and a low occurrence of S. baicalensis. We judged that the heavily grazed grassland was overgrazed and exclusion of livestock from the degraded areas is necessary for recovery.  相似文献   

11.
Abstract. A regional vegetation survey of the temperate grassy woodlands (temperate savanna) in Australia was designed to assess the effects of clearing and grazing on the composition of vegetation remnants and the adjacent pasture matrix. Vegetation was sampled across a range of habitats using 77 0.1024‐ha quadrats; the relative abundance of species was recorded. Classification analysis clustered the sites into three main groups that corresponded to intensity of grazing/clearing followed by groups based on underlying lithology (basalt, metasediment, granites). Using Canonical Correspondence Analysis, exogenous disturbance and environmental variables were related to the relative abundance of species; grazing intensity had the highest eigenvalue (0.27) followed by tree canopy cover (0.25), lithology (0.18), altitude (0.17) and slope (0.10). Based on two‐dimensional ordination scores, six species response groups were defined relating to intensity of pastoralism and nutrient status of the landscape. Abundance and dominance of native shrubs, sub‐shrubs, twiners and geophytes were strongly associated with areas of less‐intense pastoralism on low‐nutrient soils. The strongest effects on species richness were grazing followed by canopy cover. Continuously grazed sites had lower native species richness across all growth forms except native grasses. There was no indication that intermediate grazing intensities enhanced forb richness as a result of competitive release. Species richness for all native plants was lowest where trees were absent especially under grazed conditions. Canopy cover in ungrazed sites appeared to promote the co‐existence of shrubs with the herbaceous layer. Predicted declines in forb richness in treeless, ungrazed, sites were not detected. The lack of a disturbance‐mediated enhancement of the herbaceous layer was attributed to habitat heterogeneity at 0.1 ha sampling scale.  相似文献   

12.
Alpine grasslands in the Southern Carpathian Mts, Romania, harbour an extraordinarily high diversity of plants and invertebrates, including Carpathic endemics. In the past decades, intensive sheep grazing has caused a dramatic decrease in biodiversity and even led to eroded soils at many places in the Carpathians. Because of limited food resources, sheep are increasingly forced to graze on steep slopes, which were formerly not grazed by livestock and are considered as local biodiversity hotspots. We examined species richness, abundance and number of endemic vascular plants and terrestrial gastropods on steep slopes that were either grazed by sheep or ungrazed by livestock in two areas of the Southern Carpathians. On calcareous soils in the Bucegi Mts, a total of 177 vascular plant and 19 gastropod species were recorded. Twelve plant species (6.8%) and three gastropod species (15.8%) were endemic to the Carpathians. Grazed sites had lower plant and gastropod species richness than ungrazed sites. Furthermore, grazed sites harboured fewer gastropod species endemic to the Carpathians than ungrazed sites. On acid soils in the Fagaras Mts, a total of 96 vascular plant and nine gastropod species were found. In this mountain area, however, grazed and ungrazed sites did not differ in species richness, abundance and number of endemic plant and gastropod species. Our findings confirm the high biodiversity of grasslands on steep slopes in the Southern Carpathian Mts and caution against increasing grazing pressure in these refuges for relic plants and gastropods as well as for other invertebrates.  相似文献   

13.
The interactive effect of grazing and soil resources on plant species richness and coexistence has been predicted to vary across spatial scales. When resources are not limiting, grazing should reduce competitive effects and increase colonisation and richness at fine scales. However, at broad scales richness is predicted to decline due to loss of grazing intolerant species. We examined these hypotheses in grasslands of southern Australia that varied in resources and ungulate grazing intensity since farming commenced 170 years ago. Fine-scale species richness was slightly greater in more intensively grazed upper slope sites with high nutrients but low water supply compared to those that were moderately grazed, largely due to a greater abundance of exotic species. At broader scales, exotic species richness declined with increasing grazing intensity whether nutrients or water supply were low or high. Native species richness declined at all scales in response to increasing grazing intensity and greater resource supply. Grazing also reduced fine-scale heterogeneity in native species richness and although exotics were also characterised by greater heterogeneity at fine scales, grazing effects varied across scales. In these grasslands patterns of plant species richness did not match predictions at all scales and this is likely to be due to differing responses of native and exotic species and their relative abundance in the regional species pool. Over the past 170 years intolerant native species have been eliminated from areas that are continually and heavily grazed, whereas transient, light grazing increases richness of both exotics and natives. The results support the observation that the processes and scales at which they operate differ between coevolved ungulate—grassland systems and those in transition due to recent invasion of herbivores and associated plant species.  相似文献   

14.
The value of reptiles as bioindicators of the initial effects of heavy cattle grazing in a South Australian chenopod shrubland was assessed in an experimental trial. Reptiles were sampled in three different subhabitats within two replicate treatment paddocks and a control region. A total of 30 sites was sampled in two sessions before grazing and four sessions after the commencement of intensive pulses of grazing. Capture rates of most common reptile species, fecundity of abundant gecko species and reptile species composition within different subhabitats were largely resilient to the initial effects of overgrazing. However, agamids in general, and particularly Ctenophorus nuchalis, increased at grazed sites relative to controls following grazing. Most changes observed in the reptile assemblages were predictable based upon species response to alteration in vegetation cover. Because vegetation cover can be rapidly and efficiently monitored, the use of reptiles as early warning indicators of unsustainable pastoralism in the study region was not supported.  相似文献   

15.
16.
Large migratory grazers commonly influence soil processes in tundra ecosystems. However, the extent to which grazing effects are limited to intensive grazing periods associated with migration has not previously been investigated. We analyzed seasonal patterns in soil nitrogen (N), microbial respiration and extracellular enzyme activities (EEAs) in a lightly grazed tundra and a heavily grazed tundra that has been subjected to intensive grazing during reindeer (Rangifer tarandus L.) migration for the past 50 years. We hypothesized that due to the fertilizing effect of the reindeer, microbial respiration and EEAs related to microbial C acquisition should be higher in heavily grazed areas compared to lightly grazed areas and that the effects of grazing should be strongest during reindeer migration. Reindeer migration caused a dramatic peak in soil N availability, but in contrast to our predictions, the effect of grazing was more or less constant over the growing season and the seasonal patterns of microbial activities and microbial N were strikingly uniform between the lightly and heavily grazed areas. Microbial respiration and the EEAs of β-glucosidase, acid-phosphatase, and leucine-aminopeptidase were higher, whereas that of N-acetylglucosamidase was lower in the heavily grazed area. Experimental fertilization had no effect on EEAs related to C acquisition at either level of grazing intensity. Our findings suggest that soil microbial activities were independent of grazing-induced temporal variation in soil N availability. Instead, the effect of grazing on soil microbial activities appeared to be mediated by substrate availability for soil microorganisms. Following a shift in the dominant vegetation in response to grazing from dwarf shrubs to graminoids, the effect of grazing on soil processes is no longer sensitive to temporal grazing patterns; rather, grazers exert a consistent positive effect on the soil microbial potential for soil C decomposition.  相似文献   

17.
Questions: Does species richness and abundance accumulate with grazing protection in low productivity ecosystems with a short evolutionary history of grazing, as predicted by emerging theory? How do responses to grazing protection inform degradation history? Location: Mulga (Acacia aneura) dry forest, eastern Australia, generally considered chronically degraded by livestock grazing. Methods: Three paired exclosures (ungrazed, and macropod‐grazed) were compared with open‐grazed areas after 25 years using quadrats located on either side of the fences. Additionally, the regional flora for mulga dry forest was assessed to identify species that may have declined and could be threatened by grazing. Results: Low herbaceous biomass accumulation (<1.3 t ha?1) with full grazing protection confirmed a low productivity environment. For most plant life forms the highest species richness was in macropod‐grazed exclosures, an intermediate grazing disturbance that best approximates the evolutionary history of the environment. This was the net outcome of species that both declined and increased in response to grazing. Regeneration and subsequent self‐thinning of mulga was promoted with grazing protection, but did not confound interpretation of species richness and abundance responses. At the regional scale only 11 native species out of 407 comprising the mulga dry forest flora were identified as rare and potentially threatened by grazing. Conclusions: Significant increases in richness or abundance of native plants with grazing protection, persistence of perennial grasses, regeneration of mulga and scant evidence of a major decline in the regional flora are not consistent with established assertions that long‐grazed mulga dry forest has crossed functional thresholds that limit recovery. Further, a peak in species richness under intermediate (macropod) grazing is counter to the shape of the response predicted by emerging theory for recovery of species richness in a low productivity environment. The finding prompts a more thorough understanding of the distinction between environments with inherently low productivity and those degraded by grazing.  相似文献   

18.
In this study, we investigated the effect of reindeer grazing on tundra heath vegetation in northern Norway. Fences, erected 30 yr ago, allowed us to compare winter grazed, lightly summer grazed and heavily summer grazed vegetation at four different sites. At two sites, graminoids dominated the heavily grazed zone completely, while ericoid dwarf shrubs had almost disappeared. In the other two areas, the increase of graminoids was almost significant. At one of the sites where graminoids dominated the heavily grazed area, we also measured plant biomass, primary production and nitrogen cycling. In this site, heavy grazing increased primary production and rate of nitrogen cycling, while moderate grazing decreased primary production. These results were inconsistent with the view that the highest productivity is found at intermediate grazing pressure. These results rather support the hypothesis that intensive grazing can promote a transition of moss-rich heath tundra into productive, graminoid-dominated steppe-like tundra vegetation. Moreover the results suggests that intermittent intensive reindeer grazing can enhance productivity of summer ranges.  相似文献   

19.
Response of galling invertebrates on Salix lanata to reindeer herbivory   总被引:1,自引:0,他引:1  
Browsing and defoliation often increase the densities of insect herbivores on woody plants. Densities of herbivorous invertebrates were estimated in a long-term grazing manipulation experiment. More then 30-yr-old fences allow us to compare densities of invertebrate herbivores on Salix lanata in areas heavily grazed and areas lightly grazed by reindeer. The number of gall-forming insects ( Pontania glabrifons) and gall-forming mites were higher on the heavily grazed shrubs than on lightly grazed shrubs. In contrast to most short-term studies, the heavily grazed S. lanata had shorter current annual shoots. No difference in leaf size, leaf nitrogen content, or C:N ratio between grazing intensities were detected. However, the enhanced natural δ15N value indicates that heavily grazed shrubs get a higher proportion of their N directly from reindeer faeces. Leaf weight per unit area and relative fluctuating asymmetry of leaf shape increased in heavily grazed S. lanata . Enhanced relative fluctuating asymmetry might indicate higher susceptibility to herbivores. Long-term grazing seems to increase the density of invertebrate herbivory in the same way as short-term grazing, even if the plant responses differ substantially.  相似文献   

20.
We studied the role of red deer Cervus elaphus L. as ecosystem modifier in boreal forest (Tingvoll municipality, 62°52′ N, 8°20′ E, Norway), during early summer of 2001. The effect of grazing by red deer on ground beetles (Carabidae) abundance and diversity was investigated across a gradient of grazing pressures. We trapped ground beetles by pit-fall traps from three homogeneous winter grazing areas (ungrazed, medium grazed, heavily grazed). Bilberry Vaccinium myrtillus (the main winter food for red deer) was sampled and its dry weight was measured for the three locations. Gradient analyses showed that grazing by red deer affects carabid species composition. Grazing significantly affected the amount of bilberry, which correlated with species variation. According to our predictions, we found a higher abundance of carabids in the heavily grazed location, but the species richness and the diversity indices were similar for the three areas. This study shows that overall species composition is altered along a gradient as consequence of red deer winter grazing and that red deer act as ecosystem engineer, by reducing the bilberry heather which dominates the field layer in early summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号