首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 200 毫秒
1.
NK1.1+ T cells in the mouse thymus and bone marrow were compared because some marrow NK1.1+ T cells have been reported to be extrathymically derived. Almost all NK1.1+ T cells in the thymus were depleted in the CD1-/-, beta2m-/-, and Jalpha281-/- mice as compared with wild-type mice. CD8+NK1.1+ T cells were not clearly detected, even in the wild-type mice. In bone marrow from the wild-type mice, CD8+NK1.1+ T cells were easily detected, about twice as numerous as CD4+NK1.1+ T cells, and were similar in number to CD4-CD8-NK1.1+ T cells. All three marrow NK1.1+ T cell subsets were reduced about 4-fold in CD1-/- mice. No reduction was observed in CD8+NK1.1+ T cells in the bone marrow of Jalpha281-/- mice, but marrow CD8+NK1.1+ T cells were markedly depleted in beta2m-/- mice. All NK1.1+ T cell subsets in the marrow of wild-type mice produced high levels of IFN-gamma, IL-4, and IL-10. Although the numbers of marrow CD4-CD8-NK1.1+ T cells in beta2m-/- and Jalpha281-/- mice were similar to those in wild-type mice, these cells had a Th1-like pattern (high IFN-gamma, and low IL-4 and IL-10). In conclusion, the large majority of NK1.1+ T cells in the bone marrow are CD1 dependent. Marrow NK1.1+ T cells include CD8+, Valpha14-Jalpha281-, and beta2m-independent subsets that are not clearly detected in the thymus.  相似文献   

2.
NKT cells express both NK cell-associated markers and TCR. Classically, these NK1.1+TCRalphabeta+ cells have been described as being either CD4+CD8- or CD4-CD8-. Most NKT cells interact with the nonclassical MHC class I molecule CD1 through a largely invariant Valpha14-Jalpha281 TCR chain in conjunction with either a Vbeta2, -7, or -8 TCR chain. In the present study, we describe the presence of significant numbers of NK1.1+TCRalphabeta+ cells within lymphokine-activated killer cell cultures from wild-type C57BL/6, CD1d1-/-, and Jalpha281-/- mice that lack classical NKT cells. Unlike classical NKT cells, 50-60% of these NK1.1+TCRalphabeta+ cells express CD8 and have a diverse TCR Vbeta repertoire. Purified NK1.1-CD8alpha+ T cells from the spleens of B6 mice, upon stimulation with IL-2, IL-4, or IL-15 in vitro, rapidly acquire surface expression of NK1.1. Many NK1.1+CD8+ T cells had also acquired expression of Ly-49 receptors and other NK cell-associated molecules. The acquisition of NK1.1 expression on CD8+ T cells was a particular property of the IL-2Rbeta+ subpopulation of the CD8+ T cells. Efficient NK1.1 expression on CD8+ T cells required Lck but not Fyn. The induction of NK1.1 on CD8+ T cells was not just an in vitro phenomenon as we observed a 5-fold increase of NK1.1+CD8+ T cells in the lungs of influenza virus-infected mice. These data suggest that CD8+ T cells can acquire NK1.1 and other NK cell-associated molecules upon appropriate stimulation in vitro and in vivo.  相似文献   

3.
A major group of murine NK T (NKT) cells express an invariant Valpha14Jalpha18 TCR alpha-chain specific for glycolipid Ags presented by CD1d. Murine Valpha14Jalpha18(+) account for 30-50% of hepatic T cells and have potent antitumor activities. We have enumerated and characterized their human counterparts, Valpha24Vbeta11(+) NKT cells, freshly isolated from histologically normal and tumor-bearing livers. In contrast to mice, human NKT cells are found in small numbers in healthy liver (0.5% of CD3(+) cells) and blood (0.02%). In contrast to those in blood, most hepatic Valpha24(+) NKT cells express the Vbeta11 chain. They include CD4(+), CD8(+), and CD4(-)CD8(-) cells, and many express the NK cell markers CD56, CD161, and/or CD69. Importantly, human hepatic Valpha24(+) T cells are potent producers of IFN-gamma and TNF-alpha, but not IL-2 or IL-4, when stimulated pharmacologically or with the NKT cell ligand, alpha-galactosylceramide. Valpha24(+)Vbeta11(+) cell numbers are reduced in tumor-bearing compared with healthy liver (0.1 vs 0.5%; p < 0.04). However, hepatic cells from cancer patients and healthy donors release similar amounts of IFN-gamma in response to alpha-galactosylceramide. These data indicate that hepatic NKT cell repertoires are phenotypically and functionally distinct in humans and mice. Depletions of hepatic NKT cell subpopulations may underlie the susceptibility to metastatic liver disease.  相似文献   

4.
As a consequence of the peptide specificity of intrathymic positive selection, mice transgenic for a rearranged TCR beta-chain derived from conventional alphabeta T lymphocytes frequently carry mature T cells with significant skewing in the repertoire of the companion alpha-chain. To assess the generality of such an influence, we generated transgenic (Tg) mice expressing a beta-chain derived from nonclassical, NK1.1+ alphabeta T cells, the thymus-derived, CD1. 1-specific DN32H6 T cell hybridoma. Results of the sequence analysis of genomic DNA from developing DN32H6 beta Tg thymocytes revealed that the frequency of the parental alpha-chain sequence, in this instance the Valpha14-Jalpha281 canonical alpha-chain, is specifically and in a CD1.1-dependent manner, increased in the postselection thymocyte population. In accordance, we found phenotypic and functional evidence for an increased frequency of thymic, but interestingly not peripheral, NK1.1+ alphabeta T cells in DN32H6 beta Tg mice, possibly indicating a thymic determinant-dependent maintenance. Thus, in vivo expression of the rearranged TCR beta-chain from a thymus-derived NK1.1+ Valpha14+ T cell hybridoma promotes positive selection of thymic NK1.1+ alphabeta T cells. These observations indicate that the strong influence of productive beta-chain rearrangements on the TCR sequence and specificity of developing thymocytes, which operates through positive selection on self-determinants, applies to both classical and nonclassical alphabeta T cells and therefore represents a general phenomenon in intrathymic alphabeta T lymphocyte development.  相似文献   

5.
The Src family kinase Fyn is expressed in T cells and has been shown to phosphorylate proteins involved in TCR signaling, cytoskeletal reorganization, and IL-4 production. Fyn-deficient mice have greatly decreased numbers of NKT cells and have thymocytes and T cells with compromised responses following Ab crosslinking of their TCRs. Herein we have addressed the role of Fyn in peptide/MHC class II-induced CD4(+) T cell responses. In Fyn-deficient mice, CD4(+) T cells expressing the DO11.10 TCR transgene developed normally, and the number and phenotype of naive and regulatory DO11.10(+)CD4(+) T cells in the periphery were comparable with their wild-type counterparts. Conjugation with chicken OVA peptide 323-339-loaded APCs, and the subsequent proliferation in vitro or in vivo of DO11.10(+) Fyn-deficient CD4(+) T cells, was virtually indistinguishable from the response of DO11.10(+) wild-type CD4(+) T cells. Proliferation of Fyn-deficient T cells was not more dependent on costimulation through CD28. Additionally, we have found that differentiation, in vitro or in vivo, of transgenic CD4(+) Fyn-deficient T cells into IL-4-secreting effector cells was unimpaired, and under certain conditions DO11.10(+) Fyn-deficient CD4(+) T cells were more potent cytokine-producing cells than DO11.10(+) wild-type CD4(+) T cells. These data demonstrate that ablation of Fyn expression does not alter most Ag-driven CD4(+) T cell responses, with the exception of cytokine production, which under some circumstances is enhanced in Fyn-deficient CD4(+) T cells.  相似文献   

6.
A Y chromosome-linked factor impairs NK T development   总被引:1,自引:0,他引:1  
Valpha14 invariant (Valpha14i) NK T cell development is unique from mainstream T cell selection, and the polygenic factors that influence NK T cell ontogeny are still unclear. In this study, we report the absence of Valpha14i NK T cells in B6.IFN-alphabetaR1-/- male mice, whereas both the conventional T and NK cell populations are relatively unaffected. The lack of Valpha14i NK T cells in the B6.IFN-alphabetaR1-/- males is not due to an insufficient level of CD1d1 or a defect in CD1d1-Ag presentation, but it is intrinsic to the male Valpha14i NK T cells. This surprising defect displays >or=99% penetrance in the male population, whereas female mice remain unaffected, indicating the deficiency is not X linked. Analysis of the Valpha14i NK T cell compartment in B6.Tyk2-/-, B6.STAT1-/-, 129.IFN-alphabetaR1-/-, and B6.IFN-alphabetaR1-/+ mice demonstrate that the deficiency is linked to the Y chromosome, but independent of IFN-alphabeta. This is the first study demonstrating that Y-linked genes can exclusively impact Valpha14i NK T development and further highlight the unique ontogeny of these innate T cells.  相似文献   

7.
Immunity to the murine cytomegalovirus (MCMV) is critically dependent on the innate response for initial containment of viral replication, resolution of active infection, and proper induction of the adaptive phase of the anti-viral response. In contrast to NK cells, the Valpha14 invariant natural killer T cell response to MCMV has not been examined. We found that Valpha14i NK T cells become activated and produce significant levels of IFN-gamma, but do not proliferate or produce IL-4 following MCMV infection. In vivo treatment with an anti-CD1d mAb and adoptive transfer of Valpha14i NK T cells into MCMV-infected CD1d(-/-) mice demonstrate that CD1d is dispensable for Valpha14i NK T cell activation. In contrast, both IFN-alpha/beta and IL-12 are required for optimal activation. Valpha14i NK T cell-derived IFN-gamma is partially dependent on IFN-alpha/beta but highly dependent on IL-12. Valpha14i NK T cells contribute to the immune response to MCMV and amplify NK cell-derived IFN-gamma. Importantly, mortality is increased in CD1d(-/-) mice in response to high dose MCMV infection when compared to heterozygote littermate controls. Collectively, these findings illustrate the plasticity of Valpha14i NK T cells that act as effector T cells during bacterial infection, but have NK cell-like behavior during the innate immune response to MCMV infection.  相似文献   

8.
The development of lymphoid organs requires membrane-bound lymphotoxin (LT), a heterotrimer containing LTalpha and LTbeta, but the effects of LT on T cell function have not been characterized extensively. Upon TCR cross-linking in vitro, splenocytes from both LTalpha-/- and LTbeta-/- mice failed to produce IL-4 and IL-10 due to a reduction in NK T cells. Concordantly, LTalpha-/- and LTbeta-/- mice did not respond to the lipoglycan alpha-galactosylceramide, which is presented by mouse CD1 to Valpha14+ NK T cells. Interestingly, both populations of NK T cells, including those that are mouse CD1 dependent and alpha-galactosylceramide reactive and those that are not, were affected by disruption of the LTalpha and LTbeta genes. NK T cells were not affected, however, in transgenic mice in which LT signaling is blocked, beginning on day 3 after birth, by expression of a soluble decoy LTbeta receptor. This suggests that membrane-bound LT is critical for NK T cells early in ontogeny, but not for the homeostasis of mature cells.  相似文献   

9.
10.
NK T (NKT) cells expressing the invariant Valpha14-Jalpha18 TCR alpha-chain recognize glycolipid Ags such as alpha-galactosylceramide (alpha-GalCer) presented by the MHC class I-like molecule CD1d. Upon activation by alpha-GalCer, invariant NKT cells secrete multiple cytokines and confer protection in certain immune-mediated disorders. Here we have investigated the role of NKT cells in the development of inflammatory dermatitis in MRL-lpr/lpr mice, which shares features with lupus in humans. Our results show that the numbers Sand functions of NKT (TCRbeta(+)CD1d/alpha-GalCer tetramer(+)) cells, particularly of the NK1.1(-) subset, are reduced in MRL-lpr/lpr mice compared with MRL-fas/fas and/or nonautoimmune C3H/Hej and BALB/c mice. Repeated treatments with alpha-GalCer result in the expansion of NKT cells and alleviate dermatitis in MRL-lpr/lpr mice. Our results indicate that NKT cell deficiency can be corrected by repeated alpha-GalCer treatment and that NKT cells may play a protective role in inflammatory dermatitis of lupus-prone mice.  相似文献   

11.
Mouse CD1d-restricted Valpha14 NKT cells are a unique subset of lymphocytes, which play important roles in immune regulation, tumor surveillance and host defense against pathogens. DOCK2, a mammalian homolog of Caenorhabditis elegans CED-5 and Drosophila melanogaster myoblast city, is critical for lymphocyte migration and regulates T cell responsiveness through immunological synapse formation, yet its role in Valpha14 NKT cells remains unknown. We found that DOCK2 deficiency causes marked reduction of Valpha14 NKT cells in the thymus, liver, and spleen. When alpha-galactosylceramide (alpha-GalCer), a ligand for Valpha14 NKT cells, was administrated, cytokine production was scarcely detected in DOCK2-deficient mice, suggesting that DOCK2 deficiency primarily affects generation of Valpha14 NKT cells. Supporting this idea, staining with CD1d/alpha-GalCer tetramers revealed that CD44- NK1.1- Valpha14 NKT cell precursors are severely reduced in the thymuses of DOCK2-deficient mice. In addition, studies using bone marrow chimeras indicated that development of Valpha14 NKT cells requires DOCK2 expression in T cell precursors, but not in APCs. These results indicate that DOCK2 is required for positive selection of Valpha14 NKT cells in a cell-autonomous manner, thereby suggesting that avidity-based selection also governs development of this unique subset of lymphocytes in the thymus.  相似文献   

12.
B cells are important in mucosal microbial homeostasis through their well-known role in secretory IgA production and their emerging role in mucosal immunoregulation. Several specialized intraintestinal B cell compartments have been characterized, but the nature of conventional B cells in the lamina propria is poorly understood. In this study, we identify a B cell population predominantly composed of surface IgM(+) IgD(+) cells residing in villi of the small intestine and superficial lamina propria of the large intestine, but distinct from the intraepithelial compartment or organized intestinal lymphoid structures. Small intestinal (villous) B cells are diminished in genotypes that alter the strength of BCR signaling (Bruton tyrosine kinase(xid), Galphai2(-/-)), and in mice lacking cognate BCR specificity. They are not dependent on enteric microbial sensing, because they are abundant in mice that are germfree or genetically deficient in TLR signaling. However, villous B cells are reduced in the absence of invariant NK T cells (Jalpha18(-/-) or CD1d(-/-) mice). These findings define a distinct population of conventional B cells in small intestinal villi, and suggest an immunologic link between CD1-restricted invariant NK T cells and this B cell population.  相似文献   

13.
14.
Mice lacking IFN-regulatory factor (IRF)-1 have reduced numbers of mature CD8+ T cells within the thymus and peripheral lymphoid organs, suggesting a critical role of IRF-1 in CD8(+) T cell differentiation. Here we show that endogenous Bcl-2 expression is substantially reduced in IRF-1(-/-)CD8+ thymocytes and that introduction of a human Bcl-2 transgene driven by Emu or lck promoter in IRF-1(-/-) mice restores the CD8(+) T cell development. Restored CD8+ T cells are functionally mature in terms of allogeneic MLR and cytokine production. In contrast to thymus-derived CD8+ T cells, other lymphocyte subsets including NK, NK T, and TCR-gammadelta(+) intestinal intraepithelial lymphocytes, which are also impaired in IRF-1(-/-) mice, are not rescued by expressing human Bcl-2. Our results indicate that IRF-1 differentially regulates the development of these lymphocyte subsets and that survival signals involving Bcl-2 are critical for the development of thymus-dependent CD8+ T cells.  相似文献   

15.
CD1d-dependent accumulation of alphabeta T cells bearing a canonical Valpha14Jalpha281 alpha-chain (Valpha14+ T cells) is thought to model positive selection of lipid-specific T cells, based on their ability to recognize CD1d-presented self glycolipid(s). However, it has been difficult to demonstrate self ligand specificity in this system, as most Valpha14+ T cells do not exhibit significant autoreactivity despite high reactivity to alpha-galactosylceramide presented by CD1d (alpha-GalCer/CD1d). To assess the role of TCRbeta chain in determining the alpha-GalCer/CD1d vs autoreactive specificity of Valpha14+ T cells, we conducted TCRalpha or TCRbeta chain transduction experiments. In this study we demonstrate, by combining different TCRbeta chains with the Valpha14 alpha-chain in retrovirally transduced T cell lines, that the Valpha14 alpha-chain plays a primary role, necessary but not sufficient for imparting alpha-GalCer/CD1d recognition. beta-Chain usage alone is not the sole factor that controls the extent of autoreactivity in Valpha14+ T cells, since transduction of TCRalphabeta chains from a high CD1d autoreactive Valpha14+ T cell line conferred the alpha-GalCer/CD1d specificity without induction of autoreactivity. Thus, heterogeneity of Valpha14+ T cell reactivity is due to both beta-chain diversity and control mechanism(s) beyond primary TCR structure.  相似文献   

16.
The adaptor molecule SAP (signaling lymphocytic activation molecule-associated protein) plays a critical role during NK T (NKT) cell development in humans and mice. In CD4(+) T cells, SAP interacts with the tyrosine kinase Fyn to deliver signals required for TCR-induced Th2-type cytokine production. To determine whether the SAP-dependent signals controlling NKT cell ontogeny rely on its binding to Fyn, we used the OP9-DL1 system to initiate structure function studies of SAP in murine NKT cell development. In cultures containing wild-type (WT) hematopoietic progenitors, we noted the transient emergence of cells that reacted with the NKT cell-specific agonist alpha-galactosyl ceramide and its analog PBS57. Sap(-/-) cells failed to give rise to NKT cells in vitro; however, their development could be rescued by re-expression of WT SAP. Emergence of NKT cells was also restored by a mutant version of SAP (SAP R78A) that cannot bind to Fyn, but with less efficiency than WT SAP. This finding was accentuated in vivo in Sap(R78A) knock-in mice as well as Sap(R78A) competitive bone marrow chimeras, which retained NKT cells but at significantly reduced numbers compared with controls. Unlike Sap(R78A) CD4(+) T cells, which produce reduced levels of IL-4 following TCR ligation, alpha-galactosyl ceramide-stimulated NKT cells from the livers and spleens of Sap(R78A) mice produced Th2 cytokines and activated NK cells in a manner mimicking WT cells. Thus, SAP appears to use differential signaling mechanisms in NKT cells, with optimal ontogeny requiring Fyn binding, while functional responses occur independently of this interaction.  相似文献   

17.
The NK1.1(+)TCRalphabeta(int) CD4(+), or double negative T cells (NK T cells) consist of a mixture of CD1d-restricted and CD1d-unrestricted cells. The relationships between CD4(+)NK1.1(+) T cells and conventional T cells are not understood. To compare their respective TCR repertoires, NK1.1(+)TCRalphabeta(int), CD4(+) T cells have been sorted out of the thymus, liver, spleen, and bone marrow of C57BL/6 mice. Molecular analysis showed that thymus and liver used predominantly the Valpha14-Jalpha281 and Vbeta 2, 7, and 8 segments. These cells are CD1d restricted and obey the original definition of NK T cells. The complementarity-determining region 3 (CDR3) sequences of the TCR Vbeta8.2-Jbeta2.5 chain of liver and thymus CD4(+) NK T cells were determined and compared with those of the same rearrangements of conventional CD4(+) T cells. No amino acid sequence or usage characteristic of NK T cells could be evidenced: the Vbeta8.2-Jbeta2.5 diversity regions being primarily the same in NK T and in T cells. No clonal expansion of the beta-chains was observed in thymus and liver CD1d-restricted CD4(+)NK T cells, suggesting the absence of acute or chronic Ag-driven stimulation. Molecular analysis of the TCR used by Valpha14-Jalpha281 transgenic mice on a Calpha(-/-) background showed that the alpha-chain can associate with beta-chains using any Vbeta segment, except in NK T cells in which it paired predominately with Vbeta 2, 7, and 8(+) beta-chains. The structure of the TCR of NK T cells thus reflects the affinity for the CD1d molecule rather than a structural constraint leading to the association of the invariant alpha-chain with a distinctive subset of Vbeta segment.  相似文献   

18.
19.
Mucosal-associated invariant T (MAIT) cells reside primarily in the gut lamina propria and require commensal flora for selection/expansion. They are restricted by the highly conserved MHC class I-related molecule MR1 and, like most NK T cells, express an invariant TCRalpha chain. Although they probably contribute to gut immunity, MAIT cells have not been functionally characterized because they are so rare. To create a model in which they are more abundant, we generated transgenic mice expressing only the TCRalpha chain (Valpha19i) that defines MAIT cells. By directly comparing Valpha19i transgenic mice on MR1+/+ and MR1-/- backgrounds, we were able to distinguish and characterize a population of Valpha19i T cells dependent on MR1 for development. MR1-restricted Valpha19i transgenic T cells recapitulate what is known about MAIT cell development. Furthermore, a relatively high proportion of transgenic MAIT cells express NK1.1, and most have a cell surface phenotype similar to that of Valpha14i NK T cells. Finally, MR1-restricted Valpha19i T cells secrete IFN-gamma, IL-4, IL-5, and IL-10 following TCR ligation, and we provide evidence for what may be two functionally distinct MAIT cell populations. These data strongly support the idea that MAIT cells contribute to the innate immune response in the gut mucosa.  相似文献   

20.
The Ag receptor of the T lymphocyte is composed of an alphabeta heterodimer. Both alpha- and beta-chains are products of the somatic rearrangement of V(D)J segments encoded on the respective loci. During T cell development, beta-chain rearrangement precedes alpha-chain rearrangement. The mechanism of allelic exclusion ensures the expression of a single beta-chain in each T cell, whereas a large number of T cells express two functional alpha-chains. Here we demonstrate evidence that TCR alpha rearrangement is initiated by rearranging a 3' Valpha segment and a 5' Jalpha segment on both chromosomes. Rearrangement then proceeds by using upstream Valpha and downstream Jalpha segments until it is terminated by successful positive selection. This ordered and coordinated rearrangement allows a single thymocyte to sequentially express multiple TCRs with different specificities to optimize the efficiency of positive selection. Thus, the lack of allelic exclusion and TCR alpha secondary rearrangement play a key role in the formation of a functional T cell repertoire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号