首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Highly purified human peripheral blood B cells stimulated with Cowan I Staphylococcus aureus (SA) and mitogen-activated T cell supernatants (T supt) generated large numbers of immunoglobulin (Ig)-secreting cells (ISC), whereas fewer ISC developed in cultures containing T supt in the absence of SA. To determine whether surface Ig isotype expression defined responsive B cell subsets, IgD+ and IgD- B cells were prepared with the fluorescence-activated cell sorter. Whereas both the IgD+ and IgD- B cells responded to SA + T supt, only the IgD- subset generated substantial numbers of ISC in response to T supt alone. Analysis of secreted Ig revealed that IgG and IgA were the predominant isotypes secreted by IgD- B cells in response to T supt or SA + T supt. By contrast, the IgD+ cells secreted predominantly IgM in response to SA + T supt but not to T supt alone. When responsiveness to pokeweed mitogen (PWM) was examined in the presence of supplemental T cells, the IgD- subset was found to be greatly enriched for responsive cells, and again, IgG and IgA were the predominant isotypes secreted, although these cells were also capable of secreting some IgM. The magnitude of the response induced by PWM from IgD- B cells was usually greater than that induced by SA + T supt. Although IgD+ B cells responded poorly to PWM, the differentiation of a small number of IgM-secreting cells was routinely stimulated by this polyclonal activator in the presence of T cells. The magnitude of the PWM response by IgD+ B cells was always greatly diminished compared with that stimulated by SA + T supt. Cell cycle analysis after acridine orange staining, cell volume measurement, and staining for expression of activation antigens (transferrin receptor and 4F2) indicated that the IgD- B cells were largely resting, but did contain a population of activated cells. Removal of activated 4F2+ cells from the IgD- subset diminished but did not abolish their capacity to generate ISC in response to SA + T supt or PWM in the presence of T cells. These results suggest that the IgD- population contains both an activated 4F2+ and a resting 4F2- subset. The data emphasize that multiple subpopulations of peripheral blood B cells contain precursors of ISC. Moreover, the responsiveness of the subsets to various stimuli and the Ig isotype subsequently secreted appear to be intrinsic features of each subset.  相似文献   

2.
The role of tumor necrosis factor-alpha (TNF-alpha) in human B cell responses was examined and compared with that of interleukin (IL) 1 by assessing the ability of each cytokine to support proliferation and differentiation. Recombinant TNF-alpha (rTNF-alpha) and recombinant IL-1 (rIL-1) each enhanced the generation of immunoglobulin-secreting cells (ISC) in cultures of pokeweed mitogen-stimulated B cells incubated with T cells. To examine the direct effect of rTNF-alpha and rIL-1 on the responding B cell, highly purified peripheral blood B cells were stimulated with Cowan I Staphylococcus aureus (SA). In the absence of T cell factors, proliferation was minimal and there was no generation of ISC. Recombinant IL-2 (rIL-2) supported both responses. Although rTNF-alpha alone did not support SA-stimulated generation of ISC, it did increase SA-stimulated B cell DNA synthesis by two- to eightfold. In addition, rTNF-alpha augmented B cell proliferation in rIL-2 supported SA-stimulated cultures. Moreover, rTNF-alpha enhanced the generation of ISC stimulated by rIL-2 alone or rIL-2 and SA. rIL-1 also augmented DNA synthesis and generation of ISC by B cells stimulated with SA and rIL-2. However, rTNF-alpha enhanced proliferation and ISC generation in SA + rIL-2-stimulated cultures even when they were supplemented with saturating concentrations of rIL-1. Utilizing a two-stage culture system, it was found that the major effect of rTNF-alpha was to enhance responsiveness of SA-activated B cells to rIL-2, whereas it exerted only a minimal effect during initial stimulation. These results indicate that TNF-alpha as well as IL-1 augment B cell responsiveness. Moreover, the ability of rTNF-alpha to enhance B cell responsiveness was not an indirect effect resulting from the induction of Il-1 production by contaminating monocytes, but rather resulted from the delivery of a signal by rTNF-alpha directly to the responding B cell that promoted both proliferation and differentiation after initial activation. The data therefore indicate that human B cell responsiveness can be independently regulated by the action of two separate monocyte-derived cytokines.  相似文献   

3.
The signals involved in the initiation of mitogen-induced activation of resting guinea pig T cells were examined. The combination of phytohemagglutinin (PHA) and 4 beta-phorbol 12-myristate 13-acetate (PMA) stimulated DNA synthesis by accessory cell (AC)-depleted T cells cultured at high density, but the use of low density cultures indicated that intact AC were absolutely necessary for PHA-stimulated T cell DNA synthesis even in the presence of PMA, interleukin 1 (IL 1), or interleukin 2 (IL 2). In contrast, AC-depleted T cells were able to respond to the combination of the calcium ionophore, ionomycin, and PMA regardless of the cell density at which they were cultured. Cell cycle analysis by acridine orange staining indicated that neither PHA nor ionomycin, in the absence of AC, activated resting T cells. PMA in the absence of all AC, supported cell cycle entry and progression to the DNA synthetic phase of the majority of ionomycin-stimulated T cells, but permitted only a small number of PHA-triggered T cells to enter the initial stage of the cell cycle (G1a) characterized by a modest increase in cellular RNA content. Although PMA permitted some PHA-stimulated T cells to enter the cell cycle, most required intact AC to enter G1, and all required intact AC to progress through G1 and synthesize maximal amounts of RNA. No PHA-stimulated cells reached the S phase without intact AC. In PHA-stimulated cultures containing intact AC, PMA increased the number of cells entering the cell cycle and increased the rate of their progress to the DNA synthetic phase. IL 1 also augmented PHA-stimulated AC-dependent T cell DNA synthesis in the presence or absence of PMA, but appeared to be most active during the later stage of the first cell cycle, augmenting the number of activated cells that entered the S phase of the cell cycle. These results support the conclusion that intact AC, IL 1, and a PMA-like signal play distinct roles in the progression of mitogen-stimulated T cells through the first round of the cell cycle.  相似文献   

4.
Inhibition of human B cell responsiveness by prostaglandin E2   总被引:3,自引:0,他引:3  
The capacity of prostaglandin E2 (PCE2) to modulate human peripheral blood B cell proliferation and the generation of immunoglobulin-secreting cells (ISC) stimulated by Cowan 1 strain Staphylococcus aureus and mitogen-stimulated T cell supernatant was examined. PGE2 significantly inhibited both responses, whereas PGF2 alpha had no inhibitory effect. Responses of highly purified B cells obtained from spleen, lymph node, and tonsil were also inhibited. In addition PGE2 suppressed B cell responses supported by recombinant interleukin 2 rather than T cell supernatant. PGE2-mediated inhibition was mimicked by forskolin, a direct activator of adenylate cyclase. Kinetic studies indicated that PGE2 inhibited B cell responses by a progressively greater increment as cultures were prolonged. Evaluation by flow cytometry after staining with acridine orange or mithramycin indicated that PGE2 had no effect on initial B cell entry into the G1 phase of the cell cycle, passage through G1, and entry into S, G2, and M. Rather, PGE2 inhibited responses of postdivisional daughter cells. PGE2 inhibited responses in cultures stimulated by the calcium ionophore ionomycin and T cell supernatant but had minimal effects in cultures stimulated by the combination of ionomycin and phorbol myristate acetate. Moreover, phorbol myristate acetate reversed PGE2-mediated inhibition of proliferation stimulated by S. aureus or S. aureus + T cell supernatant. These results indicate that PGE2 suppresses the continued growth and differentiation of human B cells, although it has no effect on initial B cell activation and suggest that PGE2 may play a role in regulating human B cell responses in vivo.  相似文献   

5.
The effect of rIL-6 on the growth and differentiation of highly purified human peripheral blood B cells was examined. IL-6 alone induced minimal incorporation of [3H]thymidine by unstimulated or Staphylococcus aureus (SA)-stimulated B cells and did not augment proliferation induced by SA and IL-2. Similarly, IL-6 alone did not support the generation of Ig-secreting cells (ISC) or induce the secretion of Ig by unstimulated or SA-stimulated B cells. However, IL-6 did augment the generation of ISC and the secretion of all isotypes of Ig induced by SA and IL-2. Maximal enhancement of B cell responsiveness by IL-6 required its presence from the initiation of culture. Delaying the addition of IL-6 to B cells stimulated with SA and IL-2 beyond 24 h diminished its effect on ISC generation. However, increased Ig production but not ISC generation was observed when IL-6 was added to B cells that had been preactivated for 48 h with SA and IL-2. This effect was most marked when the activated B cells were also stimulated with IL-2. IL-6 in combination with other cytokines such as IL-1 and IL-4 did not induce the secretion of Ig or generation of ISC in the absence of IL-2. Moreover, antibody to IL-6 did not inhibit the effect of IL-2 on the growth and differentiation of B cells stimulated with SA, but did inhibit the IL-6-induced augmentation of Ig secretion by B cells stimulated with SA and IL-2. IL-6 alone enhanced T cell dependent induction of B cell differentiation stimulated by PWM. Part of this enhancement was related to its capacity to increase the production of IL-2 in these cultures. These results indicate that IL-6 has several direct enhancing effects on the differentiation of B cells, all of which are at least in part dependent on the presence of IL-2. In addition, IL-6 can indirectly increase B cell differentiation by increasing IL-2 production by T cells.  相似文献   

6.
The relationship of B cell proliferation and the generation of immunoglobulin-secreting cells (ISC) was explored in vitro by examining the effect of hydroxyurea (HU), an inhibitor of cellular DNA synthesis, on the generation of ISC from human peripheral blood mononuclear cells (PBM). HU completely inhibited the capacity of PBM to generate ISC in response to pokeweed mitogen (PWM) and other polyclonal B cell activators. Inhibition resulted from an effect on B cell proliferation, because HU also prevented the generation of ISC in cultures of purified B cells supplemented with either T cell supernatants or mitomycin C-treated T cells. Inhibiting B cell proliferation by treating them with mitomycin C before culture also abolished the generation of ISC. When ISC were enumerated after a 7-day incubation with PWM, the addition of HU as late as day 6 of culture was found to inhibit responsiveness markedly. This suggested that those cells that had acquired the capacity to secrete lg were actively dividing, and continued division was necessary for ongoing lg secretion. To examine this possibility, experiments were carried out in which responsiveness was assayed on a daily basis. ISC could be detected after a 3- or 4-day incubation and reached maximum at day 6 or 7. Addition of HU on days 3 to 7 caused a highly significant reduction in the number of ISC within 24 hr. ISC did not begin to show resistance to the effects of HU until later in culture. This observation supported the conclusions that ISC were a rapidly cycling cell population and that ongoing lg secretion, as well as expansion in the number of ISC, depended on continued proliferation of the ISC. To confirm directly that ISC were a cycling cell population, PBM were cultured with PWM for 6 days, fixed, stained for both cytoplasmic lg and DNA content, and analyzed on the fluorescence-activated cell sorter. This method made it possible to quantitate the DNA content of individual lg-synthesizing cells and thus to determine their position in the cell cycle. As many as 40% of cytoplasmic lg-positive cells were found to be in the S, G2, or M phases of the cell cycle. These data indicate that ISC generated in man after in vitro stimulation with a number of polyclonal activators are not stable terminally differentiated lg-secreting plasma cells but rather an actively cycling lg-secreting population. Furthermore, the results indicate that proliferation of the ISC themselves plays an important role in determining the magnitude of the resultant antibody response.  相似文献   

7.
An Ag-specific, IL-2-dependent Th clone induced the growth of B cells in a class II-restricted, Ag-specific, IL-2-dependent manner. The formation of stable Th-3.1-B cell conjugates was restricted by Ag and class II MHC. After activation of Th-3.1 by insolubilized anti-T3 (Th-3.1T3), Th-3.1T3 induced the growth of B cells in a class II unrestricted, Ag nonspecific manner. The formation of stable conjugates between Th-3.1T3 and B cells was also class II unrestricted and Ag nonspecific. Although the interaction of Th-3.1T3 and B cells was class II unrestricted, the interaction was inhibited by the combination of anti-IA and anti-IE mAb. This suggested that monomorphic domains of class II MHC molecules were involved in Th-3.1T3-B cell interaction. Fixed Th-3.1T3 but not fixed resting Th-3.1 induced B cell cycle entry, as measured by an increase in B cell RNA synthesis. Trypsin-treatment of Th-3.1T3 before fixation reduced their ability to activate B cells, indicating that cell surface proteins on Th-3.1T3 were required for enhanced B cell RNA synthesis. Anti-IL-4, anti-IL-2R, or anti-IFN-gamma did not affect the ability of Th-3.1T3 to induce heightened B cell RNA synthesis. Progression into S phase by B cells activated with fixed Th-3.1T3 was supported by the addition of soluble factors. When stimulated with fixed Th-3.1T3, EL4 supernatant (SN) enhanced B cell DNA synthesis. Depletion of IL-4, but not IL-2, from EL4 SN ablated its supportive capabilities. IL-4 alone was completely ineffective in supporting entry into S phase. Therefore, IL-4 and another activity(ies) in EL4 SN were necessary for B cell cycle progression into S phase. Taken together, these data suggest that after Th activation, Th cell surface proteins are expressed that mediate the binding of Th to B cells via recognition of nonpolymorphic domains of class II MHC molecules. Contact of Th-3.1T3 with B cells, not lymphokines, results in the entry of B cells into the cell cycle and heightened B cell lymphokine responsiveness. The addition of exogenous lymphokines supports the progression of Th-3.1T3-activated B cells into S phase.  相似文献   

8.
Purine and pyrimidine nucleotides play critical roles in DNA and RNA synthesis as well as in membrane lipid biosynthesis and protein glycosylation. They are necessary for the development and survival of mature T lymphocytes. Activation of T lymphocytes is associated with an increase of purine and pyrimidine pools. However, the question of how purine vs pyrimidine nucleotides regulate proliferation, cell cycle, and survival of primary T lymphocytes following activation has not yet been specifically addressed. This was investigated in the present study by using well-known purine (mycophenolic acid, 6-mercaptopurine) and pyrimidine (methotrexate, 5-fluorouracil) inhibitors, which are used in neoplastic diseases or as immunosuppressive agents. The effect of these inhibitors was analyzed according to their time of addition with respect to the initiation of mitogenic activation. We showed that synthesis of both purine and pyrimidine nucleotides is required for T cell proliferation. However, purine and pyrimidine nucleotides differentially regulate the cell cycle since purines control both G(1) to S phase transition and progression through the S phase, whereas pyrimidines only control progression from early to intermediate S phase. Furthermore, inhibition of pyrimidine synthesis induces apoptosis whatever the time of inhibitor addition whereas inhibition of purine nucleotides induces apoptosis only when applied to already cycling T cells, suggesting that both purine and pyrimidine nucleotides are required for survival of cells committed into S phase. These findings reveal a hitherto unknown role of purine and pyrimidine de novo synthesis in regulating cell cycle progression and maintaining survival of activated T lymphocytes.  相似文献   

9.
Tolerant and nontolerant murine Th1 and Th2 clones, specific for human gamma-globulin (HGG), were compared for their ability to promote cell cycle entry and progression by B cells in vitro. When stimulated with HGG, nontolerant Th1 and Th2 clones induced similar increases in B cell membrane MHC class II levels--a phenomenon associated with early B cell activation. Nontolerant Th1 and Th2 clones also induced B cell DNA synthesis, an event associated with subsequent G1 phase traversal, although Th2 cells were more efficient than Th1 cells in stimulating this activity. Exposure of Th clones to tolerogen in the form of HGG-pulsed chemically fixed APC inhibited the ability of Th1 clones, but not Th2 clones to promote polyclonal B cell DNA synthesis in HGG-stimulated secondary cultures. However, Th1 clones exposed to tolerogen did not lose their ability to increase the expression of MHC class II molecules on B cells in these cultures. These results indicate that tolerance induction does not inhibit the ability of Th1 clones promote B cell cycle progression. In contrast, exposure of Th2 cells to tolerogen does not inhibit significantly the ability of these cells to stimulate B cell cycle entry or progression.  相似文献   

10.
The abilities of B cells from 24 young (mean 26 yr) and 24 elderly (mean 86 yr) humans to proliferate and differentiate into immunoglobulin-secreting cells (ISC) were investigated. Initial studies in young subjects demonstrated that a Staph protein A (SpA)-driven system could simultaneously assess the proliferative and differentiative capabilities of B cells resulting in IgM production. B cell proliferative responses were found to be partially T cell-dependent, whereas differentiation was absolutely T cell-dependent. Also, no significant differences could be detected in the abilities of nonproliferating allogeneic and autologous T cells to support B cell responsiveness. Although B cells from elderly subjects continuously exposed to SpA displayed proliferative responses equal to young subjects, the differentiation of B cells from elderly subjects into IgM ISC was markedly reduced as compared to young subjects. Analyses of results from co-culture experiments showed that the differentiation impairments of B cells from some elderly subjects could be partially corrected by allogeneic T cells from young subjects, whereas the impairments of others were more refractory. Moreover, T cells from elderly subjects were able to promote the differentiation of B cells from young subjects. Other experiments in elderly subjects showed that significant impairments of B and T cell functions rarely coexisted and that compensatory increases in B or T cell function were not evident. Thus, B cells from certain elderly humans have intrinsic impairments of differentiation required for optimal IgM production even though activation and proliferation remain normal in the presence of SpA. These impairments in differentiation are sometimes improved by T cells from young subjects, although in some elderly individuals, the differentiative impairments fail to be reversed.  相似文献   

11.
Human peripheral blood, spleen, and lymph node B cells were stimulated with Cowan I Staphylococcus aureus (SA) or F(ab')2 fragments of anti-mu antibody (anti-mu) and various lymphokines and were analyzed for proliferation and generation of Ig-secreting cells (ISC). SA alone but not anti-mu stimulated minimal proliferation of each population. Recombinant IL 2 (r-IL 2) effectively promoted proliferation of SA-stimulated blood and spleen B cells, but supported less vigorous responses of lymph node B cells. By contrast, r-IL 2 enhanced DNA synthesis of all anti-mu-stimulated B cells early in culture, but did not promote sustained proliferation of anti-mu-stimulated lymph node B cells and only promoted ongoing DNA synthesis of some anti-mu-activated blood (eight out of 17) and spleen (five out of 14) B cell preparations. Recombinant interferon-gamma (r-IFN-gamma) and a commercial preparation of B cell growth factor (BCGF) also augmented DNA synthesis of all three B cell populations stimulated with SA or anti-mu early in culture, but neither alone was able to sustain maximal proliferation. Markedly enhanced sustained proliferation of all three anti-mu- and SA-stimulated B cell populations was noted when cultures were supported by the combination of r-IL 2 and BCGF, or to a lesser extent by r-IL 2 and r-IFN-gamma. The generation of ISC from SA-stimulated blood or spleen but not lymph node B cells was effectively supported by r-IL 2 alone. Differentiation of lymph node B cells required the combination of r-IL 2 and BCGF. These studies emphasize the importance of both the activation stimulus and the origin of the B cells in determining the lymphokine requirements of human B cell responsiveness.  相似文献   

12.
We have previously shown that greater than 90% of B6.1 cells, a murine cytolytic T lymphocyte (CTL) cloned line which is solely dependent on T cell growth factor (TCGF) for continuous growth in vitro, accumulates in the G1 phase of the cell cycle after transfer into culture medium containing no TCGF. Moreover, when such quiescent cells are exposed again to TCGF, greater than 85% reenter the S phase and subsequently divide in a relatively synchronous fashion. In this study, the regulation of the rate of cell cycle progression of quiescent B6.1 cells after exposure to TCGF was analyzed using two complementary DNA staining techniques, namely, the propodium iodide method (to enumerate cells entering the S phase) and the Hoechst 33342-bromodeoxyuridine substitution technique (to enumerate cells which have gone through mitosis). After TCGF addition, quiescent B6.1 cells resumed DNA synthesis and divided after a lag phase of 10 and 20 h, respectively. The duration of the lag phase was found to be dependent on the length of time during which quiescent B6.1 cells had been deprived of TCGF, but was independent of the concentration of TCGF used for restimulation. In contrast, the proportion of cells responding to TCGF as well as the rate of their first passage through mitosis was dependent on TCGF concentration. The presence of TCGF for at least 6 h was required for a maximal response. Moreover, direct evidence was obtained that TCGF by itself was able to stimulate proliferation of quiescent B6.1 cells in the absence of other growth factors and serum constituents other than bovine serum albumin, transferrin, and lipids.  相似文献   

13.
We had earlier shown that human foetal epithelial cells (WISH), growth-inhibited by interferon gamma (IFNgamma), were reversibly detained at a point prior to DNA synthesis. In the present study, we determined the window of action of IFNgamma in the G1 phase duration and the exact point of detention of WISH cells in cell cycle progression with respect to the known points of detention by the inhibitors of DNA replication initiation (aphidicolin and carbonyl diphosphonate) and of activation of replication protein A (6-dimethylaminopurine), of which RPA activation being the earlier event compared to DNA replication initiation in cell cycle progression. WISH cells, which were released from IFNgamma-induced arrest, permeabilised and exposed independently to these inhibitors show that IFNgamma detains WISH cells prior to initiation of DNA synthesis. Further, exposure of IFNalpha-synchronized (at G0/G1) or mimosine-synchronized (at G1/S) WISH cells to IFNgamma, which was added at different time points post-release from the synchronizing agent, showed that the cells were promptly responsive to the growth inhibitory action of IFNgamma only during the first 11h in G1 phase. Taken together, these results suggest that IFNgamma inhibits growth of WISH cells by detaining them at a point prior to initiation of DNA synthesis and that the IFN acts within the first 11h in G1 phase of the cell cycle.  相似文献   

14.
We previously reported that activation of muscarinic acetylcholine receptors (mAChR) of M3 subtype causes hydrolysis of phosphoinositides and inhibits voltage-gated Ca2+ channel activity in small cell lung carcinoma (SCLC) cells. We now report that mAChR activation causes exponentially growing SCLC cells to arrest in S and G2/M phases of the cell cycle, concomitant with a decrease in DNA synthesis. Cell cycle progression and DNA synthesis resume when mAChR are down-regulated. In serum-starved SCLC cells, mAChR activation inhibits DNA synthesis induced by serum, bombesin, insulin, or insulin-like growth factor-I. The finding that DNA synthesis is inhibited even when mAChR are activated after exposure of cells to growth factors indicates that decreased signal transduction by growth factor receptors is not the mechanism of mAChR-mediated growth inhibition. Our data suggest that mAChR activation disrupts a common event that is induced by different growth factors and is fundamental for cell cycle progression.  相似文献   

15.
Yoon H  Kim TS  Braciale TJ 《PloS one》2010,5(11):e15423
A hallmark of cells comprising the mammalian adaptive immune system is the requirement for these rare na?ve T (and B) lymphocytes directed to a specific microorganism to undergo proliferative expansion upon first encounter with this antigen. In the case of na?ve CD8(+) T cells the ability of these rare quiescent lymphocytes to rapidly activate and expand into effector T cells in numbers sufficient to control viral and certain bacterial infections can be essential for survival. In this report we examined the activation, cell cycle time and initial proliferative response of na?ve murine CD8(+) T cells responding in vivo to Influenza and Vaccinia virus infection or vaccination with viral antigens. Remarkably, we observed that CD8(+) T cells could divide and proliferate with an initial cell division time of as short as 2 hours. The initial cell cycle time of responding CD8(+) T cells is not fixed but is controlled by the antigenic stimulus provided by the APC in vivo. Initial cell cycle time influences the rate of T cell expansion and the numbers of effector T cells subsequently accumulating at the site of infection. The T cell cycle time varies with duration of the G(1) phase of the cell cycle. The duration of G(1) is inversely correlated with the phosphorylation state of the retinoblastoma (Rb) protein in the responding T cells. The implication of these findings for the development of adaptive immune responses and the regulation of cell cycle in higher eukaryotic cells is discussed.  相似文献   

16.
D W Goodrich  N P Wang  Y W Qian  E Y Lee  W H Lee 《Cell》1991,67(2):293-302
The RB gene product is a nuclear phosphoprotein that undergoes cell cycle-dependent changes in its phosphorylation status. To test whether RB regulates cell cycle progression, purified RB proteins, either full-length or a truncated form containing the T antigen-binding region, were injected into cells. Injection of either protein early in G1 inhibits progression into S phase. Co-injection of anti-RB antibodies antagonizes this effect. Injection of RB into cells arrested at G1/S or late in G1 has no effect on BrdU incorporation, suggesting that RB does not inhibit DNA synthesis in S phase. These results indicate that RB regulates cell proliferation by restricting cell cycle progression at a specific point in G1 and establish a biological assay for RB activity. Neither co-injection of RB with a T antigen peptide nor injection into cells expressing T antigen prevents cells from progressing into S phase, which supports the hypothesis that T antigen binding has functional consequences for RB.  相似文献   

17.
Cyclosporin A (CsA) was tested for its modulatory effects on the mIgM-mediated signaling of G0*-associated increases in class II MHC expression, G1-related RNA synthesis, and S phase-related DNA synthesis in human B cells. While CsA at concentrations as low as 10-100 ng/ml could completely ablate anti-IgM-induced DNA synthesis, earlier G1-associated RNA synthesis was only partially inhibited, and signaling of increased membrane class II MHC expression was unaffected by up to 1000 ng/ml of CsA. Similar phenomena were observed in a clonal population of leukemic B lymphocytes susceptible to anti-IgM-mediated activation in the absence of T cells and T cell factors indicating (a) that the inhibitory effects are not due to CsA-mediated suppression of cytokine production by contaminating T cells, and (b) that the varying effects of CsA on the diverse activation phenomena do not reflect B cell subpopulation diversity. Pulsing studies revealed that while maximal suppression of anti-IgM-induced G1-associated RNA synthesis required CsA at culture initiation, near maximal suppression of DNA synthesis occurred when CsA, or soluble human IgM, was added up to 30 hr after the initial exposure of resting B cells to the anti-IgM ligand. These latter findings are consistent with the possibility that the CsA-mediated suppression of S phase entry is due to the inhibition of a signaling event proximal to mIgM ligation which must be repeatedly initiated throughout the first 30 hr of activation.  相似文献   

18.
We report that sustained increase of intracellular calcium ion concentration and protein kinase C (PKC) activation maintained throughout the G1 phase of cell cycle do not provide sufficient signals to cause S-phase entry in rabbit B cells, and that additional signals transduced by IL-2 and IL-2 receptor interaction are essential for G1 to S transition. We have shown earlier that rabbit B cells can be activated to produce IL-2 and express functional IL-2 receptors after treatment with ionomycin and PMA. Herein we have compared the response of rabbit PBLs, which contain about 50% T cells, with those of purified B cells. After activation with ionomycin or PMA, comparable numbers of PBLs and B cells entered the cell cycle; but DNA synthesis by the PBL cultures was three to four times higher than that of cultures of purified B cells. Interestingly, IL-2 production by the PBL cultures was also three to four times higher than in B cell cultures, suggesting an involvement of IL-2 in inducing DNA synthesis in these cells. The hypothesis that IL-2, which is produced in early G1, acts in late G1 and is required for G1 to S transition in B cells was supported by the following observations: (i) IL-2 production by B cells was detected as early as 6 hr after activation and preceded DNA synthesis by at least 24 hr. (ii) B cell blasts in G1 (produced by treatment of resting B cells with ionomycin and PMA) showed DNA synthesis in response to IL-2, but showed very little DNA synthesis in response to restimulation with ionomycin and PMA. (iii) A polyclonal rabbit anti-human IL-2 antibody caused nearly complete inhibition of DNA synthesis by B cells activated by ionomycin and PMA. (iv) A PKC inhibitor, K252b, inhibited DNA synthesis in ionomycin and PMA-stimulated cells if added at the beginning of culture but was not inhibitory if added 16 hr later. We conclude that increased [Ca2+]i and PKC activation are not sufficient signals for G1 to S transition in B cells; entry into S is signaled by IL-2, and IL-2-mediated signal transduction probably does not involve increased [Ca2+]i or PKC activation.  相似文献   

19.
We examined replication of the autonomous parvovirus Aleutian mink disease parvovirus (ADV) in relation to cell cycle progression of permissive Crandell feline kidney (CRFK) cells. Flow cytometric analysis showed that ADV caused a composite, binary pattern of cell cycle arrest. ADV-induced cell cycle arrest occurred exclusively in cells containing de novo-synthesized viral nonstructural (NS) proteins. Production of ADV NS proteins, indicative of ADV replication, was triggered during S-phase traverse. The NS+ cells that were generated during later parts of S phase did not undergo cytokinesis and formed a distinct population, termed population A. Formation of population A was not prevented by VM-26, indicating that these cells were arrested in late S or G2 phase. Cells in population A continued to support high-level ADV DNA replication and production of infectious virus after the normal S phase had ceased. A second, postmitotic, NS+ population (termed population B) arose in G0/G1, downstream of population A. Population B cells were unable to traverse S phase but did exhibit low-level DNA synthesis. Since the nature of this DNA synthesis was not examined, we cannot at present differentiate between G1 and early S arrest in population B. Cells that became NS+ during S phase entered population A, whereas population B cells apparently remained NS- during S phase and expressed high NS levels postmitosis in G0/G1. This suggested that population B resulted from leakage of cells with subthreshold levels of ADV products through the late S/G2 block and, consequently, that the binary pattern of ADV-induced cell cycle arrest may be governed merely by viral replication levels within a single S phase. Flow cytometric analysis of propidium iodide fluorescence and bromodeoxyuridine uptake showed that population A cells sustained significantly higher levels of DNA replication than population B cells during the ADV-induced cell cycle arrest. Therefore, the type of ADV-induced cell cycle arrest was not trivial and could have implications for subsequent viral replication in the target cell.  相似文献   

20.
G1/S control of anchorage-independent growth in the fibroblast cell cycle   总被引:18,自引:4,他引:14  
We have developed methodology to identify the block to anchorage-independent growth and position it within the fibroblast cell cycle. Results with NRK fibroblasts show that mitogen stimulation of the G0/G1 transition and G1-associated increases in cell size are minimally affected by loss of cell anchorage. In contrast, the induction of G1/S cell cycle genes and DNA synthesis is markedly inhibited when anchorage is blocked. Moreover, we demonstrate that the anchorage-dependent transition maps to late G1 and shortly before activation of the G1/S p34cdc2-like kinase. The G1/S block was also detectable in NIH-3T3 cells. Our results: (a) distinguish control of cell cycle progression by growth factors and anchorage; (b) indicate that anchorage mediates G1/S control in fibroblasts; and (c) identify a physiologic circumstance in which the phenotype of mammalian cell cycle arrest would closely resemble Saccharomyces cerevisiae START. The close correlation between anchorage independence in vitro and tumorigenicity in vivo emphasizes the key regulatory role for G1/S control in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号