首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
S-(chloroethyl)-cysteine (CEC) and S-(1,2-dichlorovinyl)cysteine (DCVO) have been proposed as intermediates in the metabolic transformation of the carcinogens 1,2-dichloroethane and 1,1,2-trichloroethylene. We have tested the ability of CEC and DCVC to induce DNA repair and genotoxic effects at the chromosomal level by comparative assessment of unscheduled DNA synthesis induction and micronucleus formation in Syrian hamster embryo fibroblasts. CEC induced a potent and dose-dependent response in both assays, whereas DCVC treatment resulted in a comparatively weak induction of DNA repair and failed to raise micronucleus formation above control rates. Inhibition of cysteine conjugate \gB-lyase diminished the effect of DCVC, but had no influence on the genotoxicity of CEC either in the unscheduled DNA synthesis or micronucleus assay.Abbreviations AOAA aminooxyacetic acid - CEC S-(chloroethyl)-cysteine; \gB-lyase, cysteine conjugate -lyase - DCE 1,2-dichloroethane - DCVC S(1,2-dichlorovinyl)-cysteine - GSH glutathione - HU hydroxyurea - IBR IBR-modified Dulbecco's Eagle's reinforced medium - MN2 micronuclei/2,000 cells - 4-NQO 4-nitroquinoline-1-oxide - SHE Syrian hamster embryo fibroblasts; 3H-Thd, 3H-thymidine - TCE 1,1,2-trichloroethylene - UDS unscheduled DNA synthesis  相似文献   

2.
There has been much discussion in recent years regarding the most appropriate follow-up testing in vivo when positive results are obtained in vitro but the in vivo micronucleus (MN) test (traditionally the most widely-used test) is negative. Not all rodent carcinogens give positive results in the micronucleus test, and so it has been common practice to include a second in vivo assay such as the unscheduled DNA synthesis (UDS) test. This has proved useful but is usually limited to analysis of rodent (usually rat) liver. With the increased evaluation and use of other in vivo assays, e.g. for transgenic mutations (TG) and DNA damage (Comet assay) it was important to investigate their usefulness. We therefore examined the published in vivo UDS, TG and Comet-assay results for 67 carcinogens that were negative or equivocal in the micronucleus test. Between 30 and 41 chemicals were evaluated in each of the three in vivo tests, with some overlap. In general, the UDS test was disappointing and gave positive results with <20% of these carcinogens, some of which induced tumours in rat liver and produced DNA adducts in vivo. The TG assay gave positive responses with >50% of the carcinogens, but the Comet assay detected almost 90% of the micronucleus-negative or equivocal carcinogens. This pattern of results was virtually unchanged when the in vitro profile (gene mutagen or clastogen) was taken into account. High sensitivity (ability to detect carcinogens as positive) is only really useful when the specificity (ability to give negative results with non-carcinogens) is also high. Based on small numbers of publications with non-carcinogens, the TG and Comet assays gave negative results with non-carcinogens on 69 and 78% of occasions, respectively. Although further evaluation of the Comet and TG assays, particularly with non-carcinogens, is needed, these data suggest that they both should play a more prominent role in regulatory testing strategies than the UDS test.  相似文献   

3.
Mutagen effect on male germ cells can be analyzed by micronucleus induction during meiotic divisions. These can be followed in vitro by culturing seminiferous tubular segments from stages of the epithelial cycle that contain late pachytene and diakinetic primary spermatocytes. We studied the formation of micronuclei in this test system using adriamycin as a model mutagen. Micronuclei were induced in a dose-dependent manner at concentrations of 1-10 ng/ml that were far below the dose that caused morphologically or biochemically detectable cytotoxic effects. The meiotic micronucleus induction in vitro is a potentially sensitive test system of male germ cell mutagenesis.  相似文献   

4.
It is known that 5-azacytidine (5-AC) induces tumors in several organs of rats and mice. The mechanisms of these effects are still poorly understood although it is known that 5-AC can be incorporated into DNA. Furthermore, it can inhibit DNA methylation. The known data on its clastogenic and/or gene mutation-inducing potential are still controversial. Therefore, we have investigated the kinds of genotoxic effects caused by 5-AC in Syrian hamster embryo (SHE) fibroblasts. Three different endpoints (micronucleus formation, unscheduled DNA synthesis (UDS) and cell transformation) were assayed under similar conditions of metabolism and dose at target in this cell system. 5-AC induces morphological transformation of SHE cells, but not UDS. Therefore, 5-AC does not seem to cause repairable DNA lesions. Furthermore, our studies revealed that 5-AC is a potent inducer of micronuclei in the SHE system. Immunocytochemical analysis revealed that a certain percentage of these contain kinetochores indicating that 5-AC may induce both clastogenic events and numerical chromosome changes.  相似文献   

5.
An in vivo micronucleus assay has been developed that utilizes colonic epithelial cells. The genotoxic effects of 1,2-dimethylhydrazine (54-07-3), a colon carcinogen, and of the nitrogen mustard, cyclophosphamide (50-18-0), on the bone-marrow polychromatic erythrocytes and on colonic epithelium from mice were compared using micronucleus induction in each organ as the end point. In the bone marrow, cyclophosphamide was a potent inducer of micronuclei, while 1,2-dimethylhydrazine administration had little effect on the micronucleus incidence. In the colon, 1,2-diemthylhydrazine was an effective inducer of micronuclei. Thus, the colonic micronucleus assay appears to be a potentially useful test for the detection of colon carcinogens.  相似文献   

6.
Benz[a]anthracene (BA), dibenz[a,h]anthracene (DBA), dibenzo[a,i]pyrene (DBP), and dibenz[a,h]acridine (DBAC) are by-products found in many industrial wastes and emissions. Workers in the related occupational settings are potentially exposed to these substances through inhalation. In the present study, induction of DNA adducts in vivo by these chemicals was investigated using 32P-postlabeling analysis in the rat-lung-cell system. The potency of DNA-adduct inducing activity was also compared to that of two cytogenetic endpoints i.e., sister-chromatid exchange (SCE) and micronucleus formation. Via intratracheal instillation, male CD rats (6/group) were dosed 3 times with BA, DBA, DBP or DBAC in a 24-h interval. Lung cells were enzymatically separated and used to determine the frequency of DNA adducts, SCE and micronuclei. Results show that all 4 test compounds induced DNA adducts, SCEs, and micronuclei in the rat-lung cell in vivo and that the postlabeling DNA adduct assay detected genotoxic activity at lower dose levels than the two cytogenetic assays. These findings suggest that BA, DBA, DBP or DBAC are rat pulmonary genetoxicants and the DNA-adduct assay is more sensitive than SCE or micronucleus assays for detecting the pulmonary genotoxicity of these industrial PAHs in the in vivo rat-lung-cell system.  相似文献   

7.
A simulation analysis of the kinetics of micronucleus formation in polychromatic erythrocytes in mouse bone marrow was performed after a single administration of 3 chemicals--mitomycin C (MMC), 6-mercaptopurine (6-MP) and 1-beta-D-arabinofuranosylcytosine (Ara-C)--with different modes of action. The time-response patterns in the incidence of chromosomal aberrations and micronuclei after treatment with each chemical were compared and subjected to the simulation study with 3 parameters. Two of them, the time between the final mitotic metaphase of the erythroid series and nucleus expulsion (T1), and the duration of the polychromatic erythrocyte (PCE) stage in the bone marrow (T2), were almost identical for the 3 chemicals. However, the coefficients of formation rate of micronucleated cells resulting from cells with chromosomal aberration(s) (k) differed: Ara-C differed from the other two. These results indicate that chromosomal aberrations, especially chromatid breaks and probably gaps, induced by this chemical, effectively contribute to micronucleus formation. The DNA content of micronuclei was also compared to the length of acentric fragments induced by Ara-C and it was found that their distributions were comparable. These findings strongly suggest that chromosomal aberrations induced by chemicals are essential events for the induction of micronuclei in the PCE of bone marrow.  相似文献   

8.
The Syrian hamster embryo cell transformation assay is widely used for studies of carcinogenesis. The characterization of an unscheduled DNA synthesis (UDS) assay for these cells is reported. Benzo[a]pyrene, aflatoxin B1 and UV light induced UDS in the cells in a dose-dependent manner without exogenous metabolic activity. Nitrosopiperidine induced UDS as well as gene mutations and cell transformation only in the presence of an exogenous metabolic activation system. The utility of this UDS assay with these cells is discussed.  相似文献   

9.
John Ashby  Brita Beije   《Mutation research》1985,150(1-2):383-392
Oral dosing of between 5–30 mg/kg of cyclophosphamide (CP) to Alderley Park rats induced micronuclei in the bone marrow between 12 and 36 h after dosing, but failed to induce unscheduled DNA synthesis (UDS) in the liver at similar dose levels and treatment periods. Dose levels of > 30 mg/kg were toxic to the liver. In contrast, 2-acetylaminofluorene (2AAF) induced UDS in the rat liver between 4–36 h after dosing, but gave only a weak response in the bone marrow assay at dose levels between 0.5 and 2 g/kg. Selected observations were made for each chemical using both tissues of the same test animal.

It is concluded that an assessment of the genotoxicity in vivo of chemicals defined as genotoxic in vitro will contribute to an assessment of their possible mammalian carcinogenicity, and that these should involve assays conducted using both the bone marrow and the liver of rodents. Due to its relative ease of commission, the bone marrow micronucleus assay will usually be conducted first; in the case of negative results it is recommended that a liver genotoxicity assay should also be conducted. The case for employing in vivo short-term genotoxicity tests to predict the possible organotropic carcinogenicity or germ cell mutagenicity of a new in vitro genotoxin is discussed.  相似文献   


10.
The cytochalasin B (CYB)-blocked binucleated cell assay has been explored to analyze micronuclei and cell cycle kinetics using 2 known mutagenic carcinogens in V79 Chinese hamster lung cells. To determine the optimum time to obtain the maximum number of binucleated cells for micronucleus analysis, duplicate cultures of exponentially growing cells were treated with 3 micrograms/ml CYB for varying durations (8-48 h). A peak appearance of binucleated cells at 16 h in the presence of CYB suggested this as an optimum time for micronucleus analysis in binucleated V79 cells. To evaluate the capacity for induction of micronuclei in V79 cells, 2 mutagenic carcinogens, mitomycin C (0.125-1.0 micrograms/ml) and cyclophosphamide (2-12 micrograms/ml) were tested in duplicate cultures. Mitomycin C, a direct-acting alkylating agent, caused approximately an 18-fold increase in micronucleus frequency over controls at the highest concentration tested (1.0 micrograms/ml), and this increase occurred in a dose-related manner (r = 0.92). The concentrations of mitomycin C tested also caused a significant dose-related cell cycle delay, thus suggesting cytotoxicity to V79 cells. Cyclophosphamide, an indirect-acting alkylating agent, requiring the presence of S9 mix, caused approximately a 17-fold increase in micronucleus frequency over controls at the highest tested concentration (12 micrograms/ml), with a clear dose response (r = 0.99). The various concentrations of cyclophosphamide also caused cytotoxicity in a dose-related fashion. Thus, this study demonstrates the usefulness of the cytokinesis-block method in V79 cells as a possible screen to analyze micronucleus induction and cytotoxicity. Because this approach is much less labor intensive than conducting a structural chromosomal analysis, this assay has great potential both as an initial screen for clastogenic activity and as a tool for investigating the underlying mechanisms for clastogenicity.  相似文献   

11.
Rat-liver DNA alkylation by diethylnitrosamine (DEN), dimethylnitrosamine (DMN) and ethyl methanesulphonate (EMS) was studied in an attempt to relate chromosome-damaging effects of these agents (the formation of micronuclei in hepatocytes; see preceding paper) to specific alkylation patterns. No correlation was observed between the induction of micronuclei and liver DNA N-alkylation, measured as 3- and 7-alkyl-purines. O6-Alkylguanine is probably not involved in micronucleus induction because it is lost from DNA too rapidly to explain the much more persistent clastogenic effects. In contrast, both the initial amounts of alkylphosphotriesters and the persistencies of these products roughly paralleled the respective effects on micronucleus induction. The possible involvement of alkylphosphotriesters or other O-alkylation products of comparable stabilities is discussed. Results with DMN suggest that part of the primary DNA methylation damage is converted into a secondary (DNA) lesion and that both the primary and secondary lesion(s) contribute to the process of micronucleus formation.  相似文献   

12.
The two potent rodent bladder carcinogens o-anisidine and p-cresidine, and the structurally related non-carcinogen 2,4-dimethoxyaniline, have been extensively evaluated for genotoxicity to rodents and found to be inactive. Most data were generated on o-anisidine, an agent that is also only marginally genotoxic in vitro. The two carcinogens induced methaemoglobinaemia in rodents indicating that the chemicals are absorbed and metabolically oxidized. Despite their total lack of genotoxicity in vivo, the two carcinogens have the hall-marks of being genotoxic carcinogens given that most test animals of both sexes of B6C3F1 mice and F344 rats are reported to have succumbed rapidly to malignant bladder cancer. No reasons for this dramatic conflict of test data are so far apparent. The experiments described involve, in one or other combination, 2 strains of mice (including B6C3F1) and 4 strains of rat (including F344), the use of oral and i.p routes of exposure and observations made after 1, 3 or 6 doses of test chemical. 6 tissues (including the rat bladder) were assayed using 3 genetic endpoints (unscheduled DNA synthesis, DNA single-strand breaks and micronuclei induction). Aroclor-induced rats were employed in one set of experiments with o-anisidine. In the case of one set of mouse bone-marrow micronucleus experiments the same batch of the 3 chemicals as used in the cancer bioassays, and the same strain of mouse, were used. Possible further experiments and the implications of these findings are discussed.  相似文献   

13.
The in vitro micronucleus test with Syrian hamster embryo (SHE) cells assays the induction of micronuclei by chemical agents. Both chromosome fragments and lagging chromosomes can give rise to micronuclei. Nevertheless, only limited information is available on the ultrastructure of micronuclei and the mechanisms of their formation. Diethylstilbestrol (DES), a non-mutagenic carcinogen, as well as its analogue 3.3'-DES induce micronuclei in SHE cells. A comparison of the dose response of DES-induced micronucleus formation with the previously published ones for aneuploidy and transformation shows that all 3 run in parallel. Thus, a functional relationship between these endpoints, in the SHE system, may be implied. The present study is designed to address the formation of micronuclei using supravital UV microscopy, to test for the presence of defined chromosome domains within micronuclei using immunocytochemistry, and to define aspects of their ultrastructure by electron microscopy. Supravital UV microscopy showed that 3.3'-DES induces displacement of chromosomes/chromatids during prophase/anaphase and formation of micronuclei during cytokinesis. Immunocytochemistry revealed that micronuclei contain, at high frequencies, CREST antibody-reactive kinetochores, indicating the presence of whole chromosomes or centric fragments in these structures. Moreover, transmission electron microscopy showed that micronuclei exhibit ultrastructural details typical of interphase nuclei. Specifically, micronuclei exhibited morphological evidence of a nuclear lamina and segregation of karyoplasm into euchromatic and heterochromatic regions. All micronuclei examined were enclosed by a nuclear envelope of normal morphology and showed nuclear pore complexes. Together the findings provide evidence that DES interferes with the mitotic apparatus as early as prophase, resulting in the formation of micronuclei and, as a consequence, in the loss of chromatids or chromosomes.  相似文献   

14.
Six monofunctional alkylating methanesulphonates of widely varying structures were investigated in the in vitro micronucleus assay with Syrian hamster embryo fibroblast cells. The results were compared with the alkylating activities measured in the 4-(nitrobenzyl)pyridine test (NBP-test) and the N-methyl mercaptoimidazole (MMI-test) as measures for S(N)2 reactivity as well as in the triflouoroacetic acid (TFA) solvolysis and the hydrolysis reaction as measures for S(N)1 reactivity in order to provide insights into the role of alkylation mechanisms on induction of micronuclei. Moreover we compared the results of micronucleus assay with those of the Ames tests in strain TA 100 and TA1535 and with those of the SOS chromotest with the strains PQ37, PQ243, PM21 and GC 4798. The potency of methanesulphonates to induce micronuclei depended only to a certain degree, on the total alkylating activity (S(N)1 and S(N)2 reactivity). An inverse, significant correlation between the Ames test and the micronucleus assay was observed and an inverse correlation between the micronucleus assay and the SOS chromotest with the different strains. The results indicate that the primary mechanism leading to induction of micronuclei is not O-alkylation in DNA as it is the case in the Ames test with the hisG46 strains TA1535 and TA100 and not N-alkylation as with the SOS chromotest. There is evidence that protein alkylation, e.g. in the spindle apparatus in mitosis is decisive for induction of micronuclei by alkylating compounds. The structurally voluminous methanesulphonates 2-phenyl ethyl methanesulphonate and 1-phenyl-2-propyl methanesulphonate show a clear higher micronuclei inducing potency than the other tested though the bulky methanesulphonates possess a lower total alkylating activity than the others. This effect can be explained by a higher disturbance during mitosis after alkylation of the spindle apparatus with the structurally more bulky methanesulphonates.  相似文献   

15.
The plant flavonol fisetin is a common dietary component that has a variety of established biological effects, one of which is the inhibition of the enzyme DNA topoisomerase II (topo II). Compounds that inhibit topo II can exert genotoxic effects such as DNA double strand breaks, which can lead to the induction of kinetochore- or CREST-negative micronuclei. Despite reports that fisetin is an effective topoisomerase II inhibitor, its genotoxic effects have not yet been well characterized. Genotoxicity testing of fisetin was conducted in TK6 and HL60 cell lines and the cells were analyzed for malsegregating chromosomes as well as for the induction of micronuclei. Using the cytokinesis-blocked CREST micronucleus assay to discriminate between micronuclei formed from chromosomal breakage (CREST-negative) and chromosomal loss (CREST-positive), a statistically significant increase in CREST-positive micronuclei was seen for all doses tested in both cell lines. CREST-negative micronuclei, however, were significantly increased at the higher test concentrations in the TK6 cell line. These data indicate that at low concentrations fisetin is primarily exerting its genotoxic effects through chromosomal loss and that the induction of DNA breaks is a secondary effect occurring at higher doses. To confirm these results, the ability of fisetin to inhibit human topoisomerase II-alpha was verified in an isolated enzyme system as was its ability to interfere with chromosome segregation during the anaphase and telophase periods of the cell cycle. Fisetin was confirmed to be an effective topo II inhibitor. In addition, significant increases in the number of mis-segregating chromosomes were observed in fisetin-treated cells from both cell lines. We conclude that fisetin is an aneugen at low concentrations capable of interfering with proper chromosomal segregation and that it is also an effective topo II inhibitor, which exerts clastogenic effects at higher concentrations.  相似文献   

16.
To develop a simple system for monitoring the presence of mutagens/carcinogens in the leachates from landfill sites, we used a micronucleus test and a single cell gel electrophoresis (comet) assay originally developed for mice and rats on goldfish (Carassius auratus). The goldfish were exposed for 9 days to the leachate with chemical and biological treatment (treated leachate) or without treatment (raw leachate). The goldfish exposed to several samples died because of the high concentrations of NaCl or ammonium ion (NH4+). In the comet assay using peripheral erythrocytes, the raw leachates showed higher mutagenic activity than the treated leachates. In the micronucleus test, it was difficult to detect the micronuclei in peripheral erythrocytes. On the other hand, the frequency of micronuclei was high in gill cells of goldfish exposed to the raw leachates compared to the treated leachates. A combination of the two bioassays was shown to be useful to evaluate the mutagenic activity of the leachates. We also propose a new scoring method for determination of water quality by using acute toxicity and mutagenic activity.  相似文献   

17.
Heat shock proteins (Hsps) have been reported to protect cells, tissues, and organisms against damage from a wide variety of stressful stimuli. Whether they protect against deoxyribonucleic acid (DNA) damage in individuals exposed to environmental stresses and chemical carcinogens is unknown. In the study, we investigated the association between Hsp70 levels (the most abundant mammalian Hsp) and genotoxic damage in lymphocytes of workers exposed to coke-oven emission using Western dot blot and 2 DNA damage assays, the comet assay and the micronucleus test. The data show that there is a significant increase in Hsp70 levels, DNA damage score, and micronucleus rates in lymphocytes of workers exposed to coke-oven emission as compared with the control subjects. Furthermore, there was a significant negative correlation of Hsp70 levels with DNA damage scores in the comet assay (r = -0.663, P < 0.01) and with micronucleus rates (r = -0.461, P < 0.01) in the exposed group. In the control group, there was also a light negative correlation between Hsp70 with DNA damage and micronuclei rate (r = -0.236 and r = 0.242, respectively), but it did not reach a statistically significant level (P > 0.05). Our results show that individuals who had high Hsp70 levels generally showed lower genotoxic damage than others. These results suggest a role of Hsp70 in the protection of DNA from genotoxic damage induced by coke-oven emission.  相似文献   

18.
Syrian hamster embryo (SHE) cell transformation has been used for many years to study chemical carcinogenesis in vitro. It has been shown that this assay is probably the most predictive short-term test system for identifying rodent carcinogens. Although most of the operational difficulties encountered in the early stage of application of this assay have been overcome by culturing the SHE cells under slightly acidic conditions (pH 6.7), a relatively low level of induction of morphological transformation (MT) by known carcinogens still occurs for many cell isolates. In order to improve the response of this assay system to known carcinogens, the effect of incubation time of target SHE cells on the frequency of morphological transformation induced by benzo(a)pyrene (BaP) was investigated. It was shown that the morphological transformation frequency induced by BaP increased significantly (1.4-2.5-fold) when the incubation time of target cells was reduced from the usual 24h to less than 6h prior to seeding onto feeder layers. This improvement in sensitivity was consistent for different cell isolates. In addition, the enhanced response appeared to be a property of carcinogens because treatment with two non-carcinogens, l-ascorbic acid and 4-nitro-o-phenylenediamine, did not induce significant increases in the transformation frequency under the shortened incubation period for target cells. These results suggest that the response of the SHE cell transformation assay may be improved by optimizing the incubation time of the target SHE cells. In addition, the results of the present study provide further evidence to support the idea that morphological transformation of SHE cells results from a block of cellular differentiation of stem or stem-like cells.  相似文献   

19.
Our previous results indicated a close relationship between the presence of a BRCA1 mutation in lymphocytes and hypersensitivity for the induction of micronuclei by gamma irradiation and hydrogen peroxide (H(2)O(2)). Comparative investigations with the comet assay (single-cell gel electrophoresis) suggested a normal rate of damage removal and pointed to a disturbed fidelity of DNA repair as a direct or indirect consequence of a BRCA1 mutation. We now wanted to see whether similar results could be obtained with lymphoblastoid cell lines (LCLs) and whether such permanent cells are suitable as a model for the investigation of mechanisms involved in mutagen sensitivity. Our results show that LCLs with a BRCA1 mutation are also hypersensitive to the chromosome-damaging effects of gamma irradiation or H(2)O(2), as revealed by the micronucleus test. Interestingly, LCLs heterozygous for an ataxia telangiectasia (AT) mutation have similar characteristics as BRCA1 cells with respect to the induction and repair of DNA damage induced by either gamma irradiation or H(2)O(2). However, caffeine enhanced the induction of micronuclei by gamma irradiation only in normal and heterozygous AT cells but not in BRCA1 cells, thus indicating a difference in the pathways leading to mutagen sensitivity in cells with a BRCA1 or an AT mutation. Our results suggest that caffeine could be useful in discriminating AT heterozygotes from carriers of a BRCA1 mutation, as well as BRCA1 mutation carriers from normal individuals.  相似文献   

20.
Mice heterozygous for a p53 null mutation develop tumours induced by genotoxic carcinogens with a shorter latency than wild type mice and have been proposed as an alternate animal model for carcinogenicity testing. Some literature data suggest that p53+/- mice might also be more sensitive to the short-term effects of genotoxic agents and manifest a haploinsufficiency phenotype that could contribute to the higher tumour susceptibility. We have compared the induction of micronuclei in bone marrow and blood of p53+/- and p53+/+ isogenic mice after treatment with a single or multiple doses of melphalan (MLP), a crosslinking genotoxic carcinogen. We have also characterized the mechanism of micronucleus induction with CREST staining of kinetochore proteins to distinguish between chromosome break- and chromosome loss-induced micronuclei. Significant increases of micronucleated bone marrow polychromatic erythrocytes and blood reticulocytes were induced under all MLP exposure conditions. The frequency of micronucleated blood erythrocytes increased linearly with duration of exposure. Micronuclei were essentially a consequence of chromosome break events. After a single MLP dose, a significant reduction of the frequency of polychromatic erythrocytes in bone marrow of p53+/+ animals suggested the induction of cytotoxicity/cell cycle delay. This effect was not observed in p53+/- mice. We believe this finding to provide some evidence of a haploinsufficiency phenotype in the modulation of cell cycle/apoptotic pathways mediated by the p53 protein. In bone marrow of wild type mice, an increased effect of multiple MLP doses was detected over that of a single administration, whereas, in p53+/- mice, no differential effect was found of different exposure durations. Possibly, the probability of micronucleus formation increased under chronic exposure because of increased cell division in response to peripheral anemia and a reduction of p53 protein level had a small effect on cell cycle modulation and on such indirect mechanism of micronucleus induction. However, pairwise comparisons between the frequencies of cells with micronuclei in wild type and p53+/- mice under all exposure conditions did not show statistically significant differences, suggesting that the observed effects of p53 haploinsufficiency were weak and temporary and a higher/faster induction of irreversible chromosome damage could not account for the increased susceptibility of p53+/- mice to MLP-induced tumours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号