首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemokines, like stromal cell-derived factor-1 (SDF1/CXCL12), are small secreted proteins that signal cells to migrate. Because SDF1 and its receptor CXCR4 play important roles in embryonic development, cancer metastasis, and HIV/AIDS, this chemokine signaling system is the subject of intense study. However, it is not known whether the monomeric or dimeric structure of SDF1 is responsible for signaling in vivo. Previous structural studies portrayed the SDF1 structure as either strictly monomeric in solution or dimeric when crystallized. Here, we report two-dimensional NMR, pulsed-field gradient diffusion and fluorescence polarization measurements at various SDF1 concentrations, solution conditions, and pH. These results demonstrate that SDF1 can form a dimeric structure in solution, but only at nonacidic pH when stabilizing counterions are present. Thus, while the previous NMR structural studies were performed under acidic conditions that strongly promote the monomeric state, crystallographic studies used nonacidic buffer conditions that included divalent anions shown here to promote dimerization. This pH-sensitive aggregation behavior is explained by a dense cluster of positively charged residues at the SDF1 dimer interface that includes a histidine side chain at its center. A heparin disaccharide shifts the SDF1 monomer-dimer equilibrium in the same manner as other stabilizing anions, suggesting that glycosaminoglycan binding may be coupled to SDF1 dimerization in vivo.  相似文献   

2.
Formation of spider silk from its constituent proteins—spidroins—involves changes from soluble helical/coil conformations to insoluble β-sheet aggregates. This conversion needs to be regulated to avoid precocious aggregation proximally in the silk gland while still allowing rapid silk assembly in the distal parts. Lowering of pH from about 7 to 6 is apparently important for silk formation. The spidroin N-terminal domain (NT) undergoes stable dimerization and structural changes in this pH region, but the underlying mechanisms are incompletely understood. Here, we determine the NMR and crystal structures of Euprosthenops australis NT mutated in the dimer interface (A72R). Also, the NMR structure of wild‐type (wt) E. australis NT at pH 7.2 and 300 mM sodium chloride was determined. The wt NT and A72R structures are monomers and virtually identical, but they differ from the subunit structure of dimeric wt NT mainly by having a tryptophan (W10) buried between helix 1 and helix 3, while W10 is surface exposed in the dimer. Wedging of the W10 side chain in monomeric NT tilts helix 3 approximately 5–6 Å into a position that is incompatible with that of the observed dimer structure. The structural differences between monomeric and dimeric NT domains explain the tryptophan fluorescence patterns of NT at pH 7 and pH 6 and indicate that the biological function of NT depends on conversion between the two conformations.  相似文献   

3.
Nguyen TL  Breslow E 《Biochemistry》2002,41(18):5920-5930
Determination of the structure of the unliganded monomeric state of neurophysin is central to an understanding of the allosteric relationship between neurophysin peptide-binding and dimerization. We examined this state by NMR, using the weakly dimerizing H80E mutant of bovine neurophysin-I. The derived structure, to which more than one conformer appeared to contribute, was compared with the crystal structure of the unliganded des 1-6 bovine neurophysin-II dimer. Significant conformational differences between the two proteins were evident in the orientation of the 3,10 helix, in the 50-58 loop, in beta-turns, and in specific intrachain contacts between amino- and carboxyl domains. However, both had similar secondary structures, in independent confirmation of earlier circular dichroism studies. Previously suggested interactions between the amino terminus and the 50-58 loop in the monomer were also confirmed. Comparison of the observed differences between the two proteins with demonstrated effects of dimerization on the NMR spectrum of bovine neurophysin-I, and preliminary investigation of the effects of dimerization on H80E spectra, allowed tentative distinction between the contributions of sequence and self-association differences to the difference in conformation. Regions altered by dimerization encompass most binding site residues, providing a potential explanation of differences in binding affinity between the unliganded monomeric and dimeric states. Differences between monomer and dimer states in turns, interdomain contacts, and within the interdomain segment of the 50-58 loop suggest that the effects of dimerization on intrasubunit conformation reflect the need to adjust the relative positions of the interface segments of the two domains for optimal interaction with the adjacent subunit and/or reflect the dual role of some residues as participants both at the interface and in interdomain contacts.  相似文献   

4.
Nucleotide‐binding domain leucine‐rich repeat‐containing receptors (NLRs) are key proteins in the innate immune system. The 14 members of the NLRP family of NLRs contain an N‐terminal pyrin domain which is central for complex formation and signal transduction. Recently, X‐ray structures of NLRP14 revealed an unexpected rearrangement of the α5/6 stem‐helix of the pyrin domain allowing a novel symmetric dimerization mode. We characterize the conformational transitions underlying NLRP oligomerization using molecular dynamics simulations. We describe conformational stability of native NLRP14 and mutants in their monomeric and dimeric states and compare them to NLRP4, a representative of a native pyrin domain fold. Thereby, we characterize the interplay of conformational dynamics, fold stability, and dimerization in NLRP pyrin domains. We show that intrinsic flexibility of NLRP pyrin domains is a key factor influencing their behavior in physiological conditions. Additionally, we provide further evidence for the crucial importance of a charge relay system within NLRPs that critically influences their conformational ensemble in solution.  相似文献   

5.
6.
Oligomerization of G protein‐coupled receptors is a recognized mode of regulation of receptor activities, with alternate oligomeric states resulting in different signaling functions. The CXCR4 chemokine receptor is a G protein‐coupled receptor that is post‐translationally modified by tyrosine sulfation at three sites on its N‐terminus (Y7, Y12, Y21), leading to enhanced affinity for its ligand, stromal cell derived factor (SDF‐1, also called CXCL12). The complex has been implicated in cancer metastasis and is a therapeutic target in cancer treatment. Using molecular dynamics simulation of NMR‐derived structures of the CXCR4 N‐terminus in complex with SDF‐1, and calculations of electrostatic binding energies for these complexes, we address the role of tyrosine sulfation in this complex. Our results show that sulfation stabilizes the dimeric state of the CXCR4:SDF‐1 complex through hydrogen bonding across the dimer interface, conformational changes in residues at the dimer interface, and an enhancement in electrostatic binding energies associated with dimerization. These findings suggest a mechanism through which post‐translational modifications such as tyrosine sulfation might regulate downstream function through modulation of the oligomeric state of the modified system.  相似文献   

7.
Ferric uptake regulator (Fur) is a global bacterial regulator that uses iron as a cofactor to bind to specific DNA sequences. Escherichia coli Fur is usually isolated as a homodimer with two metal sites per subunit. Metal binding to the iron site induces protein activation; however the exact role of the structural zinc site is still unknown. Structural studies of three different forms of the Escherichia coli Fur protein (nonactivated dimer, monomer, and truncated Fur-(1-82)) were performed. Dimerization of the oxidized monomer was followed by NMR in the presence of a reductant (dithiothreitol) and Zn(II). Reduction of the disulfide bridges causes only local structure variations, whereas zinc addition to reduced Fur induces protein dimerization. This demonstrates for the first time the essential role of zinc in the stabilization of the quaternary structure. The secondary structures of the mono- and dimeric forms are almost conserved in the N-terminal DNA-binding domain, except for the first helix, which is not present in the nonactivated dimer. In contrast, the C-terminal dimerization domain is well structured in the dimer but appears flexible in the monomer. This is also confirmed by heteronuclear Overhauser effect data. The crystal structure at 1.8A resolution of a truncated protein (Fur-(1-82)) is described and found to be identical to the N-terminal domain in the monomeric and in the metal-activated state. Altogether, these data allow us to propose an activation mechanism for E. coli Fur involving the folding/unfolding of the N-terminal helix.  相似文献   

8.
CAPRI is a member of the GAP1 family of GTPase-activating proteins (GAPs) for small G proteins. It is known to function as an amplitude sensor for intracellular Ca(2+) levels stimulated by extracellular signals and has a catalytic domain with dual RasGAP and RapGAP activities. Here, we have investigated the mechanism that switches CAPRI between its two GAP activities. We demonstrate that CAPRI forms homodimers in vitro and in vivo in a Ca(2+)-dependent manner. The site required for dimerization was pinpointed by deletion and point mutations to a helix motif that forms a hydrophobic face in the extreme C-terminal tail of the CAPRI protein. Deletion of this helix motif abolished dimer formation but did not affect translocation of CAPRI to the plasma membrane upon cell stimulation with histamine. We found that dimeric and monomeric CAPRI coexist in cells and that the ratio of dimeric to monomeric CAPRI increases upon cell stimulation with histamine. Free Ca(2+) at physiologically relevant concentrations was both necessary and sufficient for dimer formation. Importantly, the monomeric and dimeric forms of CAPRI exhibited differential GAP activities in vivo; the wild-type form of CAPRI had stronger RapGAP activity than RasGAP activity, whereas a monomeric CAPRI mutant showed stronger RasGAP than RapGAP activity. These results demonstrate that CAPRI switches between its dual GAP roles by forming monomers or homodimers through a process regulated by Ca(2+). We propose that Ca(2+)-dependent dimerization of CAPRI may serve to coordinate Ras and Rap1 signaling pathways.  相似文献   

9.
The sensor histidine kinases of two‐component signal‐transduction systems (TCSs) are essential for bacteria to adapt to variable environmental conditions. The two‐component regulatory system BaeS/R increases multidrug and metal resistance in Salmonella and Escherichia coli. In this study, we report the X‐ray structure of the periplasmic sensor domain of BaeS from Serratia marcescens FS14. The BaeS sensor domain (34–160) adopts a mixed α/β‐fold containing a central four‐stranded antiparallel β‐sheet flanked by a long N‐terminal α‐helix and additional loops and a short C‐terminal α‐helix on each side. Structural comparisons revealed that it belongs to the PDC family with a remarkable difference in the orientation of the helix α2. In the BaeS sensor domain, this helix is situated perpendicular to the long helix α1 and holds helix α1 in the middle with the beta sheet, whereas in other PDC domains, helix α2 is parallel to helix α1. Because the helices α1 and α2 is involved in the dimeric interface, this difference implies that BaeS uses a different dimeric interface compared with other PDC domains. Proteins 2017; 85:1784–1790. © 2017 Wiley Periodicals, Inc.  相似文献   

10.
The structure of monomeric human chemokine IL-8 (residues 1–66) was determined in aqueous solution by NMR spectroscopy. The structure of the monomer is similar to that of each subunit in the dimeric full-length protein (residues 1–72), with the main differences being the location of the N-loop (residues 10–22) relative to the C-terminal α-helix and the position of the side chain of phenylalanine 65 near the truncated dimerization interface (residues 67–72). NMR was used to analyze the interactions of monomeric IL-8 (1–66) with ND-CXCR1 (residues 1–38), a soluble polypeptide corresponding to the N-terminal portion of the ligand binding site (Binding Site-I) of the chemokine receptor CXCR1 in aqueous solution, and with 1TM-CXCR1 (residues 1–72), a membrane-associated polypeptide that includes the same N-terminal portion of the binding site, the first trans-membrane helix, and the first intracellular loop of the receptor in nanodiscs. The presence of neither the first transmembrane helix of the receptor nor the lipid bilayer significantly affected the interactions of IL-8 with Binding Site-I of CXCR1.  相似文献   

11.
12.
The cell‐penetrating peptide Tat (48–60) (GRKKRRQRRRPPQ) derived from HIV‐1 Tat protein showed potent antibacterial activity (MIC: 2–8 µM ). To investigate the effect of dimerization of Tat (48–60) analog, [Tat(W): GRKKRRQRRRPWQ‐NH2], on antimicrobial activity and mechanism of bactericidal action, its dimeric peptides, di‐Tat(W)‐C and di‐Tat(W)‐K, were synthesized by a disulfide bond linkage and lysine linkage of monomeric Tat(W), respectively. From the viewpoint of a weight basis and the monomer concentration, these dimeric peptides displayed almost similar antimicrobial activity against six bacterial strains tested but acted more rapidly against Staphylococcus aureus on kinetics of bactericidal activity, compared with monomeric Tat(W). Unlike monomeric Tat(W), these dimeric peptides significantly depolarized the cytoplasmic membrane of intact S. aureus cells at MIC and induced dye leakage from bacterial‐membrane‐mimicking egg yolk L ‐α‐phosphatidylethanolamine/egg yolk L ‐α‐phosphatidyl‐DL ‐glycerol (7:3, w/w) vesicles. Furthermore, these dimeric peptides were less effective to translocate across lipid bilayers than monomeric Tat(W). These results indicated that the dimerization of Tat analog induces a partial change in the mode of its bactericidal action from intracellular target mechanism to membrane‐targeting mechanism. Collectively, our designed dimeric Tat peptides with high antimicrobial activity and rapid bactericidal activity appear to be excellent candidates for future development as novel antimicrobial agents. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
The site-specific DNA recombinase, gammadelta resolvase, from Escherichia coli catalyzes recombination of res site-containing plasmid DNA to two catenated circular DNA products. The catalytic domain (residues 1-105), lacking a C-terminal dimerization interface, has been constructed and the NMR solution structure of the monomer determined. The RMSD of the NMR conformers for residues 2-92 excluding residues 37-45 and 64-73 is 0.41 A for backbone atoms and 0.88 A for all heavy atoms. The NMR solution structure of the monomeric catalytic domain (residues 1-105) was found to be formed by a four-stranded parallel beta-sheet surrounded by three helices. The catalytic domain (residues 1-105), deficient in the C-terminal dimerization domain, was monomeric at high salt concentration, but displayed unexpected dimerization at lower ionic strength. The unique solution dimerization interface at low ionic strength was mapped by NMR. With respect to previous crystal structures of the dimeric catalytic domain (residues 1-140), differences in the average conformation of active-site residues were found at loop 1 containing the catalytic S10 nucleophile, the beta1 strand containing R8, and at loop 3 containing D67, R68 and R71, which are required for catalysis. The active-site loops display high-frequency and conformational backbone dynamics and are less well defined than the secondary structures. In the solution structure, the D67 side-chain is proximal to the S10 side-chain making the D67 carboxylate group a candidate for activation of S10 through general base catalysis. Four conserved Arg residues can function in the activation of the phosphodiester for nucleophilic attack by the S10 hydroxyl group. A mechanism for covalent catalysis by this class of recombinases is proposed that may be related to dimer interface dissociation.  相似文献   

14.
The structure of the potent HIV-inactivating protein cyanovirin-N was previously found by NMR to be a monomer in solution and a domain-swapped dimer by X-ray crystallography. Here we demonstrate that, in solution, CV-N can exist both in monomeric and in domain-swapped dimeric form. The dimer is a metastable, kinetically trapped structure at neutral pH and room temperature. Based on orientational NMR constraints, we show that the domain-swapped solution dimer is similar to structures in two different crystal forms, exhibiting solely a small reorientation around the hinge region. Mutation of the single proline residue in the hinge to glycine significantly stabilizes the protein in both its monomeric and dimeric forms. By contrast, mutation of the neighboring serine to proline results in an exclusively dimeric protein, caused by a drastic destabilization of the monomer.  相似文献   

15.
Mitochondrial and peroxisomal fission are essential processes with defects resulting in cardiomyopathy and neonatal lethality. Central to organelle fission is Fis1, a monomeric tetratricopeptide repeat (TPR)-like protein whose role in assembly of the fission machinery remains obscure. Two nonfunctional, Saccharomyces cerevisiae Fis1 mutants (L80P or E78D/I85T/Y88H) were previously identified in genetic screens. Here, we find that these two variants in the cytosolic domain of Fis1 (Fis1ΔTM) are unexpectedly dimeric. A truncation variant of Fis1ΔTM that lacks an N-terminal regulatory domain is also found to be dimeric. The ability to dimerize is a property innate to the native Fis1ΔTM amino acid sequence as we find this domain is dimeric after transient exposure to elevated temperature or chemical denaturants and is kinetically trapped at room temperature. This is the first demonstration of a specific self-association in solution for the Fis1 cytoplasmic domain. We propose a three-dimensional domain-swapped model for dimerization that is validated by a designed mutation, A72P, which potently disrupts dimerization of wild-type Fis1. A72P also disrupts dimerization of nonfunctional variants, indicating a common structural basis for dimerization. The obligate monomer variant A72P, like the dimer-promoting variants, is nonfunctional in fission, consistent with a model in which Fis1 activity depends on its ability to interconvert between monomer and dimer species. These studies suggest a new functionally important manner in which TPR-containing proteins may reversibly self-associate.  相似文献   

16.
A fragment of E. coli 16S rRNA formed by nucleotides 500 to 545 is termed helix 18. Nucleotides 505‐507 and 524‐526 form a pseudo‐knot and its distortion affects ribosome function. Helix 18 isolated from the ribosome context is thus an interesting fragment to investigate the structural properties and folding of RNA with pseudo‐knots. With all‐atom molecular dynamics simulations, spectroscopic and gel electrophoresis experiments, we investigated thermodynamics of helix 18, with a focus on its pseudo‐knot. In solution studies at ambient conditions we observed dimerization of helix 18. We proposed that the loop, containing nucleotides forming the pseudo‐knot, interacts with another monomer of helix 18. The native dimer is difficult to break but introducing mutations in the pseudo‐knot indeed assured a monomeric form of helix 18. Molecular dynamics simulations at 310 K confirmed the stability of the pseudo‐knot but at elevated temperatures this pseudo‐knot was the first part of helix 18 to lose the hydrogen bond pattern. To further determine helix 18 stability, we analyzed the interactions of helix 18 with short oligomers complementary to a nucleotide stretch containing the pseudo‐knot. The formation of higher‐order structures by helix 18 impacts hybridization efficiency of peptide nucleic acid and 2'‐O methyl RNA oligomers.  相似文献   

17.
P Palumaa  E A Mackay  M Vasák 《Biochemistry》1992,31(7):2181-2186
The effect of free Cd(II) ions on monomeric Cd7-metallothionein-2 (MT) from rabbit liver has been studied. Slow, concentration-dependent dimerization of this protein was observed by gel filtration chromatographic studies. The dimeric MT form, isolated by gel filtration, contains approximately two additional and more weakly bound Cd(II) ions per monomer. The incubation of MT dimers with complexing agents EDTA and 2-mercaptoethanol leads to the dissociation of dimers to monomers. The results of circular dichroism (CD) and electronic absorption studies indicate that the slow dimerization process is preceded by an initial rapid Cd-induced rearrangement of the monomeric Cd7-MT structure. The 113Cd NMR spectrum of the MT dimer revealed only four 113Cd resonances at chemical shift positions similar to those observed for the Cd4 cluster of the well-characterized monomeric 113Cd7-MT. This result suggests that on dimer formation major structural changes occur in the original three-metal cluster domain of Cd7-MT.  相似文献   

18.
19.
Low molecular weight protein tyrosine phosphatase (LMW-PTP) dimerizes in the phosphate-bound state in solution with a dissociation constant of K(d)=1.5(+/-0.1)mM and an off-rate on the order of 10(4)s(-1). 1H and 15N NMR chemical shifts identify the dimer interface, which is in excellent agreement with that observed in the crystal structure of the dimeric S19A mutant. Two tyrosine residues of each molecule interact with the active site of the other molecule, implying that the dimer may be taken as a model for a complex between LMW-PTP and a target protein. 15N relaxation rates for the monomeric and dimeric states were extrapolated from relaxation data acquired at four different protein concentrations. Relaxation data of satisfactory precision were extracted for the monomer, enabling model-free analyses of backbone fluctuations on pico- to nanosecond time scales. The dimer relaxation data are of lower quality due to extrapolation errors and the possible presence of higher-order oligomers at higher concentrations. A qualitative comparison of order parameters in the monomeric and apparent dimeric states shows that loops forming the dimer interface become rigidified upon dimerization. Qualitative information on monomer-dimer exchange and intramolecular conformational exchange was obtained from the concentration dependence of auto- and cross-correlated relaxation rates. The loop containing the catalytically important Asp129 fluctuates between different conformations in both the monomeric and dimeric (target bound) states. The exchange rate compares rather well with that of the catalyzed reaction step, supporting existing hypotheses that catalysis and enzyme dynamics may be coupled. The side-chain of Trp49, which is important for substrate specificity, exhibits conformational dynamics in the monomer that are largely quenched upon formation of the dimer, suggesting that binding is associated with the selection of a single side-chain conformer.  相似文献   

20.
Gene silencing in budding yeast relies on the binding of the Silent Information Regulator (Sir) complex to chromatin, which is mediated by extensive interactions between the Sir proteins and nucleosomes. Sir3, a divergent member of the AAA+ ATPase‐like family, contacts both the histone H4 tail and the nucleosome core. Here, we present the structure and function of the conserved C‐terminal domain of Sir3, comprising 138 amino acids. This module adopts a variant winged helix‐turn‐helix (wH) architecture that exists as a stable homodimer in solution. Mutagenesis shows that the self‐association mediated by this domain is essential for holo‐Sir3 dimerization. Its loss impairs Sir3 loading onto nucleosomes in vitro and eliminates silencing at telomeres and HM loci in vivo. Replacing the Sir3 wH domain with an unrelated bacterial dimerization motif restores both HM and telomeric repression in sir3Δ cells. In contrast, related wH domains of archaeal and human members of the Orc1/Sir3 family are monomeric and have DNA binding activity. We speculate that a dimerization function for the wH evolved with Sir3's ability to facilitate heterochromatin formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号