首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human tonsillar B cells were separated into three distinct subpopulations, Ba-/IgD+, Ba+/IgD+, and Ba+/IgD-, by using a B cell-specific monoclonal antibody (anti-Ba) that recognizes only activated B cells, and anti-IgD antibody. Stimulation of Ba-/IgD+ cells with anti-mu plus PHA-conditioned culture supernatant (PHA-sup) or TPA induced Ba+/IgD+ cells, which reverted to Ba-/IgD+ phenotype in the absence of continuous stimulation. Further stimulation of Ba+/IgD+ cells with several B cell activators, such as TPA plus anti-mu or PWM plus T cells, resulted in the loss of IgD expression. Three-color FACS analysis showed that the expression of transferrin receptor (TFR) was at its maximum in Ba+/IgD- cells, and the intensity of this expression was proportional to that of Ba expression in Ba+/IgD+ cells. PHA-sup induced maximum proliferation in Ba+/IgD- cells, and the degree of response was a function of the intensity of Ba expression in Ba+/IgD+ cells. PHA-sup or purified BCDF (BSF-2) induced Ig secretion preferentially in Ba+/IgD- cells. Taken together, these results show that resting B cells (Ba-/IgD+) are activated into Ba+/IgD+ cells, and then into Ba+/IgD- cells, under mitogenic stimulation, and BCDF induces the final maturation of Ba+/IgD- cells into Ig-secreting cells. Ba+/IgD- cells, which maximally expressed TFR as well as Ba and displayed maximum proliferative response to PHA-sup, did not express any Tac antigen. On the other hand, in vitro activated B cells expressed Ba and TFR as well as Tac antigen.  相似文献   

2.
The relationship of the T cell influences involved in human B cell activation and differentiation into immunoglobulin-secreting cells (ISC) was investigated. T cell supernatants (T supt) generated by stimulating T cells with phytohemagglutinin and phorbol myristate acetate contained activities capable of augmenting DNA synthesis and the growth of mitogen-stimulated B cells and supporting the differentiation of ISC. To examine the role of T supt in B cell activation and the progression through the cell cycle, T cell- and monocyte-depleted B cells were stimulated with formalinized Cowan I strain Staphylococcus aureus (SA), and the percentages of cells in G1, S, and G2 + M were determined by acridine orange staining and analysis. In all experiments, a similar percentage of cells entered G1 during the first 24 to 36 hr of culture when stimulated with SA or SA + T supt. Similar results were seen when B cell activation was analyzed by acquisition of a number of other markers of cell activation. Analysis of cell cycle progression with mithramycin staining of cellular DNA in the presence or absence of vinblastine to arrest mitosis indicated that SA-activated B cells were able to complete S and divide in the absence of T supt. Although an effect of T supt on the progression of B cells through the S phase was evident during the first cell cycle, the major effect only became apparent after the first round of cell division. Although T supt was not necessary for initial B cell activation, T cell influences were absolutely necessary for the differentiation of ISC. T supt did not need to be present during the initial 24 to 36 hr of incubation to permit subsequent generation of ISC. However, when T supt was present initially, an increased number of ISC were produced. Hydroxyurea elimination of cells traversing the G1-S interphase indicated that reception of the differentiation signal occurred before the S phase, but that the generation of ISC required subsequent DNA synthesis and/or cell division. Although precursors of ISC were entirely contained within the population triggered to divide by SA alone, there was no preferential expansion of such precursors as a result of SA stimulation. These results indicate that T cell signals are not absolutely necessary for initial B cell activation and progression through the first cell cycle, although T cell factors promote DNA synthesis by some activated B cells. In contrast, differentiation into ISC is completely dependent on T cell influences.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The effect of rIL-6 on the growth and differentiation of highly purified human peripheral blood B cells was examined. IL-6 alone induced minimal incorporation of [3H]thymidine by unstimulated or Staphylococcus aureus (SA)-stimulated B cells and did not augment proliferation induced by SA and IL-2. Similarly, IL-6 alone did not support the generation of Ig-secreting cells (ISC) or induce the secretion of Ig by unstimulated or SA-stimulated B cells. However, IL-6 did augment the generation of ISC and the secretion of all isotypes of Ig induced by SA and IL-2. Maximal enhancement of B cell responsiveness by IL-6 required its presence from the initiation of culture. Delaying the addition of IL-6 to B cells stimulated with SA and IL-2 beyond 24 h diminished its effect on ISC generation. However, increased Ig production but not ISC generation was observed when IL-6 was added to B cells that had been preactivated for 48 h with SA and IL-2. This effect was most marked when the activated B cells were also stimulated with IL-2. IL-6 in combination with other cytokines such as IL-1 and IL-4 did not induce the secretion of Ig or generation of ISC in the absence of IL-2. Moreover, antibody to IL-6 did not inhibit the effect of IL-2 on the growth and differentiation of B cells stimulated with SA, but did inhibit the IL-6-induced augmentation of Ig secretion by B cells stimulated with SA and IL-2. IL-6 alone enhanced T cell dependent induction of B cell differentiation stimulated by PWM. Part of this enhancement was related to its capacity to increase the production of IL-2 in these cultures. These results indicate that IL-6 has several direct enhancing effects on the differentiation of B cells, all of which are at least in part dependent on the presence of IL-2. In addition, IL-6 can indirectly increase B cell differentiation by increasing IL-2 production by T cells.  相似文献   

4.
Activation of T cells by mAb to the CD3 molecular complex induces the differentiation of many more Ig-secreting cells (ISC) from resting human B cells in bulk cultures than do other modes of polyclonal B cell activation. In the current experiments, a limiting dilution assay was used to demonstrate that this increase in ISC generation reflects an increased frequency of responding B cells. Highly purified B cells were cultured at densities of between 1000 cells and 0.5 cell per microwell with fresh, mitomycin C-treated T cells (T mito) or T cell clones stimulated by immobilized mAb to CD3. After 5 days in culture, the number of wells containing ISC was determined, and the frequency of responding B cells was calculated. The proportion of B cells responding to anti-CD3-stimulated T cells was very large (10.7 +/- 2.8%) and greatly surpassed that induced by other polyclonal activators. B cells cultured with anti-CD3-stimulated T cell clones responded better than did those cultured with T mito. The addition of exogenous IL-2 or IL-6 to cultures supported by activated T mito enhanced the frequency of responding B cells, whereas IL-4 did not increase the generation of ISC and inhibited the augmentation of B cell responses induced by IL-2. Supplementation of cultures with mitomycin C-treated B cells as accessory cells had less of an effect. The addition of both accessory cells and IL-2 markedly increased B cell responsiveness, with precursor frequencies of 60 to 80% noted. In some experiments, cultures were carried out for 7 to 14 days and supernatants were analyzed for IgM, IgG, and IgA secretion. B cells activated by anti-CD3-stimulated T cells produced all three Ig isotypes. When the classes of Ig produced by single B cells were examined, it was observed that the stimulation of individual B cell precursors led to the production of multiple Ig isotypes, suggesting that isotype switching occurs in these cultures. These results demonstrate that under optimum culture conditions, T cells stimulated with immobilized anti-CD3 can activate the majority of human peripheral blood B cells to produce Ig and induce isotype switching by many.  相似文献   

5.
Using the fluorescence-activated cell sorter (FACS), we have investigated the Ig isotypes present on murine B cells, which can be polyclonally activated by lipopolysaccharide (LPS) in low cell density cultures. The LPS response was partly inhibited as a result of staining with anti-IgD and anti-IgM reagents, but not with anti-IgG reagents. The IgM+, IgD+, or IgG- fractionated cell populations gave both an IgM and an IgG response comparable to controls, whereas the response of the IgM-, IgD- cells was 5- to 20-fold lower. IgG- cells separated 1 day after LPS stimulation could still mount an IgM and IgG response indistinguishable from controls at the peak of the response. It is concluded that IgM+, IgD+, IgG- cells constitute the major LPS-sensitive cell population in the low cell density culture system and that IgG is not a necessary cell surface isotype for precursors of IgG-secreting cells.  相似文献   

6.
Previous studies have shown that human CD8-positive T cells activated by immobilized mAb to the CD3 complex have the capacity to support the generation of Ig secreting cells (ISC). The experiments reported here were undertaken to examine the nature of CD8+ T cell helper function in greater detail. CD8+ T cells that had been treated with mitomycin C (CD8+ mito) and stimulated by immobilized mAb to CD3 (64.1) provided help for the generation of ISC from resting B cells. By contrast, CD8+ mito did not support the generation of ISC in cultures stimulated by pokeweed mitogen (PWM). This could not be explained by differences in the production of IL2, since PWM and anti-CD3 induced comparable amounts of IL2 from CD8+ mito. In anti-CD3-stimulated cultures, CD8+ mito supported the generation of larger numbers of ISC when B cells were also activated with Staphylococcus aureus (SA). By contrast, in PWM-stimulated cultures, CD8+ mito did not provide help for SA-activated B cells. Rather, PWM-stimulated CD8+ mito appeared to suppress the generation of ISC induced by PWM-activated CD4+ mito or by SA + IL2, whereas anti-CD3-stimulated CD8+ mito did not. Only control CD8+ T cells, which were able to proliferate, exerted suppressive effects in anti-CD3-stimulated cultures. Examination of the functional capacities of a battery of CD8+ T cell clones indicated that the same clonal population of CD8+ cells could provide help or suppress responses when stimulated with anti-CD3 or PWM, respectively. The functional activities of CD8+ clones differed from those of fresh CD8+ cells. Thus, anti-CD3-stimulated CD8+ clones provided help for B cells regardless of whether they were treated with mitomycin C. Moreover, PWM stimulated suppression by CD8+ clones was abrogated by treating the clones with radiation or mitomycin C. These results indicate that helper T cell function is not limited to the CD4+ T cell population, but that help can also be provided by appropriately stimulated CD8+ T cells. Taken together, these results indicate that CD8+ T cells are not limited in their capacity to regulate B cell responses, but rather can provide positive or negative influences depending on the nature of the activating stimulus.  相似文献   

7.
Immunomodulatory role of IL-4 on the secretion of Ig by human B cells   总被引:9,自引:0,他引:9  
The effect of IL-4 on the production of Ig by human B cells was examined. Highly purified B cells were stimulated with Staphylococcus aureus (SA) and IL-4 alone or in combination with various other cytokines and the supernatants assayed for Ig by isotype-specific ELISA. IL-4 (10 to 100 U/ml) did not support Ig secretion by SA-stimulated blood, spleen, or lymph node B cells, whereas IL-2 supported the production of all isotypes including IgE. Moreover, IL-4 suppressed the production of all isotypes of Ig by B cells stimulated with SA and IL-2 including IgG1, IgG2, and IgE. IL-4-mediated suppression was partially reversed by IFN-gamma or -alpha and low m.w. B cell growth factor. TNF-alpha and IL-6 did not reverse the IL-4-induced suppression of Ig production. The inhibitory action of IL-4 on Ig production appeared to depend on the polyclonal activator used to stimulate the B cells. Thus, Ig secretion by B cells activated by LPS and supported by IL-2 was not inhibited by IL-4. Whereas IL-4 alone supported minimal Ig production by LPS-activated B cells, it augmented production of all Ig isotypes in cultures stimulated with LPS and supported by IL-2. IFN-gamma further enhanced production of Ig in these cultures. When the effect of IL-4 on the responsiveness of B cells preactivated with SA and IL-2 was examined, it was found not to inhibit but rather to promote Ig production modestly. A direct effect of IL-4 on the terminal differentiation of B cells was demonstrated using B lymphoblastoid cell lines. IL-4 was able to enhance the Ig secreted by an IgA-secreting hybridoma, 219 and by SKW6-CL-4, an IL-6-responsive IgM-secreting EBV transformed B cell line. These results indicate that IL-4 exerts a number of immunoregulatory actions on human B cell differentiation. It interferes with the activation of B cells by SA and IL-2, but promotes the differentiation of preactivated B cells, B cell lines, and B cells activated by LPS without apparent isotype specificity.  相似文献   

8.
We have selected and cloned variant cells from the murine B cell lymphoma, CH12, that produce a variety of other Ig isotypes in addition to or in place of the original IgM and IgD. Variants were selected by flow cytometry and automated cloning and isotype production was analyzed by membrane immunofluorescence and ELISA of culture fluids. Variants have been isolated that produce the single isotypes IgA, IgG2b, and IgG3, as well as variants that produce more than one isotype simultaneously, i.e., IgM, IgD, and IgA; IgG2b and IgA; IgG3 and IgA. All isotypes have been seen as cell surface proteins and all except IgD have been found in culture supernatants. All isotypes display the same idiotype and Ag-binding specificity for phosphatidyl choline as the original IgM and all are translated from the same VDJH and VJ kappa gene assemblies. Production of more than one isotype by a variant clone is due to simultaneous production of all the isotypes by each cell within the clone. The finding that the variants producing more than one isotype are all tetraploid suggests the interesting possibility that each isotype is derived from an independently switching chromosome. All isotype variants can be stimulated by LPS to secrete the appropriate Ig isotype at an increased rate similar to the IgM expressing parent. The variants differ in stability; some have remained stable for more than 9 months in culture, whereas other have undergone further isotype switching. The facts that some isotypes have not been seen, that multistep switching has occurred, and that many variants produce IgA in addition to another isotype are discussed in relation to current notions of isotype switching mechanisms.  相似文献   

9.
Polyclonal activation of human B cells is achieved by coculture with T cells stimulated by mAb to the CD3 molecular complex. By formal limiting dilution analysis, approximately 60% of human peripheral blood B cells were found to produce Ig in this system. When individual B cells were cultured in microtiter wells with anti-CD3-activated T cells, more than one-third of cultures producing Ig contained multiple Ig H chain isotypes. Similar results were observed when individual IgM-expressing B cells, selected and dispersed by FACS were cultured with anti-CD3-activated T cells. The clonality of the B cells producing multiple Ig isotypes was supported by L chain analysis of the secreted Ig. Of the wells containing more than one H chain isotype, nearly 85% contained only a single L chain type. Clonality was further examined by polymerase chain reaction amplification of cDNA harvested from cultures originally seeded with individual B cells. In general, only a single VH gene family could be amplified from cultures producing more than one Ig isotype. Three separate VH regions were cloned and sequenced. One, a VHIV-mu was nearly identical to a previously described VH gene VH71.4; as second, a VHIV-gamma was very similar to a previously described VH gene segment V-79, whereas a third, a VHIII-gamma differed by 14% in nucleotide sequence from its closest germline counterpart VH3005. These results indicate that anti-CD3-activated T cells not only stimulate the majority of B cells to secrete Ig, but also induce individual B cells to produce multiple Ig H chain isotypes. Additionally, the procedure described provides a reliable method to sample a large proportion of the human peripheral B cell repertoire.  相似文献   

10.
Cross-linkage of membrane IgD on resting murine B cells, by anti-IgD mAb conjugated to dextran (alpha delta-dex), induces high levels of proliferation, and in the presence of IL-2 or IL-5, Ig secretion in vitro. The structural and functional similarities between alpha delta-dex and TNP-Ficoll for B cell responses led us to propose that alpha delta-dex could provide a model system for studying B cell activation induced by T cell-independent, type II Ag. In this report, we study the effects of Ig class switch and differentiation factors on Ig isotype production by murine B cells activated by alpha delta-dex, and directly compare these to responses obtained after activation by LPS. We show that an IL-4-containing CD4+ T cell supernatant (Th2 SN) stimulates large increases in IgG1 and IgE production by LPS-activated B cells, but fails to stimulate detectable levels of IgE by alpha delta-dex-activated cells, despite inducing high levels of secreted IgM and IgG1. This is correlated with undetectable steady state levels of both germ-line and rearranged (productive) IgE-specific RNA in B cells stimulated with alpha delta-dex + Th2 SN. Alpha delta-dex is selective in its failure to costimulate IgE production in that IFN-gamma-containing T cell supernatant (Th1 SN) and transforming growth factor-beta-supplemented Th2 SN selectively stimulate a large IgG2a and IgA secretory response, respectively. Anti-IgD conjugated to Sepharose beads, in distinct contrast to dextran, costimulates a strong IgE response. These findings underscore the importance of the specific B cell activator, in addition to IL-4, in the regulation of IgE production.  相似文献   

11.
In a recent study we reported that CD27 is expressed on a subpopulation of human B lymphocytes and presented circumstantial phenotypic evidence that CD27 expression may be acquired late during B cell differentiation. Here we present functional data showing that, after in vitro stimulation, CD27+ but not CD27- B cells secrete large amounts of both IgM and IgG. Using double immunofluorescence staining of CD27 and IgD, three functionally different B cell subsets representing distinct stages of B cell differentiation can be isolated: 1) the CD27- IgD+ B cells, which do not secrete appreciable Ig; 2) the CD27+IgD+ B cells, which exclusively secrete IgM; and 3) the CD27+IgD- B cells, which comprise the IgG-producing cells. Furthermore, costimulation of CD27- B cells with low m.w. B cell growth factor, in the presence or in the absence of a CD40 mAb, does not induce these cells to become Ig-secreting cells. Although CD27- B cells hardly secrete Ig of any isotype in response to Staphylococcus aureus+IL-2, these cells proliferate vigorously and express the IL-2R alpha chain (CD25) under these stimulatory conditions. Furthermore, both CD27- and CD27+ B cells are capable of producing similar amounts of IL-6 and TNF-alpha. Taken together, these findings indicate that CD27 is a unique non-Ig surface marker discriminating naive from primed B lymphocytes. Furthermore, the capacity to proliferate and to secrete the B cell differentiation factors IL-6 and TNF-alpha already exists at an early B cell differentiation stage at which the cells lack CD27 expression and are not induced to produce Ig.  相似文献   

12.
mAb and polyclonal antibodies against human IL-6R were prepared by using a murine transfectant cell line expressing the human IL-6R and a synthetic oligopeptide made on the basis of the deduced amino acid sequence as immunogens. Immunoprecipitation of radiolabeled IL-6R with these antibodies showed that the Mr of a mature IL-6R was 80 kDa and its value was reduced to 50K after treatment with O- and N-glycanase and neuraminidase, indicating that IL-6R is a glycoprotein. Two mAb recognizing different epitopes were prepared. One, PM1 inhibited the binding of 125I-IL-6 to the receptor and blocked the IL-6-dependent growth of a T lymphoma line, KT3. PM1 could not bind to IL-6R when it was saturated with IL-6, indicating that this antibody recognizes the IL-6 binding or the adjacent site on IL-6R. The other, MT18 was not inhibited by IL-6 for its recognition of IL-6R, therefore, this could be used for cytofluorometric staining of normal cells. Nonstimulated B cells expressed undetectable amount of IL-6R regardless of the expression of surface IgD. However, after the stimulation with PWM, IL-6R was observed on IgD- B cells with a relatively large size, but subtly on IgD- small B cells and not on IgD+ B cells, fitting the function of IL-6 which acts on activated B cells to induce Ig production. In contrast, IL-6R was detected on non-stimulated CD4+/CD8- and CD4-/CD8+ T cells. The level of IL-6R on both T cell subpopulations was not significantly changed after stimulation with phytohemagglutinin.  相似文献   

13.
In order to determine the mechanism by which helper T cells regulate the production of the various immunoglobulin (Ig) classes, a number of helper T cell clones specific for keyhole limpet hemocyanin (KLH) were generated. These helper T cell clones then were used in a modified splenic fragment system whereby cloned helper T cells and a source of B cells were limit-diluted into naive, lethally irradiated recipients. The B cell clones that were subsequently stimulated in such an assay system by the addition of the antigen 2,4-dinitrophenol (DNP)-KLH then were tested for the various isotypes produced. The results of these studies indicate that the use of a single helper T cell clone could result in the production of all known Ig isotypes including IgE. Moreover, the use of a single helper T cell clone could result in multiple isotype production by a single B cell clone. However, a comparison of the isotypes secreted by a number of different B cell clones that were stimulated with the same helper T cell clone indicated that a variety of isotypic patterns could be obtained. In addition, it was found that the majority of B cell clones produced in the presence of T cell clones secrete fewer numbers of different isotypes compared with B cell clones generated with a heterogeneous population of T cells. Finally, no evidence could be found for isotype-specific helper T cell clones, although a few of the T cell clones appeared to induce a somewhat restricted isotype pattern in which only two or three different isotypes were observed.  相似文献   

14.
The initiation by Th cells of B cell proliferation and differentiation to produce Ig involves both cell contact- and lymphokine-mediated signals. Plasma membrane-enriched fractions from stimulated, but not unstimulated, Th cells induced Ag nonspecific and MHC unrestricted proliferation of 60 to 70% of small dense B cells. Induction of stimulatory membrane activity was inhibited by cycloheximide, and the activity was eliminated by both protease and heat treatment of membranes. Membrane-stimulated B cells did not differentiate to secrete Ig; however, addition of a lymphokine-containing supernatant from activated Th cells or the combination of IL-4 and IL-5 resulted in substantial Ig production, predominantly of the IgM, IgG1, IgA, and IgE isotypes. The quantity and isotype distribution of the antibodies secreted were similar to those produced after B cell activation by the intact Th cells and Ag. Therefore, membranes from activated Th cells in combination with lymphokines normally secreted by such cells can replace intact Th cells and provide a defined system to identify molecular events important for B cell activation.  相似文献   

15.
Injection of mice with polyclonal goat anti-mouse IgD antibody (G alpha M delta) stimulates a potent T cell-dependent immune response characterized by large increases in serum IgG1 and IgE concentrations and by the generation of substantial numbers of membrane (m)IgG1+ B cells. The onset of this response occurs 6 days after G alpha M delta injection and peaks by day 7 to 8. Utilizing two color fluorescence analysis and cell sorting we demonstrate that most mIgG1-expressing B cells lack mIgM during the period of onset of Ig isotype switching (day 6). Both IgG1 and IgE are produced predominantly by mIgM- cells. On day 6, IgG1 and IgE are secreted predominantly by cells expressing mIgG1 and mIgE, respectively. By day 8, a majority of the IgG1 secretion occurs among the mIgG1- cells but virtually all IgE secretion continues to come from the mIgE+ population. B cells that strongly express mIgG1 secrete little IgM or IgE. Freshly harvested B cells expressing mIgG1, 6 days after G alpha M delta injection, have undergone substantial deletion of CH mu-specific DNA in contrast to their mIgG1- counterparts. Hence, the great majority of B cells that switch to the IgG1 or IgE isotypes in vivo rapidly lose their expression of IgM.  相似文献   

16.
The helper activity of resting T cells and in vitro generated effector T cells and the relative roles of cognate interaction, diffusible cytokines, and non-cognate T-B contact in B cell antibody responses were evaluated in a model in which normal murine CD4+ T cells (Th), activated with alloantigen-bearing APC, were used to support the growth and differentiation of unstimulated allogeneic B cells. Both "fresh" T cells, consisting of memory and naive cells, stimulated for 24 h, and "effector" T cells, derived from naive cells after 4 days of in vitro stimulation, induced the secretion of IgM, IgG3, IgG1, IgG2a, and IgA. Effector T cells were significantly better helpers of the response of small dense B cells, inducing Ig at lower numbers and inducing at optimal numbers 2- to 3-fold more Ig production than fresh T cells. The predominant isotype secreted was IgM. Supernatants derived from fresh T cell cultures contained moderate levels of IL-2, whereas those from effector cultures contained significant levels of IL-6 and IFN-gamma in addition to IL-2. The involvement of soluble factors in the B cell response was demonstrated by the ability of antibodies to the cytokines IL-2, IL-4, and IL-6 to each block Ig secretion. Antibodies to IL-5 and IFN-gamma had no effect on the T cell-induced response. Kinetic studies suggested that IL-4 acted during the initial stages of the response, whereas the inability of anti-IL-6 to block B cell proliferation suggested that IL-6 was involved in part in promoting differentiation of the B cells. The relative contributions of cognate (MHC-restricted) and bystander (MHC-unrestricted) T-B cell contact vs cytokine (non-contact)-mediated responses were assessed in a transwell culture system. The majority of the IgM, IgG3, IgG1, and IgG2a response induced by both fresh and effector T cells was dependent on cognate interaction with small, high density B cells. In contrast, a small proportion of these isotypes and most of the IgA secreted resulted from the action of IL-6 on large, presumably preactivated, B cells. The IgA response did not require cell contact or vary when fresh and effector cells were the helpers. The contribution of bystander contact in the overall antibody response to both T cell populations was minimal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
18.
To study the role of T cells in T-B cell interactions resulting in isotype production, autologous purified human splenic B and T cells were cocultured in the presence of IL-2 and Con A. Under these conditions high amounts of IgM, IgG, and IgA were secreted. B cell help was provided by autologous CD4+ T cells whereas autologous CD8+ T cells were ineffective. Moreover, CD8+ T cells suppressed Ig production when added to B cells cocultured with CD4+ T cells. Autologous CD4+ T cells could be replaced by allogeneic activated TCR gamma delta,CD4+ or TCR alpha beta,CD4+ T cell clones with nonrelevant specificities, indicating that the TCR is not involved in these T-B cell interactions. In contrast, resting CD4+ T cell clones, activated CD8+, or TCR gamma delta,CD4-,CD8- T cell clones failed to induce IL-2-dependent Ig synthesis. CD4+ T-B cell interaction required cell-cell contact. Separation of the CD4+ T and B cells by semiporous membranes or replacement of the CD4+ T cells by their culture supernatants did not result in Ig synthesis. However, intact activated TCR alpha beta or TCR gamma delta,CD4+ T cell clones could be replaced by plasma membrane preparations of these cells. Ig synthesis was blocked by mAb against class II MHC and CD4. These data indicate that in addition to CD4 and class II MHC Ag a membrane-associated determinant expressed on both TCR alpha beta or TCR gamma delta,CD4+ T cells after activation is required for productive T-B cell interactions resulting in Ig synthesis. Ig production was also blocked by mAb against IL-2 and the IL-2R molecules Tac and p75 but not by anti-IL-4 or anti-IL-5 mAb. The CD4+ T cell clones and IL-2 stimulated surface IgM-IgG+ and IgM-IgA+, but not IgM+IgG- or IgM+IgA- B cells to secrete IgG and IgA, respectively, indicating that they induced a selective expansion of IgG- and IgA-committed B cells rather than isotype switching in Ig noncommitted B cells. Induction of Ig production by CD4+ T cell clones and IL-2 was modulated by other cytokines. IL-5 and transforming growth factor-beta enhanced, or blocked, respectively, the production of all isotypes in a dose-dependent fashion. Interestingly, IL-4 specifically blocked IgA production in this culture system, indicating that IL-4 inhibits only antibody production by IgA-committed B cells.  相似文献   

19.
To test the contribution of individual D gene segments to B cell development and function, we used gene targeting to create mice that contain only DFL16.1 in the DH locus. We term this D-limited IgH allele DeltaD-DFL. Although the absolute number of IgM+IgD- B cells in the bone marrow was decreased, homozygous DeltaD-DFL BALB/c mice contained normal numbers of IgM+IgD+ B cells in bone marrow and spleen and normal numbers of B1a, B1b, and B2 cells in the peritoneal cavity. Bone marrow IgM+IgD+ B cells express a CDR-H3 repertoire similar in length and amino acid composition to the DFL16.1 subset of the wild-type BALB/c repertoire but divergent from sequences that do not contain DFL16.1. This similarity in content is the product of both germline bias and somatic selection, especially in the transition to the mature IgM+IgD+ stage of development. Serum Ig concentrations and the humoral immune response to a T-dependent Ag ([4-hydroxy-3-nitrophenyl]acetyl hapten) were nearly identical to wild-type littermate controls. A greater variance in the immune response to the T-independent Ag (alpha(1-->3)-dextran) was observed in DeltaD-DFL homozygotes, with half of the mice exhibiting levels below the range exhibited by controls. Although limited to a repertoire specific to DFL16.1, the presence of a single DH gene segment of normal sequence was sufficient for development of normal numbers of mature B cells and for robust humoral immune function.  相似文献   

20.
Lymphocytes that bear surface (s) IgD make up the majority of B cells in mature mice and are the precursors of most antibody secreting cells in primary immune responses made by these mice. In order to study the functional capabilities of the minority sIgD- B lymphocyte population and to gain insight into the possible roles of sIgD, we attempted to abort the development of sigD+ B cells and to expand the sigM+IgD- B cell population by treating mice from birth with affinity-purified rabbit antibodies specific for mouse IgD (RaM delta). RaM delta-suppressed mice had no detectable sIgD+ spleen, lymph node, or bone marrow cells and, on average, only 20% as many sIgM+Ia+ splenic B cells as control mice but had normal numbers of splenic T cells. Lymph nodes from anti-delta suppressed mice were even more depleted of B cells than were spleens from these mice, whereas the percentage of bone marrow B cells in these mice was relatively normal. Germinal centers of anti-delta suppressed mice were fairly normal in appearance, whereas follicular mantle layers, the locus of most sIgD+ B cells in normal mice, were greatly depleted. In addition to their lack of sIgD, splenic B cells of anti-delta suppressed mice differed from those found in control mice in that they bore, on average, twice as much sIgM as control cells, and in that they included an increased percentage of large, DNA synthesizing cells as compared with spleen cells from control mice. However, most sIgM+IgD- splenic B cells from anti-delta suppressed mice were small, nonproliferating cells. B cells from anti-delta suppressed mice insert little or no sIgD into their cell membranes since they continued to bear no detectable sIgD 2 days after in vivo neutralization of RaM delta and since, unlike B cells from control mice, they failed to be activated by a single in vitro injection of a goat anti-mouse delta antibody. Despite their lack of sIgD+ B cells, anti-delta suppressed mice had relatively normal levels of serum IgG as well as normal to increased levels of serum IgM. Thus, sIgM+IgD- B cells appear to have the potential of differentiating into Ig secreting cells in vivo without acquiring sIgD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号