首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Adenovirus requires the virus-encoded single-stranded DNA-binding protein (DBP) to replicate its DNA. We have previously shown (M. Tsuji, P. C. van der Vliet, and G. R. Kitchingman, J. Biol. Chem. 266:16178-16187, 1991) that the inability of three temperature-sensitive (ts) mutant DBPs (Ad2+ ND1ts23, Ad2ts111A, and Ad5ts125) to support DNA replication at the nonpermissive temperature was associated with impaired ability to bind to DNA. In this study, we examined these mutant proteins for structural alterations that might be linked to the functional changes. All three ts mutants, but not the wild-type protein, showed different proteolytic cleavage patterns before and after heating at 40 degrees C (the nonpermissive temperature), suggesting a possible conformational change during heating. The Ad2+ND1ts23 and Ad2ts111A DBPs have single amino acid changes located in a putative zinc finger subdomain (positions 282 and 280). In the presence of zinc ions, these ts mutants showed significantly increased resistance to inactivation at 40 degrees C. Surprisingly, however, the stabilizing effect of zinc was also observed with the Ad5ts125DBP, which contains a mutation located more than 100 amino acids from the zinc finger. Other related metal ions, such as cobalt, cadmium, and mercury, did not protect the ts DBPs from inactivation at 40 degrees C. These results indicate that functional changes of the ts DBPs in DNA replication and DNA binding are accompanied by structural alterations in the protein and that zinc and the metal-binding subdomain may play an important role in the structure and/or function of the DBP.  相似文献   

2.
The human adenovirus type 2 (Ad2) mutant Ad2ts111 has previously been shown to contain two mutations which result in a complex phenotype. Ad2ts111 contains a single base change in the early region 1B (E1B) 19,000-molecular-weight (19K) coding region which yields a cyt deg phenotype and another defect which maps to the E2A 72K DNA-binding protein (DBP) coding region that causes a temperature-sensitive DNA replication phenotype. Here we report that the defect in the Ad2ts111 DBP is due to a single G----T transversion that results in a substitution of valine for glycine at amino acid 280. A temperature-independent revertant, Ad2ts111R10, was isolated, which reverts back to glycine at amino acid 280 yet retains the cyt and deg phenotypes caused by the 19K mutation. We physically separated the two mutations of Ad2ts111 by constructing a recombinant virus, Ad2ts111A, which contained a wild-type Ad2 E1B 19K gene and the gly----val mutation in the 72K gene. Ad2ts111A was cyt+ deg+, yet it was still defective for DNA replication at the nonpermissive temperature. The Ad2ts111 DBP mutation is located only two amino acids away from the site of the mutation in Ad2+ND1ts23, a previously sequenced DBP mutant. Biochemical studies of purified Ad2+ND1ts23 DBP showed that this protein was defective for elongation but not initiation of replication in a cell-free replication system consisting of purified Ad polymerase, terminal protein precursor, and nuclear factor I. Ad2+ND1ts23 DBP bound less tightly to single-strand DNA than did Ad2 DBP, as shown by salt gradient elution of purified DBPs from denatured DNA cellulose columns. This decreased binding to DNA was probably due to local conformational changes in the protein at a site that is critical for DNA binding rather than to global changes in protein structure, since both the Ad2+ND1ts23 and Ad2 DBPs showed identical cleavage patterns by the protease thermolysin at various temperatures.  相似文献   

3.
The adenovirus type 2 (Ad2) host range mutant Ad2hr400 grows efficiently in cultured monkey cells at 37 degrees C, but is cold sensitive for plaque formation and late gene expression at 32.5 degrees C. After nitrous acid mutagenesis of an Ad2hr400 stock, cold-resistant variants were selected in CV1 monkey cells at 32.5 degrees C. One such variant, Ad2ts400, was also temperature sensitive (ts) for growth in both CV1 and HeLa cells. Marker rescue analysis has been used to show that the two phenotypes, cold resistant and temperature sensitive, are due to two independent mutations, each of which resides in a different segment of the gene encoding the 72-kilodalton DNA binding protein (DBP). The cold-resistant mutation (map coordinates 63.6 to 66) is a host range alteration that enhances the ability of the virus to express late genes and grow productively in monkey cells at 32.5 degrees C. The temperature-sensitive mutation is in the same complementation group and maps to the same segment of the DBP gene (map coordinates 61.3 to 63.6) as the well-characterized DBP mutant Ad5ts125. Like Ad5ts125, Ad2ts400 is unable to replicate viral DNA or to properly shut off early mRNA expression at the nonpermissive temperature. Two sets of experiments with Ad2ts400 suggest that DBP contains separate functional domains. First, when CV1 cells are coinfected at the nonpermissive temperature with Ad2 plus Ad2ts400 (Ad2 allows DNA replication and entry into, but not completion of, the late phase of infection), normal late gene expression and productive growth occur. Second, temperature shift experiments show that, although DNA replication is severely restricted at the nonpermissive temperature in ts400-infected monkey cells, late gene expression occurs normally. These results indicate that the DBP activity required for normal late gene expression in monkey cells is functional even when the DBP's DNA replication activity is disrupted.  相似文献   

4.
The adenovirus single-stranded DNA (ssDNA)-binding protein (DBP) is necessary for the elongation step in viral DNA replication. In an attempt to characterize the putative ssDNA-binding domain of the DBP, we purified and characterized the Ad2ts111A DBP, which contains a glycine-to-valine substitution at amino acid 280. This mutation is adjacent to that in the previously studied Ad2+ND1ts23. Ad2+ND1ts23 exhibits a temperature-sensitive defect in DNA replication, and its DBP has previously been shown to bind ssDNA with reduced affinity. Ad2ts111A DBP, like Ad2+ND1ts23, does not support adenovirus DNA replication in vitro at elevated temperatures. However, the Ad2ts111A DBP binds ssDNA more tightly than does Ad2+ND1ts23 and is not temperature sensitive in this function. To determine the nucleic acid-binding properties of DBP, we applied spectrofluorometric techniques, which had not been used previously to study adenovirus DBP. Using the homopolynucleotide poly(1,N6)-ethenoadenylic acid (poly(r epsilon A], we have determined that the binding site size is approximately 16 nucleotides. In 20 mM NaCl, the Ad2wt, Ad2ts111A, and Ad2+ND1ts23 DBP proteins all bound stoichiometrically to poly(r epsilon A) with overall apparent affinities above 108 M-1. Based on titrations carried out at higher salt concentrations, however, the stability of these complexes did appear to increase in the order Ad2+ND1ts23 less than Ad2ts111A less than Ad2wt. By these techniques, we have confirmed also that the DBP of another temperature-sensitive mutant, H5ts107, like the Ad2ts111A DBP, retains its ability to bind ssDNA even at a restrictive temperature utilizing the salt concentration compatible with adenovirus DNA replication in vitro. The H5ts107 DBP, which contains an amino acid substitution at position 413, is defective for in vitro replication at nonpermissive temperature but is not temperature sensitive for binding to ssDNA. In summary, our results indicate that the replication defects of the Ad2ts111A are similar to those of H5ts107 and cannot be attributed to defective, nonspecific ssDNA binding by the DBP. It appears that ssDNA binding by itself is not sufficient to account for the role of DBP in adenovirus DNA replication.  相似文献   

5.
The requirement for the adenovirus (Ad) single-stranded DNA binding protein (DBP) in the expression of adeno-associated virus (AAV) proteins was studied by specific immunofluorescent staining of infected cells and in vitro translation of RNA from infected cells. The Ad5 mutant ts125, which carries a mutation in the DBP gene, helped AAV as efficiently as the Ad5 wild type (WT) did at both the permissive (32 degrees C) and nonpermissive (40.5 degrees C) temperatures in HeLa and KB cells. Furthermore, at 40.5 degrees C ts125 was as efficient as Ad5WT was in inducing the expression of AAV proteins in a line of Detroit 6 cells which is latently infected with AAV. However, little if any AAV protein was synthesized when coinfections were carried out with Ad5WT in CV-C cells, a monkey cell line that is highly restrictive for human Ad replication unless the cells are also infected with simian virus 40. On the other hand, AAV protein was efficiently produced in CV-C cells in coinfections with the Ad5 mutant hr404, whose growth is unrestricted in CV-C cells and whose mutation also maps in the DBP gene. Finally, preparations of cytoplasmic RNA extracted from CV-C cells infected with AAV and Ad5WT or from CV-C cells infected with AAV, Ad5WT, and simian virus 40 were each capable of directing the in vitro synthesis of abundant amounts of AAV proteins in a rabbit reticulocyte lysate system. These results indicate that the abnormal DBP of ts125 still retains its helper function for AAV replication, but that the molecular feature of the DBP which relates to the monkey cell host range restriction of Ad's may also account for the observed block to AAV protein translation in CV-C cells.  相似文献   

6.
The adenovirus-encoded single-stranded DNA-binding protein (DBP) functions in viral DNA replication and several aspects of RNA metabolism. Previous studies (G. A. M. Neale and G. R. Kitchingman, J. Biol. Chem. 264:3153-3159, 1989) have defined three highly conserved regions in the carboxy-terminal domain of the protein (amino acids 178 to 186, 322 to 330, and 464 to 475) that may be involved in the binding of the protein to single-stranded DNA. We examined the role of conserved region 3 (464 to 475) by constructing nine classes of point mutants with from one to four amino acid changes. The point mutants were tested for their ability to assist adeno-associated virus DNA replication. All nine differed from wild-type DBP; seven were essentially nonfunctional, whereas two had 55 and 145%, respectively, of the wild-type DBP helper activity. Three of the mutants were found to be temperature sensitive, with significantly greater helper activity at 33 degrees C than at 37 degrees C. All nine mutants produced essentially wild-type levels of protein. One monoclonal antibody against the DBP, termed 2/4, did not immunoprecipitate the mutant DBPs as well as wild-type DBP, indicating either that the antibody recognized sequences around CR3 or that the conformation of the protein around the epitope recognized by 2/4 had changed. Two of the three temperature-sensitive DBP mutants bound to single-stranded DNA-cellulose with the same affinity as wild-type DBP at 4 degrees C; the remaining mutants all showed reduced affinity. These results demonstrated that many of the residues within conserved region 3 of the DBP are important for interaction of the protein with nucleic acid.  相似文献   

7.
Biochemical analysis of adenovirus type 5 DNA-binding protein mutants   总被引:5,自引:0,他引:5  
We previously reported the isolation and functional characterization of seven adenovirus type 5 (Ad5) DNA-binding protein (DBP) point mutants (Quinn, C. O., and Kitchingman, G. R. (1986) J. Virol. 60, 653-661). Six of the seven mutants were defective in their ability to help adeno-associated virus replicate its DNA. To determine the level at which the mutations affect this function of the DBP, we analyzed several properties of the mutant proteins. All are transported to the nucleus and are post-translationally phosphorylated to the same extent. The half-lives of the proteins, measured by pulse-chase, were nearly identical to that of the wild-type DBP. The mutant DBPs were examined for their ability to bind to single-stranded DNA (ssDNA). Mutations in amino acids 322, 323, and 470 lowered the affinity of the DBP for ssDNA, while a mutation in amino acid 181 had no affect. Combinations of mutations in amino acid 470 with either 322 or 323 did not further lower the affinity of the protein for ssDNA. These data indicate that the functional defect for adeno-associated virus helper activity of the six mutants is due mainly, if not totally, to their reduced affinity for single-stranded DNA. These experiments have thus identified a functional domain of the adenovirus type 5 DBP potentially involved in DNA-protein interactions. Comparisons with temperature-sensitive DBP mutants indicate that the conserved region mutants are functionally distinct and represent a new class of DBP mutants.  相似文献   

8.
The adenovirus DNA-binding protein (DBP) is a multifunctional protein that is essential for viral DNA replication. DBP binds both single-stranded and double-stranded DNA as well as RNA in a sequence-independent manner. Previous studies showed that DBP does not promote melting of duplex poly(dA-dT) in contrast to prokaryotic single-strand-binding proteins. However, here we show that DBP can displace oligonucleotides annealed to single-stranded M13 DNA. Depending upon the DBP concentration, strands of at least 200 nucleotides can be unwound. Although unwinding of short (17-bp), fully duplex DNA is facilitated by DBP, unwinding of larger (28-bp) duplexes is only possible if single-stranded protruding ends are present. These protruding ends must be at least 4 nucleotides long for optimal unwinding, and both 5' and 3' single-stranded overhangs suffice. DBP-promoted strand displacement is sensitive to MgCl2 and NaCl and not dependent upon ATP. Our results suggest that DBP, through formation of a protein chain on the displaced strand, may destabilize duplex DNA ahead of the replication fork, thereby assisting in strand displacement during replication.  相似文献   

9.
10.
In contrast to other replication systems, adenovirus DNA replication does not require a DNA helicase to unwind the double-stranded template. Elongation is dependent on the adenovirus DNA-binding protein (DBP) which has helix-destabilizing properties. DBP binds cooperatively to single-stranded DNA (ssDNA) in a non-sequence-specific manner. The crystal structure of DBP shows that the protein has a C-terminal extension that hooks on to an adjacent monomer which results in the formation of long protein chains. We show that deletion of this C-terminal arm results in a monomeric protein. The mutant binds with a greatly reduced affinity to ssDNA. The deletion mutant still stimulates initiation of DNA replication like the intact DBP. This shows that a high affinity of DBP for ssDNA is not required for initiation. On a single-stranded template, elongation is also observed in the absence of DBP. Addition of DBP or the deletion mutant has no effect on elongation, although both proteins stimulate initiation on this template. Strand displacement synthesis on a double-stranded template is only observed in the presence of DBP. The mutant, however, does not support elongation on a double-stranded template. The unwinding activity of the mutant is highly reduced compared with intact DBP. These data suggest that protein chain formation by DBP and high affinity binding to the displaced strand drive the ATP-independent unwinding of the template during adenovirus DNA replication.  相似文献   

11.
The adenovirus (Ad) DNA-binding protein (DBP) is essential for the elongation phase of Ad DNA replication by unwinding the template in an ATP-independent fashion, employing its capacity to form multimers. DBP also enhances the rate of initiation, with the highest levels obtained at low concentrations of Ad DNA polymerase (Pol). Here, we show that stimulation of initiation depends on the template conformation. Maximal stimulation, up to 15-fold, is observed on double-stranded or viral TP-containing origins. The stimulation is reduced on partially single-stranded origins and DBP does not enhance initiation any more once the origin is completely unwound. This suggests a role for DBP in origin unwinding that is comparable to its unwinding capacity during elongation. However, mutant DBP proteins defective in unwinding and elongation can still enhance initiation on ds templates. DBP also stimulates the binding of nuclear factor I (NFI) to the origin and lowers the K(m) for coupling of the first nucleotide to the precursor terminal protein by Pol. Mobility shift experiments reveal that DBP stimulates the binding of Pol on double-stranded origin and nonorigin DNA but not on single-stranded DNA. This effect is specific for DBP and is also seen with other DNA Pols. Our results suggest that, rather than by origin unwinding, DBP enhances initiation by modulating the origin conformation such that DNA Pol can bind more efficiently.  相似文献   

12.
The adenovirus type 7 (Ad7) single-stranded DNA-binding protein (DBP) structural gene has been sequenced and located between 66.7 and 62.3 map units. This region codes for a protein that contains 517 amino acid residues with a calculated molecular mass of 58,240 daltons. We compared the Ad7 amino acid sequence with those reported for the Ad5 (Kruijer, W., van Schaik, F.M.A., and Sussenbach, J.S. (1981) Nucleic Acids Res. 9, 4439-4457) and Ad12 (Kruijer, W., van Schaik, F.M.A., Speijer, J.G., and Sussenbach, J.S. (1983) Virology 128, 140-153) DNA-binding proteins. A greater amount of amino acid sequence homology was found in the carboxyl-terminal DNA-binding domain of the molecule. This homology is 61% between Ad7 and Ad5 and 49% when Ad12 was included in the comparison. The NH2-terminal domain of DBP retained a 49% homology between Ad7 and Ad5 and a 23% homology for all three serotypes. The greatest difference between the Ad7 and Ad5 DBPs is the absence, in the Ad7 protein, of 12 amino acids located between the two functional domains in the Ad5 protein (amino acids 151-162). In addition, three regions of high amino acid conservation between Ad5, Ad7, and Ad12 consisting of 9 (178-186), 9 (322-330), and 12 (464-475) consecutive amino acids (numbers refer to Ad5) in the DNA-binding portion of the molecule were revealed. These three regions contain a centrally located basic amino acid (183, 326, and 470) as well as an aromatic amino acid residue (181, 324, and 469). Since basic and aromatic amino acids have been implicated in other single-stranded DNA-binding protein/DNA interactions (Anderson, R.A., Nakashima, V., and Coleman, J.E. (1975) Biochemistry 14,907-917; Kowalczykowski, S.C., Lonberg, N., Newport, J.W., and von Hippel, P.H. (1981). J. Mol. Biol. 145, 75-104), these three conserved regions may represent DBP/DNA contact points.  相似文献   

13.
14.
High-titer monospecific antiserum against highly purified adenovirus 2 (Ad2) single-stranded DNA binding protein (DBP) was used to study, by indirect immunofluorescence (IF), the synthesis of DBP in Ad2-infected human cells and adenovirus-transformed rat, hamster, and human cell lines. In infected cells the synthesis of DBP was first detected in the cytoplasm at 2 to 4 h postinfection and reached a maximum intensity at 6 h postinfection. At this time DBP began to accumulate in the nucleus, where it reached maximum intensity at about 14 h postinfection. The cytoplasmic IF was diffuse, whereas nuclear IF appeared as dots that coalesced into large globules as infection progressed. In cells treated with 1-beta-d-arabinofuranosylcytosine to inhibit viral DNA synthesis, strong nuclear IF was observed in the form of dots, but the large fluorescent globules were not observed. The Ad2 (oncogenic group C) anti-DBP serum reacted very strongly by IF with Ad5 (group C)-infected, to a lesser extent with Ad7 and Ad11 (group B)-infected, and weakly with Ad12 and Ad18 (group A)-infected KB cells (treated with 1-beta-d-arabinofuranosylcytosine). These results may indicate that Ad2 DBP is closely related immunologically to DBPs induced early after infection by adenovirus serotypes in oncogenic group C, moderately related to DBPs of serotypes in oncogenic group B, and perhaps distantly related to DBPs of serotypes in oncogenic group A. The following adenovirus-transformed cell lines were examined for DBP synthesis by IF with the Ad2 anti-DBP serum: six rat cell lines (T2C4, F17, 8662, 8638, 8617, and F161) transformed by Ad2 virus, three hamster cell lines transformed by Ad2 virus (Ad2HT1) and Ad2-simian virus 40 hybrid virus (ND1HK1 and ND4HK4), and one rat (5RK) and one human (293-31) cell line transformed by transfection with Ad5 DNA. T2C4 and 8662 appeared weakly positive, whereas Ad2HT1 and ND4HK1 were strongly positive. The other transformed cell lines did not produce DBP detectable by IF. Thus, some but not all transformed cell lines produce DBP, which indicates that DBP is not required for maintenance of cell transformation and that transformed cells can express "nontransforming" viral genes as protein.  相似文献   

15.
Studies have been done to characterize further H5ts125, an adenovirus type 5 conditionally lethal, temperature-sensitive (ts) mutant defective in initiation of DNA synthesis and to investigate whether the single-strand-specific DNA-binding (72,000 molecular weight) protein is coded by the mutated viral gene. When H5ts125-infected cells were labeled with [35S]methionine at 32 degrees C and then incubated without isotope at 39.5 degrees C, the mutant's nonpermissive temperature, the 72,000 molecular weight polypeptide was progressively degraded. Immunofluorescence examination of cells infected with wild-type virus, H5ts125, and H5ts149 (a second, unique DNA-minus mutant) showed that immunologically reactive DNA-binding protein was barely detectable in H5ts125-infected cells at 39.5 degrees C, whereas this protein was present in wild-type- and H5TS149-infected cells, that the protein made at 32 degrees C in H5ts125-infected cells lost its ability to bind specific DNA-binding protein antibody when the infected cells were shifted to 39.5 degrees C, and that if H5ts125-infected cells were shifted from the restrictive temperature to 32 degrees C, even in the presence of cycloheximide to stop protein synthesis, immunologically reactive DNA-binding protein reappeared.  相似文献   

16.
Human adenovirus fails to multiply efficiently in monkey cells owing to a block to late viral gene expression. Ad2hr400 through Ad2hr403 are a set of host range (hr) mutants which were selected for their ability to readily grow in these cells at 37 degrees C. The mutations responsible for this extended host range have previously been mapped to the 5' portion of the gene encoding the 72-kilodalton DNA-binding protein (DBP). DNA sequence analyses indicate that all four hr mutants contain the same alteration at coding triplet 130, which changes a histidine codon to a tyrosine codon. These results extend those of Anderson et al. (J. Virol. 48:31-39, 1983), which suggested that only this change in the DBP amino acid sequence can expand adenovirus host range to monkey cells. The hr phenotype does not appear to require phosphorylation of this tyrosine residue, since no phosphotyrosine was detected in DBP isolated from Ad2hr400-infected monkey cells. The hr mutants Ad2hr400 through Ad2hr403, however, are cold sensitive for growth in monkey cells. The mutant Ad2ts400, which was derived from Ad2hr400, represents a second class of hr mutants which can grow efficiently in monkey cells at 32.5 degrees C. The cold-resistant hr mutation of Ad2ts400 has previously been mapped to the 5' region of the DBP gene (map units 63.6 through 66). DNA sequence analysis of this region shows that this mutant contains the original hr alteration at coding triplet 130 as well as a second alteration at coding triplet 148, which changes an alanine codon to a valine codon. We suspect that the alterations at amino acids 130 and 148 change the structure of the amino-terminal domain of the DBP, allowing it to better interact with monkey cell components required for late viral gene expression. Ad2ts400 also contains a temperature-sensitive mutation which has previously been mapped to the 3' portion of the DBP gene (map units 61.3 through 63.6). Sequence analysis of this region indicates that the DBP coding triplet 413 has been altered. This change from a serine codon to a proline codon is the same alteration reported in the previously sequenced DBP mutants Ad5ts125 (W. Kruijer et al., Nucleic Acids Res. 9:4439-4457, 1981) and Ad5ts107 (W. Kruijer et al., Virology 124:425-433, 1983). Thus it appears that only a very limited number of changes in either the 5' or the 3' portion of the DBP gene can give rise to the hr or temperature-sensitive phenotypes, respectively.  相似文献   

17.
The adenovirus DNA-binding protein (DBP) binds cooperatively to single-stranded DNA (ssDNA) and stimulates both initiation and elongation of DNA replication. DBP consists of a globular core domain and a C-terminal arm that hooks onto a neighboring DBP molecule to form a stable protein chain with the DNA bound to the internal surface of the chain. This multimerization is the driving force for ATP-independent DNA unwinding by DBP during elongation. As shown by x-ray diffraction of different crystal forms of the C-terminal domain, the C-terminal arm can adopt different conformations, leading to flexibility in the protein chain. This flexibility is a function of the hinge region, the part of the protein joining the C-terminal arm to the protein core. To investigate the function of the flexibility, proline residues were introduced in the hinge region, and the proteins were purified to homogeneity after baculovirus expression. The mutant proteins were still able to bind ss- and double-stranded DNA with approximately the same affinity as wild type, and the binding to ssDNA was found to be cooperative. All mutant proteins were able to stimulate the initiation of DNA replication to near wild type levels. However, the proline mutants could not support elongation of DNA replication efficiently. Even the elongation up to 26 nucleotides was severely impaired. This defect was also seen when DNA unwinding was studied. Binding studies of DBP to homo-oligonucleotides showed an inability of the proline mutants to bind to poly(dA)(40), indicating an inability to adapt to specific DNA conformations. Our data suggest that the flexibility of the protein chain formed by DBP is important in binding and unwinding of DNA during adenovirus DNA replication. A model explaining the need for flexibility of the C-terminal arm is proposed.  相似文献   

18.
The major herpes simplex virus DNA-binding protein, ICP8, was purified from cells infected with the herpes simplex virus type 1 temperature-sensitive strain tsHA1. tsHA1 ICP8 bound single-stranded DNA in filter binding assays carried out at room temperature and exhibited nonrandom binding to single-stranded bacteriophage fd DNA circles as determined by electron microscopy. The filter binding assay results and the apparent nucleotide spacing of the DNA complexed with protein were identical, within experimental error, to those observed with wild-type ICP8. Thermal inactivation assays, however, showed that the DNA-binding activity of tsHA1 ICP8 was 50% inactivated at approximately 39 degrees C as compared with 45 degrees C for the wild-type protein. Both wild-type and tsHA1 ICP8 were capable of stimulating viral DNA polymerase activity at permissive temperatures. The stimulatory effect of both proteins was lost at 39 degrees C.  相似文献   

19.
A 34,000 dalton DNA-binding protein (DBP) has been purified from human placenta. The purified protein possesses endonuclease activities capable of cleaving plasmid pBR 322 and chromosomal DNAs from E. coli. Maximum endonuclease activity was observed in the pH range of 6-9 and at 30 degrees C. The nuclease activity of the DBP was completely lost at 50 degrees C. Nitrocellulose filter binding assays indicate preferential binding of the DBP to ss DNA. The protein did not bind to apurinic DNA and UV-irradiated ds DNA. Consistent with the lack of binding of the DBP to apurinic DNA, this substrate was not cleaved by the DBP. However, native and UV-irradiated E. coli DNAs which showed poor binding were also cleaved by the DBP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号