首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Using random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), simple sequence repeats (SSR), and morphological traits, the first genetic maps for Cucurbita pepo (2n=2x=40) were constructed and compared. The two mapping populations consisted of 92 F2 individuals each. One map was developed from a cross between an oil-seed pumpkin breeding line and a zucchini accession, into which genes for resistance to Zucchini Yellow Mosaic Virus (ZYMV) from a related species, C. moschata, had been introgressed. The other map was developed from a cross between an oil-seed pumpkin and a crookneck variety. A total of 332 and 323 markers were mapped in the two populations. Markers were distributed in each map over 21 linkage groups and covered an average of 2,200 cM of the C. pepo genome. The two maps had 62 loci in common, which enabled identification of 14 homologous linkage groups. Polyacrylamide gel analyses allowed detection of a high number of markers suitable for mapping, 10% of which were co-dominant RAPD loci. In the Pumpkin-Zucchini population, bulked segregant analysis (BSA) identified seven markers less than 7 cM distant from the locus n, affecting lignification of the seed coat. One of these markers, linked to the recessive hull-less allele (AW11-420), was also found in the Pumpkin-Crookneck population, 4 cM from n. In the Pumpkin-Zucchini population, 24 RAPD markers, previously introduced into C. pepo from C. moschata, were mapped in two linkage groups (13 and 11 markers in LGpz1 and LGpz2, respectively), together with two sequence characterized amplified region (SCAR) markers linked to genes for resistance to ZYMV.  相似文献   

2.
The objective of this investigation was to tag a locus for white rust resistance in a Brassica rapa ssp. oleifera F2 population segregating for this trait, using bulked segregant analysis with random amplified polymorphic DNA (RAPD) markers, linkage mapping and a candidate gene approach based on resistance gene analogs (RGAs). The resistance source was the Finnish line Bor4109. The reaction against white rust races 7a and 7v was scored in 20 seedlings from each self-pollinated F2 individual. The proportion of resistant plants among these F3 families varied from 0 to 67%. Bulked segregant analysis did not reveal any markers linked with resistance and, therefore, a linkage map with 81 markers was created. A locus that accounted for 18.4% of the variation in resistance to white rust was mapped to linkage group (LG) 2 near the RAPD marker Z19a. During the study, a bacterial resistance gene homologous to Arabidopsis RPS2 and six different RGAs were sequenced. RPS2 and five of the RGAs were mapped to linkage groups LG1, LG4 and LG9. Unfortunately, none of the RGAs could be shown to be associated with white rust resistance.Communicated by H.C. BeckerThe nucleotide sequence data reported has been deposited in the Genbank under the accession numbers AF315081–AF315087.  相似文献   

3.
A pseudo-testcross mapping strategy was used in combination with the random amplified polymorphism DNA (RAPD) and amplified fragment length polymorphism (AFLP) genotyping methods to develop two moderately dense genetic linkage maps for Betula platyphylla Suk. (Asian white birch) and B. pendula Roth (European white birch). Eighty F1 progenies were screened with 291 RAPD markers and 451 AFLP markers. We selected 230 RAPD and 362 AFLP markers with 1:1 segregation and used them for constructing the parent-specific linkage maps. The resultant map for B. platyphylla was composed of 226 markers in 24 linkage groups (LGs), and spanned 2864.5 cM with an average of 14.3 cM between adjacent markers. The linkage map for B. pendula was composed of 226 markers in 23 LGs, covering 2489.7 cM. The average map distance between adjacent markers was 13.1 cM. Clustering of AFLP markers was observed on several LGs. The availability of these white birch linkage maps will contribute to the molecular genetics and the implementation of marker-assisted selection in these important forest species.  相似文献   

4.
A Lens map was developed based on the segregational analysis of five kinds of molecular and morphological genetic markers in 113 F2 plants obtained from a single hybrid of Lens culinaris ssp. culinaris × L. c. ssp. orientalis. A total of 200 markers were used on the F2 population, including 71 RAPDs, 39 ISSRs, 83 AFLPs, two SSRs and five morphological loci. The AFLP technique generated more polymorphic markers than any of the others, although AFLP markers also showed the highest proportion (29.1%) of distorted segregation. At a LOD score of 3.0, 161 markers were grouped into ten linkage groups covering 2,172.4 cM, with an average distance between markers of 15.87 cM. There were six large groups with 12 or more markers each, and four small groups with two or three markers each. Thirty-nine markers were unlinked. A tendency for markers to cluster in the central regions of large linkage groups was observed. Likewise, clusters of AFLP, ISSR or RAPD markers were also observed in some linkage groups, although RAPD markers were more evenly spaced along the linkage groups. In addition, two SSR, three RAPD and one ISSR markers segregated as codominant. ISSR markers are valuable tools for Lens genetic mapping and they have a high potential in the generation of saturated Lens maps.Communicated by H.C. Becker  相似文献   

5.
One single pathogen Fusarium graminearum Schw. was inoculated to maize inbred lines 1,145 (Resistant) and Y331 (Susceptive), and their progenies of F1, F2 and BC1F1 populations. Field statistical data revealed that all of the F1 individuals were resistant to the disease and that the ratio of resistant plants to susceptive plants was 3:1 in the F2 population, and 1:1 in the BC1F1 population. The results revealed that a single dominant gene controls the resistance to F. graminearum Schw.. The resistant gene to F. graminearum Schw. was denominated as Rfg1 according to the standard principle of the nomenclature of the plant disease resistant genes. RAPD (randomly amplified polymorphic DNA) combined with BSA (bulked segregant analysis) analysis was carried out in the developed F2 and BC1F1 populations, respectively. Three RAPD products screened from the RAPD analysis with 820 Operon 10-mer primers showed the linkage relation with the resistant gene Rfg1. The three RAPD amplification products (OPD-201000, OPA-041100 and OPY-04900) were cloned and their copy numbers were determined. The results indicated that only OPY-04900 was a single-copy sequence. Then, OPY-04900 was used as a probe to map the Rfg1 gene with a RIL F7 mapping population provided by Henry Nguyen, which was developed from the cross S3×Mo17. Rfg1 was primarily mapped on chromosome 6 between the two linked markers OPY-04900 and umc21 (Bin 6.04–6.05). In order to confirm the primary mapping result, 25 SSR (simple sequence repeat) markers and six RFLP (restriction fragment length polymorphism) markers in the Rfg1 gene-encompassing region were selected, and their linkage relation with Rfg1 was analyzed in our F2 population. Results indicated that SSR marker mmc0241 and RFLP marker bnl3.03 are flanking the Rfg1 gene with a genetic distance of 3.0 cM and 2.0 cM, respectively. This is the first time to name and to map a single resistant gene of maize stalk rot through a single pathogen inoculation and molecular marker analysis.Communicated by H.F. Linskens  相似文献   

6.
Pisum sativum L., the garden pea crop plant, is serving as the unique model for genetic analyses of morphogenetic development of stipule, the lateral organ formed on either side of the junction of leafblade petiole and stem at nodes. The stipule reduced (st) and cochleata (coch) stipule mutations and afila (af), tendril-less (tl), multifoliate-pinna (mfp) and unifoliata-tendrilled acacia (uni-tac) leafblade mutations were variously combined and the recombinant genotypes were quantitatively phenotyped for stipule morphology at both vegetative and reproductive nodes. The observations suggest a role of master regulator to COCH in stipule development. COCH is essential for initiation, growth and development of stipule, represses the UNI-TAC, AF, TL and MFP led leafblade-like morphogenetic pathway for compound stipule and together with ST mediates the developmental pathway for peltate-shaped simple wild-type stipule. It is also shown that stipule is an autonomous lateral organ, like a leafblade and secondary inflorescence.  相似文献   

7.
White poplar (Populus alba L.) is native to Eurasia and is unexploited for its growth potential and stress-adaptive mechanisms. A better knowledge of its genome will allow for more effective protection and use of critical genetic resources. The main objective of this study was the construction of highly informative P. alba genetic maps. Two genotypes were selected from contrasting natural Italian populations and crossed to generate an F1 mapping pedigree. Amplified fragment length polymorphism and simple sequence repeat markers were used to genotype 141 F1 individuals. The pseudo-testcross strategy was applied for linkage analysis. The generated maps showed good overall colinearity to each other and allowed for a complete alignment with the 19 haploid chromosomes of the Populus genome sequence. The locus that determines sex as a morphological trait was positioned on a non-terminal position of LG XIX of the female parent map. Comparison among Populus species revealed differences in the location of the sex locus on LG XIX as well as inconsistencies in the heterogametic sex. The genetic analysis of the sex locus in P. alba provides insights into sex determination in the genus and is useful for the identification of sex-linked markers and the early assessment of plant gender. Furthermore, these genetic maps will greatly facilitate the study of the genomics of Populus and how it can be exploited in applied breeding programs.  相似文献   

8.
Lycopersicon peruvianum LA2172 is completely resistant to Oidium neolycopersici, the causal agent of tomato powdery mildew. Despite the large genetic distance between the cultivated tomato and L. peruvianum, fertile F1 hybrids of L. esculentum cv. Moneymaker × L. peruvianum LA2172 were produced, and a pseudo-F2 population was generated by mating F1 half-sibs. The disease tests on the pseudo-F2 population and two BC1 families showed that the resistance in LA2172 is governed by one dominant gene, designated as Ol-4. In the pseudo-F2 population, distorted segregation was observed, and multi-allelic, single-locus markers were used to display different marker-allele configurations per locus. Parameters for both distortion and linkage between genetic loci were determined by maximum likelihood estimation, and the necessity of using multi-allelic, single-locus markers was illustrated. Finally, a genetic linkage map of chromosome 6 around the Ol-4 locus was constructed by using the pseudo-F2 population.  相似文献   

9.
In order to develop more specific markers that characterize particular regions of the pea genome, the data on nucleotide sequences of RAPD fragments were used for choosing more extended primers, which may be helpful in amplifying a fragment corresponding to the particular DNA region. Of the 14 STS markers obtained from 14 polymorphic RAPD fragments, 12 were polymorphic, i.e., they are SCAR markers that can be used in genetic analysis. The transition from complex RAPD spectra to amplification of a particular SCAR marker substantially facilitates analysis of large samples for the presence or absence of the examined fragment. Inheritance of the developed SCAR markers was studied in F1 and F2. SCAR markers were used to identify various pea lines, cultivars, and mutants. It was established that the study of amplification of STS markers in various pea genotypes at varying temperatures of annealing and the comparison with amplification of the original RAPD fragments in the same genotypes provide an approach for analysis of RAPD polymorphism origin.  相似文献   

10.
Blast, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. The Chinese native cultivar (cv.) Q15 expresses the broad-spectrum resistance to most of the isolates collected from China. To effectively utilize the resistance, three rounds of linkage analysis were performed in an F2 population derived from a cross of Q15 and a susceptible cv. Tsuyuake, which segregated into 3:1 (resistant/susceptible) ratio. The first round of linkage analysis employing simple sequence repeat (SSR) markers was carried out in the F2 population through bulked-segregant assay. A total of 180 SSR markers selected from each chromosome equally were surveyed. The results revealed that only two polymorphic markers, RM247 and RM463, located on chromosome 12, were linked to the resistance (R) gene. To further define the chromosomal location of the R gene locus, the second round of linkage analysis was performed using additional five SSR markers, which located in the region anchored by markers RM247 and RM463. The locus was further mapped to a 0.27 cM region bounded by markers RM27933 and RM27940 in the pericentromeric region towards the short arm. For fine mapping of the R locus, seven new markers were developed in the smaller region for the third round of linkage analysis, based on the reference sequences. The R locus was further mapped to a 0.18 cM region flanked by marker clusters 39M11 and 39M22, which is closest to, but away from the Pita/Pita 2 locus by 0.09 cM. To physically map the locus, all the linked markers were landed on the respective bacterial artificial chromosome clones of the reference cv. Nipponbare. Sequence information of these clones was used to construct a physical map of the locus, in silico, by bioinformatics analysis. The locus was physically defined to an interval of ≈37 kb. To further characterize the R gene, five R genes mapped near the locus, as well as 10 main R genes those might be exploited in the resistance breeding programs, were selected for differential tests with 475 Chinese isolates. The R gene carrier Q15 conveys resistances distinct from those conditioned by the carriers of the 15 R genes. Together, this valuable R gene was, therefore, designated as Pi39(t). The sequence information of the R gene locus could be used for further marker-based selection and cloning. Xinqiong Liu and Qinzhong Yang contributed equally to this work.  相似文献   

11.
Rhizoctonia solani is a necrotrophic fungal pathogen that causes disease on many crop-plant species. Anastomosis group 1-IA is the causal agent of sheath blight of rice (Oryza sativa L.), one of the most important rice diseases worldwide. R. solani AG1-IA produces a necrosis-inducing phytotoxin and rice cultivar’s sensitivity to the toxin correlates with disease susceptibility. Unlike genetic analyses of sheath blight resistance where resistance loci have been reported as quantitative trait loci, phytotoxin sensitivity is inherited as a Mendelian trait that permits high-resolution mapping of the sensitivity genes. An F2 mapping population derived from parent cultivars ‘Cypress’ (toxin sensitive) and ‘Jasmine 85’ (toxin insensitive) was used to map Rsn1, the necrosis-inducing locus. Initial mapping based on 176 F2 progeny and 69 simple sequence repeat (SSR) markers located Rsn1 on the long arm of chromosome 7, with tight linkage to SSR marker RM418. A high-resolution genetic map of the region was subsequently developed using a total of 1,043 F2 progeny, and Rsn1 was mapped to a 0.7 cM interval flanked by markers NM590 and RM418. Analysis of the corresponding 29 Kb genomic sequences from reference cultivars ‘Nipponbare’ and ‘93-11’ revealed the presence of four putative genes within the interval. Two are expressed cytokinin-O-glucosyltransferases, which fit an apoptotic pathway model of toxin activity, and are individually being investigated further as potential candidates for Rsn1.  相似文献   

12.
Aschochyta blight, caused by Mycosphaerella pinodes, is one of the most economically serious pea pathogens, particularly in winter sowings. The wild Pisum sativum subsp. syriacum accession P665 shows good levels of resistance to this pathogen. Knowledge of the genetic factors controlling resistance to M. pinodes in this wild accession would facilitate gene transfer to pea cultivars; however, previous studies mapping resistance to M. pinodes in pea have never included this wild species. The objective of this study was to identify quantitative trait loci (QTL) controlling resistance to M. pinodes in P. sativum subsp. syriacum and to compare these with QTLs previously described for the same trait in P. sativum. A population formed by 111 F6:7 recombinant inbred lines derived from a cross between accession P665 and a susceptible pea cultivar (Messire) was analysed using morphological, isozyme, RAPD, STS and EST markers. The map developed covered 1214 cM and contained 246 markers distributed in nine linkage groups, of which seven could be assigned to pea chromosomes. Six QTLs associated with resistance to M. pinodes were detected in linkage groups II, III, IV and V, which collectively explained between 31 and 75% of the phenotypic variation depending of the trait. While QTLs MpIII.1 and MpIII.2 were detected both for seedlings and field resistance, MpV.1 and MpII.1 were specific for growth chamber conditions and MpIII.3 and MpIV.1 for field resistance. Quantitative trait loci MpIII.1, MpII.1, MpIII.2 and MpIII.3 may coincide with other QTLs associated with resistance to M. pinodes previously described in P. sativum. Four QTLs associated with earliness of flowering were also identified. While dfIII.2 and dfVI.1, may correspond with other genes and QTLs controlling earliness in P. sativum, dfIII.1 and dfII.1 may be specific to P. sativum subsp. syriacum. Flowering date and growth habit were strongly associated with resistance to M. pinodes in the field evaluations. The relation observed between earliness, growth habit and resistance to M. pinodes is discussed.  相似文献   

13.
Scab, caused by Cladosporium cucumerinum, is an important disease of cucumber, Cucumis sativus. In this study, we conducted fine genetic mapping of the single dominant scab resistance gene, Ccu, with 148 F9 recombinant inbred lines (RILs) and 1,944 F2 plants derived from the resistant cucumber inbred line 9110Gt and the susceptible line 9930, whose draft genome sequence is now available. A framework linkage map was first constructed with simple sequence repeat markers placing Ccu into the terminal 670 kb region of cucumber Chromosome 2. The 9110Gt genome was sequenced at 5× genome coverage with the Solexa next-generation sequencing technology. Sequence analysis of the assembled 9110Gt contigs and the Ccu region of the 9930 genome identified three insertion/deletion (Indel) markers, Indel01, Indel02, and Indel03 that were closely linked with the Ccu locus. On the high-resolution map developed with the F2 population, the two closest flanking markers, Indel01 and Indel02, were 0.14 and 0.15 cM away from the target gene Ccu, respectively, and the physical distance between the two markers was approximately 140 kb. Detailed annotation of the 180 kb region harboring the Ccu locus identified a cluster of six resistance gene analogs (RGAs) that belong to the nucleotide binding site (NBS) type R genes. Four RGAs were in the region delimited by markers Indel01 and Indel02, and thus were possible candidates of Ccu. Comparative DNA analysis of this cucumber Ccu gene region with a melon (C. melo) bacterial artificial chromosome (BAC) clone revealed a high degree of micro-synteny and conservation of the RGA tandem repeats in this region.  相似文献   

14.
Cytoplasmic male sterility (CMS), one of the most important traits in crop breeding, is used for commercial F1-hybrid seed production in peppers (Capsicum annuum L.). A nuclear gene, Restorer-of-fertility (Rf), can induce normal pollen production in CMS plants resulting in fertility. Since the first report of fertility restoration in peppers, various inheritance modes have been suggested, including the presence of a third haplotype of the locus. The pepper Rf gene has not been cloned, and calculated genetic distances of linked markers have varied between research groups. A more precise allelic test and additional genetic mapping are needed to accurately select recombinants for use in marker-assisted backcrossing (MAB). Therefore, the reliability and application of these markers for allelic selection of the Rf gene was tested. Two different F2 populations, Buja and Tamna, were used for the construction of a linkage map. From these linkage groups, a new closely linked flanking marker of the Rf gene were identified. Previous allelic testing revealed the existence of a third haplotype, Rfls 7701 , which can function as dominant (Rf) or recessive (rf). In a previous report, Rfls 7701 was considered to be linked to unstable male sterility (MS). However, our results suggest that unstable MS was induced by a gene residing at another locus rather than by Rfls 7701 haplotype-linked allele.  相似文献   

15.
AvrLepR1 of the fungal pathogen Leptosphaeria maculans is the avirulence gene that corresponds to Brassica LepR1, a plant gene controlling dominant, race-specific resistance to this pathogen. An in vitro cross between the virulent L. maculans isolate, 87-41, and the avirulent isolate, 99-56, was performed in order to map the AvrLepR1 gene. The disease reactions of the 94 of the resulting F1 progenies were tested on the canola line ddm-12-6s-1, which carries LepR1. There were 44 avirulent progenies and 50 virulent progenies suggesting a 1:1 segregation ratio and that the avirulence of 99-56 on ddm-12-6s-1 is controlled by a single gene. Tetrad analysis also indicated a 1:1 segregation ratio. The AvrLepR1 gene was positioned on a genetic map of L. maculans relative to 259 sequence-related amplified polymorphism (SRAP) markers, two cloned avirulence genes (AvrLm1 and AvrLm4-7) and the mating type locus (MAT1). The genetic map consisted of 36 linkage groups, ranging in size from 13.1 to 163.7 cM, and spanned a total of 2,076.4 cM. The AvrLepR1 locus was mapped to linkage group 4, in the 13.1 cM interval flanked by the SRAP markers SBG49-110 and FT161-223. The AvrLm4-7 locus was also positioned on linkage group 4, close to but distinct from the AvrLepR1 locus, in the 5.4 cM interval flanked by FT161-223 and P1314-300. This work will make possible the further characterization and map-based cloning of AvrLepR1. A combination of genetic mapping and pathogenicity tests demonstrated that AvrLepR1 is different from each of the L. maculans avirulence genes that have been characterized previously.  相似文献   

16.
An integrated genetic linkage map of the medicinal and ornamental plant Catharanthus roseus, based on different types of molecular and morphological markers was constructed, using a F2 population of 144 plants. The map defines 14 linkage groups (LGs) and consists of 131 marker loci, including 125 molecular DNA markers (76 RAPD, 3 RAPD combinations; 7 ISSR; 2 EST-SSR from Medicago truncatula and 37 other PCR based DNA markers), selected from a total of 472 primers or primer pairs, and six morphological markers (stem pigmentation, leaf lamina pigmentation and shape, leaf petiole and pod size, and petal colour). The total map length is 1131.9 cM (centiMorgans), giving an average map length and distance between two markers equal to 80.9 cM and 8.6 cM, respectively. The morphological markers/genes were found linked with nearest molecular or morphological markers at distances varying from 0.7 to 11.4 cM. Linkage was observed between the morphological markers concerned with lamina shape and petiole size of leaf on LG1 and leaf, stem and petiole pigmentation and pod size on LG8. This is the first genetic linkage map of C. roseus.  相似文献   

17.
Powdery mildew caused by Erysiphe pisi D.C. is one of the most serious diseases that inflict heavy losses to pea crop world-wide. Identification of resistance sources and their incorporation into susceptible cultivars remains the most effective method of controlling the disease. The present study investigated the resistance phenotype, inheritance, and genomic location of gene(s) controlling resistance to powdery mildew in pea genotype ‘JI2480’. The powdery mildew resistance in ‘JI2480’ appeared to be a spatial phenomenon showing expression only in leaf tissues. By segregation analysis of an F2 progeny of cross ‘Lincoln/JI2480’, the leaf resistance of ‘JI2480’ was shown to be controlled by a single recessive gene, presumed to be er2. Through linkage analysis of 111 resistant F2 progeny plants with simple sequence repeat (SSR) and random amplified polymorphic DNA (RAPD) markers adopted from the published linkage maps, the er2 gene was localized on pea linkage group III (LGIII). The assignment of er2 to LGIII, a position different from that reported for er1, has resolved the long standing controversy in the literature regarding the existence and genomic location of er2 gene. A RAPD marker OPX-17_1400, exhibiting cis phase linkage (2.6 cM) to er2 was successfully converted to a sequence characterized amplified region (SCAR) marker, ScX17_1400. The SCAR marker ScX17_1400 will ensure speedy and precise introgression of er2 into susceptible cultivars by permitting selection of er2 heterozygotes amongst BC n F1s without progeny tests and resistance screening.  相似文献   

18.
Blast resistance in the indica cultivar (cv.) Q61 was inherited as a single dominant gene in two F2 populations, F2-1 and F2-2, derived from crosses between the donor cv. and two susceptible japonica cvs. Aichi Asahi and Lijiangxintuanheigu (LTH), respectively. To rapidly determine the chromosomal location of the resistance (R) gene detected in Q61, random amplified polymorphic DNA (RAPD) analysis was performed in the F2-1 population using bulked-segregant analysis (BSA) in combination with recessive-class analysis (RCA). One of the three linked markers identified, BA1126550, was cloned and sequenced. The R gene locus was roughly mapped on rice chromosome 8 by comparison of the BA1126550 sequence with rice sequences in the databases (chromosome landing). To confirm this finding, seven known markers, including four sequence-tagged-site (STS) markers and three simple-sequence repeat (SSR) markers flanking BA1126550 on chromosome 8, were subjected to linkage analysis in the two F2 populations. The locus was mapped to a 5.8 cM interval bounded by RM5647 and RM8018 on the short arm of chromosome 8. This novel R gene is therefore tentatively designated as Pi36(t). For fine mapping of the Pi36(t) locus, five additional markers including one STS marker and four candidate resistance gene (CRG) markers were developed in the target region, based on the genomic sequence of the corresponding region of the reference japonica cv. Nipponbare. The Pi36(t) locus was finally localized to an interval of about 0.6 cM flanked by the markers RM5647 and CRG2, and co-segregated with the markers CRG3 and CRG4. To physically map this locus, the Pi36(t)-linked markers were mapped by electronic hybridization to bacterial artificial chromosome (BAC) or P1 artificial chromosome (PAC) clones of Nipponbare, and a contig map was constructed in silico through Pairwise BLAST analysis. The Pi36(t) locus was physically delimited to an interval of about 17.0 kb, based on the genomic sequence of Nipponbare.  相似文献   

19.
Photoperiod-thermo-sensitive genic male sterile (PTGMS) rice exhibits a number of desirable traits for hybrid rice production. The cloning genes responsible for PTGMS and those elucidating male sterility mechanisms and reversibility to fertility would be of great significance to provide a foundation to develop new male sterile lines. Guangzhan63S, a PTGMS line, is one of the most widely used indica two-line hybrid rice breeding systems in China. In this study, genetic analysis based on F2 and BC1F2 populations derived from a cross between Guangzhan63S and 1587, determined a single recessive gene controls male sterility in Guangzhan63S. Molecular marker techniques combined with bulked-segregant analysis (BSA) were used and located the target gene (named ptgms2-1) between two SSR markers RM12521 and RM12823. Fine mapping of the ptgms2-1 locus was conducted with 45 new Insertion–Deletion (InDel) markers developed between the RM12521 and RM12823 region, using 634 sterile individuals from F2 and BC1F2 populations. Ptgms2-1 was further mapped to a 50.4 kb DNA fragment between two InDel markers, S2-40 and S2-44, with genetic distances of 0.08 and 0.16 cM, respectively, which cosegregated with S2-43 located on the AP004039 BAC clone. Ten genes were identified in this region based on annotation results from the RiceGAAS system. A nuclear ribonuclease Z gene was identified as the candidate for the ptgms2-1 gene. This result will facilitate cloning the ptgms2-1 gene. The tightly linked markers for the ptgms2-1 gene locus will further provide a useful tool for marker-assisted selection of this gene in rice breeding programs.  相似文献   

20.
The Pl Arg locus in the sunflower (Helianthus annuus L.) inbred line Arg1575-2 conferring resistance to at least four tested races (300, 700, 730, 770) of downy mildew (Plasmopara halstedii) was localized by the use of simple sequence repeat (SSR) markers. Bulked segregant analysis (BSA) was conducted on 126 individuals of an F2 progeny from a cross between a downy mildew susceptible line, CmsHA342, and Arg1575-2. Twelve SSR markers linked to the Pl Arg locus were identified. All markers were located proximal to Pl Arg on linkage group LG1 based on the map of Yu et al. (2003) in a window of 9.3 cM. Since Pl Arg was mapped to a linkage group different from all other Pl genes previously mapped with SSRs, it can be concluded that Pl Arg provides a new source of resistance against P. halstedii in sunflower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号