首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodiesel wastes containing glycerol were utilized by Klebsiella pneumoniae DSM 2026 to produce hydrogen. The optimization of medium components was performed using both Plackett-Burman and uniform design methods. Using the Plackett-Burman design, glycerol, yeast extract, NH(4)Cl, KCl and CaCl2 were found to be the most important components, which were further investigated by uniform design and second-order polynomial stepwise regression analysis. The optimized medium containing 20.4 g.L(-1) glycerol, 5.7 g.L(-1) KCl, 13.8 g.L(-1) NH(4)Cl, 1.5 g.L(-1) CaCl(2) and 3.0 g.L(-1) yeast extract resulted in 5.0-fold increased level of hydrogen (57.6 mL/50 mL medium) production compared to initial level (11.6 mL/50 mL medium) after 24 h of fermentation The optimization of fermentation condition (pH, temperature and inoculum) was also conducted. When the strain grew in the optimized medium under optimal fermentation condition in a 5-L stirred tank bioreactor for batch production, hydrogen yield and production reached 0.53 mol/mol and 117.8 mmol/L, respectively. The maximum hydrogen evolution rate was 17.8 mmol/(L.h). Furthermore, 1,3-propanediol (6.7 g.L(-1)) was also obtained from the liquid medium as a by-product.  相似文献   

2.
AIM: Statistical medium optimization for maximum production of a hyperthermostable lipase from Burkholderia cepacia and its validation in a bioreactor. METHODS AND RESULTS: Burkholderia cepacia was grown in shake flasks containing 1% glucose, 0.1% KH2PO4, 0.5% NH4Cl, 0.24% (NH4)2HPO4, 0.01% MgSO4.7H2O and 1% emulsified palm oil, at 45 degrees C and pH 7.0, agitated at 250 rev min(-1) with 6-h-old inoculum (2% v/v) for 20 h. A fourfold enhancement in lipase production (50 U ml(-1)) and an approximately three fold increase in specific activity (160 U mg(-1)) by B. cepacia was obtained in a 14 litre bioreactor within 15 h after statistical optimization following shake flask culture. The statistical model was obtained using face centred central composite design (FCCCD) with five variables: glucose, palm oil, incubation time, inoculum density and agitation. The model suggested no interactive effect of the five factors, although incubation period, inoculum and carbon concentration were the important variables. CONCLUSIONS: The maximum lipase production was 50 U ml(-1), with specific activity 160 U mg(-1) protein, in a 14 litre bioreactor after 15 h in a medium obtained after statistical optimization in shake flasks. Further, the model predicted reduction in time for lipase production with reduction in total carbon supply. SIGNIFICANCE AND IMPACT OF THE STUDY: Statistical optimization allows quick optimization of a large number of variables. It also provides a deep insight into the regulatory role of various parameters involved in enzyme production.  相似文献   

3.
Marine fungus BTMFW032, isolated from seawater and identified as Aspergillus awamori, was observed to produce an extracellular lipase, which could reduce 92% fat and oil content in the effluent laden with oil. In this study, medium for lipase production under submerged fermentation was optimized statistically employing response surface method toward maximal enzyme production. Medium with soyabean meal-0.77% (w/v); (NH(4))(2)SO(4)-0.1m; KH(2)PO(4)-0.05 m; rice bran oil-2% (v/v); CaCl(2)-0.05 m; PEG 6000-0.05% (w/v); NaCl-1% (w/v); inoculum-1% (v/v); pH 3.0; incubation temperature 35°C and incubation period-five days were identified as optimal conditions for maximal lipase production. The time course experiment under optimized condition, after statistical modeling, indicated that enzyme production commenced after 36 hours of incubation and reached a maximum after 96 hours (495.0 U/ml), whereas maximal specific activity of enzyme was recorded at 108 hours (1164.63 U/mg protein). After optimization an overall 4.6-fold increase in lipase production was achieved. Partial purification by (NH(4))(2)SO(4) precipitation and ion exchange chromatography resulted in 33.7% final yield. The lipase was noted to have a molecular mass of 90 kDa and optimal activity at pH 7 and 40°C. Results indicated the scope for potential application of this marine fungal lipase in bioremediation.  相似文献   

4.
A lipase producing Acinetobacter haemolyticus TA106 was isolated from healthy human skin of tribal population. The maximum activity of 55 U/ml was observed after medium optimization using the "one variable at a time" and the statistical approaches. The optimal composition of the medium was determined as (% w/v or v/v): tryptone--1, yeast extract--0.5, sodium chloride-1, olive oil-1, Tween-80 1, manganese sulphate--5 mM, sucrose--1, pH-7. It was found that maximum production occurred in late log phase, i.e., after 72 h and at 200 rpm. From factorial design and statistical analysis, it was found that pH, temperature, salt, inoculum density and aeration significantly affected the lipase production. It was also noted that inoculum density of 3% (v/v), sucrose (1% w/v) and manganese sulphate (5 mM) displayed maximum lipase activity of 55 U/ml by conventional as well as statistical method. Optimization studies also indicated the increase in specific activity from 0.2 U/mg to 6.7 U/mg.  相似文献   

5.
Teng Y  Xu Y 《Bioresource technology》2008,99(9):3900-3907
Rhizopus chinensis CCTCC M201021 was a versatile strain capable of producing whole-cell lipase with synthetic activity in submerged fermentation. In order to improve the production of whole-cell lipase and study the culture conditions systematically, the combination of taguchi method and response surface methodology was performed. Taguchi method was used for the initial optimization, and eight factors viz., maltose, olive oil, peptone, K2HPO4, agitation, inoculum size, fermentation volume and pH were selected for this study. The whole-cell lipase activity yield was two times higher than the control experiment under initial optimal conditions, and four significant factors (inoculum, olive oil, fermentation volume and peptone) were selected to test the effect on the lipase production using response surface methodology. The optimal fermentation parameters for enhanced whole-cell lipase yield were found to be: inoculum 4.25 x 10(8) spores/L, olive oil 2.367% (w/v), fermentation volume 18 mL/250 mL flask, peptone 4.06% (w/v). Subsequent experimental trails confirmed the validity of the model. These optimal culture conditions in the shake flask led to a lipase yield of 13875 U/L, which 120% increased compare with the non-optimized conditions.  相似文献   

6.
圆红冬孢酵母菌发酵产油脂培养基及发酵条件的优化研究   总被引:15,自引:1,他引:14  
采用均匀设计和单因子试验法,系统考察了圆红冬孢酵母菌(Rhodosporidiumtoruloides)在不同碳氮比条件下产油发酵情况以及添加无机盐对产油发酵的影响,通过均匀设计软件对二次多项回归方程求解及单因素分析得知在培养基组成分别为葡萄糖70g/L,硫酸铵0.1g/L,酵母粉0.75g/L,磷酸二氢钾0.4g/L,七水硫酸镁1.5g/L,初始pH6.0,在灭菌(121℃15min)后添加ZnSO41.91×10-6mmol/L、CaCl21.50mmol/L、MnCl21.22×10-4mmol/L、CuSO41.00×10-4mmol/L。发酵摇瓶装液量为250mL三角瓶装培养基50mL,接种量为10%(种龄28h)。在上述条件下,30℃振荡(200r/min)培养120h,所得菌体油脂含量高达76.1%,脂肪得率系数可达22.7。  相似文献   

7.
考察了在大肠杆菌中自诱导表达人胰高血糖素样肽-1突变体融合蛋白的可行性,并对自诱导培养条件及培养基成分进行优化,以提高蛋白产量。实验结果表明,最优培养基成分为蛋白胨19.17g/L,酵母膏9.59g/L,Na2HPO45.72g/L,KH2PO45.48g/L,(NH4)2SO42.66g/L,NaCl3.33g/L,甘油2%(V/V),葡萄糖0.68g/L,乳糖6.33g/L,MgSO40.24g/L。在温度33°C、接种量1%、pH7、装瓶量20mL/100mL培养条件下,用该最优培养基自诱导表达人胰高血糖素样肽-1突变体融合蛋白的产量可达348.6mg/L。  相似文献   

8.
对生物柴油废液作简单处理,利用红曲茵发酵生物柴油废液中副产物甘油生产红曲色素。通过响应面方法确定最佳发酵培养基为:甘油48.49g/L,蛋白胨3.12g/L,K2HPO4·3H202.01g/L,MgSO4 0.48g/L,ZnSO4·7H2O 0.04g/L,MnSO4·H2O 0.03g/L,玉米浆13mL/L,植物油10mL/L,起始pH为6。发酵结果表明:在接种量6%(v/v),转速140r/min,35℃的条件下发酵培养6d,红曲色素最高产量到达204U/mL。说明用生物柴油废液中的粗甘油为原料生产红曲色素是基本可行的。可望为生物柴油废液的资源化提供一条环境友好型的途径。  相似文献   

9.
AIMS: The objective of the present study was to investigate the optimal culture requirements for mycelial growth and exopolysaccharide production by Cordyceps jiangxiensis JXPJ 0109 in submerged culture. METHODS AND RESULTS: The effects of medium ingredients (i.e. carbon and nitrogen sources, and growth factor) and other culture requirements (i.e. initial pH, temperature, etc.) on the production of mycelia and exopolysaccharide were observed using a one-factor-at-a-time method. More suitable culture requirements for mycelial growth and exopolysaccharide production were proved to be maltose, glycerol, tryptone, soya bean steep powder, yeast extract, medium capacity 200 ml in a 500-ml flask, agitation rate 180 rev min(-1), seed age 4-8 days, inoculum size 2.5-7.5% (v/v), etc. The optimal temperatures and initial pHs for mycelial growth and exopolysaccharide production were at 26 degrees C and pH 5 and at 28 degrees C and pH 7, respectively, and corresponding optimal culture age were observed to be 8 and 10 days respectively. According to the primary results of the one-factor-at-a-time experiments, the optimal medium for the mycelial growth and exopolysaccharide production were obtained using an orthogonal layout method to optimize further. Herein the effects of medium ingredients on the mycelial growth of C. jiangxiensis JXPJ 0109 were in the order of yeast extract > tryptone > maltose > CaCl2 > glycerol > MgSO4 > KH2PO4 and the optimal concentration of each composition was 15 g maltose (food-grade), 10 g glycerol, 10 g tryptone, 10 g yeast extract, 1 g KH2PO4, 0.2 g MgSO4, and 0.5 g CaCl2 in 1 l of distilled water, while the order of effects of those components on exopolysaccharide production was yeast extract > maltose > tryptone > glycerol > KH2PO4 > CaCl2 > MgSO4, corresponding to the optimal concentration of medium was as follows: 20 g maltose (food-grade), 8 g glycerol, 5 g tryptone, 10 g yeast extract, 1 g KH2PO4, and 0.5 g CaCl2 in 1 l of distilled water. CONCLUSIONS: Under the optimal culture requirements, the maximum exopolysaccharide production reached 3.5 g l(-1) after 10 days of fermentation, while the maximum production of mycelial growth achieved 14.5 g l(-1) after 8 days of fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report on the submerged culture requirements for mycelial growth and exopolysaccharide in C. jiangxiensis, and this two-step optimization strategy in this study can be widely applied to other microbial fermentation processes.  相似文献   

10.
Lipase A exhibits great commercial value due to its applications in the food and paper industry, pharmaceutical chemistry and household chemicals. In this study, we first conducted a comparison of different signal peptides and promoters for the construction of the productive lipase A strain. The maximum extracellular lipase activity was identified as 64.9 U/mL after 12-h fermentation at 37 °C by B. subtilis L25 in which the lipase gene was led by SPlipA and controlled by P43-Phag. Another aim was to determine whether supplementing a culture medium with a combination of glycerol and Streptomyces sp. SCUT-3 digested chicken feather hydrolysates was beneficial to lipase production. Systematic optimization experiments were designed and carried out. Finally, a satisfactory lipase level of 1164.9 U/mL was accomplished in Terrific-Broth medium at a C/N ratio of 0.5 (v/v). This work demonstrates the feasibility of B. subtilis L25 for lipase A industrial production using glycerol and microbes treated chicken feather hydrolysates as inexpensive carbon and nitrogen source.  相似文献   

11.
A chemically defined medium was optimized for the maximum biomass production of recombinant Pichia pastoris in the fermentor cultures using glycerol as the sole carbon source. Optimization was done using the statistical methods for getting the optimal level of salts, trace metals and vitamins for the growth of recombinant P. pastoris. The response surface methodology was effective in optimizing nutritional requirements using the limited number of experiments. The optimum medium composition was found to be 20 g/L glycerol, 7.5 g/L (NH4)2SO4, 1 g/L MgSO4.7H2O, 8.5 g/L KH2PO4, 1.5 mL/L vitamin solution and 20 mL/L trace metal solution. Using the optimized medium 11.25 g DCW/L biomass was produced giving a yield coefficient of 0.55 g biomass/g of glycerol in a batch culture. Chemostat cultivation of recombinant P. pastoris was done in the optimized medium at different dilution rates to determine the kinetic parameters for growth on glycerol. Maximum specific growth rate of 0.23 h(-1) and Monod saturation constant of 0.178 g/L were determined by applying Monod model on the steady state data. Products of fermentation pathway, ethanol and acetate, were not detected by HPLC even at higher dilution rates. This supports the notion that P. pastoris cells grow on glycerol by a respiratory route and are therefore an efficient biomass and protein producers.  相似文献   

12.
We were looking for a strain of Bjerkandera adusta that produces high titres of manganese peroxidase under optimal conditions for large-scale enzyme purification. We have chosen two strains from the University of Alberta Microfungus Collection and Herbarium, UAMH 7308 and 8258, and compared the effects of growth conditions and medium composition on enzyme production with the well-characterized strain BOS55 (ATCC 90940). Of four types of cereal bran examined, rice bran at 3% (w/v) in 60 mM phosphate buffer pH 6 supported the highest levels of enzyme production. Using 100 mL medium in 500-mL Erlenmeyer flasks, maximum enzyme levels in the culture supernatant occurred after about 10 days of growth; 5.5 U x mL(-1) for UAMH 7308, 4.4 U x mL(-1) for UAMH 8258, and 1.7 U x mL(-1) for BOS55, where units are expressed as micromoles of Mn-malonate formed per minute. Growth as submerged cultures in 10-L stirred tank reactors produced 3.5 U x mL(-1) of manganese peroxidase (MnP) by UAMH 8258 and 2.5 U x mL(-1) of MnP by 7308, while enzyme production by BOS55 was not successful in stirred tank reactors but could be scaled up in 2-L shake flasks containing 400 mL rice bran or glucose-malt-yeast extract (GMY)-Mn-glycolate medium to produce MnP levels of 1.7 U x mL(-1). These results show that the two strains of B. adusta, UAMH 7308 and 8258, can produce between two and three times the manganese peroxidase level of B. adusta BOS55, that they are good candidates for scale up of enzyme production, and that the rice bran medium supports higher levels of enzyme production than most previously described media.  相似文献   

13.
AIM: Statistical optimization for maximum production of a hyperthermostable, Ca2+-independent and high maltose-forming alpha-amylase by Geobacillus thermoleovorans. METHODS AND RESULTS: G. thermoleovorans was cultivated in 250 ml flasks containing 50 ml of chemically defined glucose-arginine medium (g l(-1): glucose 20; arginine 1.2; riboflavin 150 microg ml(-1); MgSO4. 7H2O 0.2; NaCl 1.0; pH 7.0). The medium was inoculated with 5 h-old bacterial inoculum (1.8x10(8) CFU ml(-1)), and incubated in an incubator shaker at 70 degrees C for 12 h at 200 rev min(-1). The fermentation variables optimized by 'one variable at a time' approach were further optimized by response surface methodology (RSM). The statistical model was obtained using central composite design (CCD) with three variables: glucose, riboflavin and inoculum density. An over all 24 and 70% increase in enzyme production was attained in shake flasks and fermenter because of optimization by RSM, respectively. A good coverage of interactions could also be explained by RSM. The end products of the action of alpha-amylase on starch were maltose (62%), maltotriose (31%) and malto-oligosaccharides (7%). CONCLUSIONS: RSM allowed optimization of medium components and cultural parameters for attaining high yields of alpha-amylase, and further, a good coverage of interactions could be explained. The yield of maltose was higher than maltotriose and malto-oligosaccharides in the starch hydrolysate. SIGNIFICANCE AND IMPACT OF THE STUDY: By applying RSM, critical fermentation variables were optimized rapidly. The starch hydrolysate contained a high proportion of maltose, and therefore, the enzyme can find application in starch saccharification process for the manufacture of high maltose syrups. The use of this enzyme in starch saccharification eliminates the addition of Ca2+.  相似文献   

14.
重组大肠杆菌Escherichaia coli能高效表达NMN转移酶,以此为出发菌株,以菌体生长量OD600和NMN转移酶的活力为响应值,对重组大肠杆菌产NMN转移酶的发酵条件进行优化.首先以Plackett-Burman实验设计优化筛选出3个主要影响因子:胰蛋白胨、甘油、MgSO4;随后以Box-Behnken中心组合设计建立上述3个因子对OD600和NMN转移酶活力水平的数学模型;最后通过满意度函数获得最佳发酵条件为:酵母粉30 g/L,胰蛋白胨10.5 g/L,甘油3.49 mL/L,MgSO40.45 g/L,K2 HPO440.5 g/L,KH2 PO46.0 g/L,NH4 Cl 1.5 g/L,NaCl 0.6 g/L,接种量1.5%,诱导时间12 h.在该优化条件下,菌体生长和产酶水平均获得了显著的提升.重组NMN转移酶的活力水平从8.85 U/mg提高到15.48 U/mg,菌体生长量OD600从4.85提高到6.01,提高幅度分别为74.92%和23.92%.  相似文献   

15.
The optimal fermentation medium and conditions for mycelial growth and water-soluble exo-polysaccharides production by Isaria farinosa B05 were investigated. The medium components and fermentation conditions were optimized according to the one at a time method, while the concentration of medium components was determined by the orthogonal matrix method. The results showed that the optimal fermentation medium was as follows: sucrose 3.5% (w/v), peptone 0.5%, yeast extract 0.2%, K(2)HPO(4) 0.1%, and MgSO(4) 0.05%. The suitable fermentation conditions were as follows: initial pH 7.0, temperature 25 degrees C, medium volume 75 mL/250 mL, inoculum volume 5% (v/v), time 5d. In such optimal nutrition and environmental conditions, the maximal mycelial yield was 2.124 g/100 mL after 4 day's fermentation, while maximal water-soluble exo-polysaccharides production reached 2.144 g/L after 5 day's fermentation.  相似文献   

16.
产脂肪酶菌株C7828-5的筛选、鉴定以及产酶条件的优化   总被引:1,自引:0,他引:1  
以花生油为唯一碳源,从海口市各地被油脂污染土样中分离筛选出1株中温碱性脂肪酶菌株C7828-5。形态学、生理生化特征和分子生物学鉴定结果表明,该菌株为铜绿假单胞菌(Pseudomonas aeruginosa)。该菌所产脂肪酶的最适温度为37℃,最适pH为8.0。优化了菌株的产酶条件,最适产酶培养基(g/L)为:蔗糖5、牛肉膏20、(NH_4)_2SO_41、MgSO_4·7H_2O 0.5、CaCl_20.5,聚乙烯醇花生油乳化液120 mL,发酵72 h,获得高达8.08 U/mL的脂肪酶表达量。  相似文献   

17.
脂肪酶可以催化甘油三酯水解成脂肪酸和甘油,已广泛应用在工业领域,而获得产酶微生物是研究的基础。采用油脂平板法筛选出1株脂肪酶产生菌。经16S rRNA序列分析可知,该菌株属于柠檬酸杆菌(Citrobacter werkman and Gillen)。单因素试验对其进行产酶条件优化,优化后产酶条件(g/L):淀粉2.0,KH2PO4 1.0,K2HPO4·3H2O 2.2,(NH4)2SO4 1.0,MgSO4·7H2O 0.1,牛肉膏2.0,橄榄油10.0 mL,pH 7.5,接种量1.5%(v/v),37 ℃培养43 h。获得最大酶活为384 U/mL,是优化前的13倍。可以利用该菌制备脂肪酶。  相似文献   

18.
《Process Biochemistry》2007,42(4):518-526
An alkaline lipase from Burkholderia multivorans was produced within 15 h of growth in a 14 L bioreactor. An overall 12-fold enhanced production (58 U mL−1 and 36 U mg−1 protein) was achieved after medium optimization following the “one-variable-at-a-time” and the statistical approaches. The optimal composition of the lipase production medium was determined to be (% w/v or v/v): KH2PO4 0.1; K2HPO4 0.3; NH4Cl 0.5; MgSO4·7H2O 0.01; yeast extract 0.36; glucose 0.1; olive oil 3.0; CaCl2 0.4 mM; pH 7.0; inoculum density 3% (v/v) and incubation time 36 h in shake flasks. Lipase production was maximally influenced by olive oil/oleic acid as the inducer and yeast extract as the additive nitrogen. Plackett–Burman screening suggested catabolite repression by glucose. Amongst the divalent cations, Ca2+ was a positive signal while Mg2+ was a negative signal for lipase production. RSM predicted that incubation time, inoculum density and oil were required at their higher levels (36 h, 3% (v/v) and 3% (v/v), respectively) while glucose and yeast extract were required at their minimal levels for maximum lipase production in shake flasks. The production conditions were validated in a 14 L bioreactor where the incubation time was reduced to 15 h.  相似文献   

19.
The effect of different culture conditions on thermostable lipase production byBacillus sp. was studied in shake flasks. A maximum enzyme activity of 67–75 nkat/mL was observed in a medium consisting of 0.5% soybean flour and 0.1% stearyl glycerol esters or natural fats. A lipase activity of about 117 nkat/mL was established when the cultivation was carried out in laboratory fermentor at 20% minimal dissolved oxygen level, the enzyme production being increased 1.5 fold compared to that in a flask culture.  相似文献   

20.
Nine isolates of Botryosphaeria spp. were screened for lipases when cultivated on eight different plant seed oils and glycerol, and all produced lipases. Botryosphaeria ribis EC-01 produced highest lipase titres on soybean oil and glycerol, while eight isolates of Botryosphaeria rhodina produced significantly lower enzyme titres. B. ribis EC-01 produced lipase when grown on different fatty acids, surfactants, carbohydrates and triacylglycerols, with highest enzyme titres produced on Triton X-100-emulsified stearic (316.7 U/mL), palmitic (283.5 U/mL) and oleic (247.4 U/mg) acids, and soybean oil (105.6 U/mL), as well as castor oil (191.2 U/mg); an enhancement of 9-fold over soybean oil-grown cultures. Glycerol was also a good substrate for lipase production. The crude lipase extract was optimally active at pH 8.0 and 55 °C, stable between 30 and 55 °C and pH 1–10, and tolerant to 50% (v/v) glycerol, methanol and ethanol. The crude lipase showed affinity for substrates of short, average and long-chain fatty acids (different esters of p-nitrophenol and triacylglycerols). Zymograms developed with 4-methylumbelliferyl-butyrate showed two bands of lipolytic activity at 45 and 15 kDa. This is the first report on the production of lipases by B. ribis grown on these different carbon sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号