首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sphingomyelin metabolites ceramide and sphingosine are mediators of cell death induced by gamma-irradiation. We studied the production of ceramide and the effects of exogenous ceramide on apoptosis in LNCaP prostate cancer cells that are highly resistant to gamma-irradiation-induced cell death. LNCaP cells can be sensitized to gamma-irradiation by tumor necrosis factor alpha (TNF-alpha) and, to a lesser degree, by the agonistic FAS antibody CH-11. TNF-alpha activated intrinsic and extrinsic apoptosis pathways and increased ceramide and sphingosine levels in irradiated LNCaP cells. CH-11 activated only the extrinsic apoptosis pathways and had a negligible effect on ceramide and sphingosine levels in irradiated LNCaP cells. Exogenous ceramide and bacterial sphingomyelinase sensitized LNCaP cells to radiation-induced apoptosis and had a synergistic effect on cell death after irradiation with TNF-alpha, but not with CH-11. Cell death effects after exposure to ceramide and irradiation were blocked by the serine protease inhibitor TLCK (Na-p-tosyl-L-lysine-chloromethylketone), but not by the caspase inhibitor z-VAD (2-val-Ala-Asp(oMe)-CH(2)F). During LNCaP cell apoptosis induced by exogenous ceramide, we observed activation of caspase-9, but not caspases-8, -3, or -7. The effect of ceramide occurred largely via the intrinsic mitochondrial apoptosis pathway and enhanced TNF-alpha, but not CH-11 effects on irradiated cells. The data show that ceramide enhanced activation of the intrinsic apoptotic pathway and enhanced cell death induced by TNF-alpha with or without gamma-irradiation. TNF-alpha and gamma-irradiation elevated levels of endogenous ceramide and activated the intrinsic cell death pathway.  相似文献   

2.
LNCaP prostate cancer cells are resistant to induction of apoptosis by gamma-irradiation and partially sensitive to TNF-alpha or FAS antibody, irradiation sensitizes cells to apoptosis induced by FAS antibody or TNF-alpha. LNCaP cell clones stably expressing IkappaBalpha super repressor were resistant to apoptosis induced by death ligands in the presence or absence of irradiation. IkappaBalpha super repressor expression also increased clonogenic survival after exposure to TNF-alpha+irradiation, but had no effect on survival after irradiation alone. IkappaBalpha super repressor expression blocked the increase of whole cell and cell surface FAS expression induced by TNF-alpha, but did not effect induction of FAS expression and cell surface FAS expression that resulted from irradiation. In cells expressing IkappaBalpha super repressor there was diminished activation of caspases-8 and -7 and diminished production of proscaspases-8 and -7, usually required for death induction in LNCaP cells. Peptide inhibitors of caspase activation complemented the IkappaBalpha super repressor inhibition of apoptosis, but peptide inhibitors of serine proteases had no effect on LNCaP cells expressing IkappaBalpha super repressor. Moreover, cleavage of a serine protease substrate was induced by treatment of LNCaP cells with TNF-alpha and irradiation. The data suggest that in LNCaP cells NF-kappaB mediates a proapoptotic pathway that leads to activation of proapoptotic serine proteases.  相似文献   

3.
Upon binding of their ligands, death receptors belonging to the tumor necrosis factor (TNF) receptor family initiate a signaling pathway leading to the activation of caspases and ultimately apoptosis. TNF, however, in parallel elicits survival signals, protecting many cell types from cell death that can only be induced by combined treatment with TNF and inhibitors of protein synthesis. Here, we report that in NIH3T3 cells, apoptosis in response TNF and cycloheximide is not inhibited by the broad spectrum caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD. fmk). Moreover, treatment with zVAD.fmk sensitizes the cells to the cytotoxic action of TNF. Sensitization was also achieved by overexpression of a dominant-negative mutant of Fas-associated death domain protein and, to a lesser extent, by specific inhibition of caspase-8. A similar, but weaker sensitization of zVAD.fmk to treatment with the TNF-related apoptosis-inducing ligand (TRAIL) or anti-CD95 antibody was demonstrated. The unexpected cell death in response to TNF and caspase inhibition occurs despite the activation of nuclear factor kappaB and c-Jun N-terminal kinases. The mode of cell death shows several signs of apoptosis including DNA fragmentation, although activation of caspase-3 was excluded. TNF/zVAD.fmk-induced cell death is preceded by an accumulation of cells in the G(2)/M phase of the cell cycle, indicating an important role of cell cycle progression. This hypothesis is further strengthened by the observation that arresting the cells in the G(1) phase of the cell cycle inhibited TNF/zVAD.fmk-induced cell death, whereas blocking them in the G(2)/M phase augmented it.  相似文献   

4.
The activation of a self-amplifying cascade of caspases, of which caspase-8 is the apical protease, mediates Fas-, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-, and TNF-alpha-induced apoptosis in colon cell lines. Nitric oxide (NO) protects from apoptosis induced by Fas and TNF-alpha. We examined whether NCX-456, an NO-releasing derivative of mesalamine, protects colon epithelial cells from cytokine-induced apoptosis. Caco-2 and HT-29 cell lines express death factor receptors and are driven to apoptosis in response to incubation with Fas-agonistic antibody, TNF-alpha/interferon-gamma, and TRAIL. The two novel observations reported here are that 1) cotreatment of cells with NCX-456, but not mesalamine, resulted in concentration-dependent protection against death factor-induced apoptosis and inhibition of caspase activity, and 2) exposure to dithiothreitol, an agent that effectively removes NO from thiol groups, resulted in a 70% recovery of caspase activity, which is consistent with S-nitrosation as a major mechanism for caspase inactivation. These data suggest that caspase S-nitrosation represents a mechanism for protection of colonic mucosal epithelial cells from death factor-induced death.  相似文献   

5.
We have previously shown that the absence of Fas/Fas ligand significantly reduced tissue damage and intestinal epithelial cell (IEC) apoptosis in an in vivo model of T cell-mediated enteropathy. This enteropathy was more severe in IL-10-deficient mice, and this was associated with increased serum levels of IFN-gamma and TNF-alpha and an increase in Fas expression on IECs. In this study, we investigated the potential of IL-10 to directly influence Fas expression and Fas-induced IEC apoptosis. Mouse intestinal epithelial cell lines MODE-K and IEC4.1 were cultured with IFN-gamma, TNF-alpha, or anti-Fas monoclonal antibody (mAb) in the presence or absence of IL-10. Fas expression and apoptosis were determined by FACScan analysis of phycoerythrin-anti-Fas mAb staining and annexin V staining, respectively. Treatment with a combination of IFN-gamma and TNF-alpha induced significant apoptosis. Anti-Fas mAb alone did not induce much apoptosis unless cells were pretreated with IFN-gamma and TNF-alpha. These IECs constitutively expressed low levels of Fas, which significantly increased by preincubation of the cells with IFN-gamma and TNF-alpha. Treatment with cytokine or cytokine plus anti-Fas mAb increased apoptosis, which correlated with a decreased Fas-associated death domain IL-1-converting enzyme-like inhibitory protein (FLIP) level, increased caspase-8 activity, and subsequently increased caspase-3 activity. IL-10 diminished both cytokine- and anti-Fas mAb-induced apoptosis, and this was correlated with decreased cytokine-induced Fas expression, increased FLIP, and decreased caspase-8 and caspase-3 activity. In conclusion, IL-10 modulated cytokine induction of Fas expression on IEC cell lines and regulated IEC susceptibility to TNF-alpha, IFN-gamma, and Fas-mediated apoptosis. These findings suggest that IL-10 directly modulates IEC responses to T cell-mediated apoptotic signals.  相似文献   

6.
Hypertrophy and hyperplasia lead to excess accumulation of smooth muscle in the airways of human asthmatic subjects. However, little is known about mechanisms that might counterbalance these processes, thereby limiting the quantity of smooth muscle in airways. Ligation of Fas on the surface of vascular smooth muscle cells and nonmuscle airway cells can lead to apoptotic cell death. We therefore tested the hypotheses that 1) human airway smooth muscle (HASM) expresses Fas, 2) Fas cross-linking induces apoptosis in these cells, and 3) tumor necrosis factor (TNF)-alpha potentiates Fas-mediated airway myocyte killing. Immunohistochemistry using CH-11 anti-Fas monoclonal IgM antibody revealed Fas expression in normal human bronchial smooth muscle in vivo. Flow cytometry using DX2 anti-Fas monoclonal IgG antibody revealed that passage 4 cultured HASM cells express surface Fas. Surface Fas decreased partially during prolonged serum deprivation of cultured HASM cells and was upregulated by TNF-alpha stimulation. Fas cross-linking with CH-11 antibody induced apoptosis in cultured HASM cells, and this effect was reduced by long-term serum deprivation and synergistically potentiated by concomitant TNF-alpha exposure. TNF-alpha did not induce substantial apoptosis in the absence of Fas cross-linking. These data represent the first demonstration that Fas is expressed on HASM and suggest a mechanism by which Fas-mediated apoptosis could act to oppose excess smooth muscle accumulation during airway remodeling in asthma.  相似文献   

7.
Li J  Xia X  Ke Y  Nie H  Smith MA  Zhu X 《Biochimica et biophysica acta》2007,1770(8):1169-1180
Trichosanthin (TCS), a traditional Chinese medicine, exerts antitumor activities by inducing apoptosis in many different tumor cell lines. However, the mechanisms remain obscure. The present study focused on various caspase pathways that may be involved in TCS-induced apoptosis in leukemia HL-60 cells. Key caspases in both intrinsic and extrinsic pathways including caspase-8, -9 and -3 were activated upon TCS treatment. Additionally, TCS treatment induced upregulation of BiP and CHOP and also activated caspase-4, which for the first time strongly supported the involvement of endoplasmic reticulum stress pathway in TCS-induced apoptosis. Interestingly, although caspase-8 was activated, Fas/Fas ligand pathway was not involved as evidenced by a lack of induction of Fas or Fas ligand and a lack of inhibitory effect of anti-Fas blocking antibody on TCS-induced apoptosis. Instead, caspase-8 was activated in a caspase-9 and -4 dependent manner. The involvement of mitochondria was demonstrated by the reduction of mitochondrial membrane potential and release of cytochrome c and Smac besides the activation of caspase-9. Further investigation confirmed that caspase-3 was the major executioner caspase downstream to caspase-9, -4 and -8. Taken together, our results suggested that TCS-induced apoptosis in HL-60 cells was mainly mediated by mitochondrial and ER stress signaling pathways via caspase-3.  相似文献   

8.
Tumor necrosis factor (TNF) and cytotoxic T lymphocytes, which utilize Fas to induce apoptosis in target cells, are known to play a critical role in the host defense against viral infection. In this study, the Epstein-Barr virus BHRF1 protein was stably expressed in intestine 407 cells which were susceptible to cell death mediated through both the TNF receptor and Fas. WST-1 conversion assays and acridine orange staining showed that vector-transfected control cells were killed by TNF-alpha or anti-Fas antibody in a dose-dependent manner, whereas BHRF1-expressing cells were resistant to apoptosis induced by these mediators. DNA fragmentation, a characteristic of apoptosis induced by TNF-alpha and the anti-Fas antibody, was suppressed in BHRF1-expressing cells. These results indicate that the BHRF1 protein protects cells from apoptosis mediated by the TNF receptor and Fas. The role of BHRF1 as an inhibitor of cytokine-induced apoptosis during the Epstein-Barr virus lytic cycle in vivo is discussed.  相似文献   

9.
Intestinal epithelial cell function is compromised by local immune and inflammatory responses. In this study, we examined the possibility that intestinal epithelial cell injury occurs in the presence of activated inflammatory cells, such as neutrophils and macrophages, via production of reactive oxygen species (ROS). Following exposure to 50–150 μM H2O2, levels of mRNA and protein for Fas and, to a lesser degree, Fas-L were increased and intestinal epithelial cells underwent apoptosis. Treatment of H2O2-exposed cells with agonistic anti-Fas antibody, but not isotype control antibody, significantly enhanced apoptosis. Apoptosis was associated with the activation of caspase 8, while Z-IETD, an inhibitor of caspase 8, blocked apoptosis of H2O2-exposed intestinal epithelial cells. Thus, ROS induced Fas and Fas-L expression in association with intestinal epithelial cell apoptosis. These data support the hypothesis that, following exposure to oxidative stress, enterocytes are primed for cell death via Fas-mediated pathways.  相似文献   

10.
Interferon-gamma (IFN-gamma) induces various apoptosis-related proteins, including Fas antigen (Fas) in keratinocytes. Ultraviolet B (UVB) irradiation produces "sunburn cells," a specific type of apoptosis. Previously, we reported that IFN-gamma augments Fas-dependent apoptosis of SV40-transformed human keratinocytes (SVHK cells). Caspases are a new class of cysteine proteinases that play an important role in apoptosis. We investigated the mechanism of UVB-induced apoptosis by examining activation of the caspase cascade. UVB irradiation of SVHK cells increased the activities of caspases 1, 3, and 8, which were detected at 3 h, and peak activities occurred at 6 h. Pretreatment of SVHK cells with IFN-gamma significantly increased the activity of caspases 1, 3, and 8. UVB-induced caspase 8 stimulation was significantly suppressed only by caspase 8 inhibitor, while inhibitors of caspases 1, 3, and 8 significantly suppressed UVB-induced caspase 1 stimulation. Caspase 3 and 8 inhibitors, but not caspase 1 inhibitor, significantly suppressed UVB-induced caspase 3 activity, suggesting sequential activation of caspases 8, 3, and 1 in UVB-irradiated SVHK cells. Cross-linking and immunoprecipitation analyses showed multimerization of Fas antigen following UVB irradiation of SVHK cells. Pretreatment of SVHK cells with IFN-gamma significantly augmented UVB-induced apoptosis that was accompanied by increased Fas expression. The susceptibility to UVB-induced apoptosis was also increased in Fas-transfected SVHK cells (F2 cells). Neutralizing anti-Fas antibody significantly suppressed caspase activation and Fas-dependent apoptosis of SVHK cells and F2 cells. In contrast, UVB-induced caspase activation and apoptosis were not inhibited by neutralizing anti-Fas antibody in both cell lines. Our results suggest that UVB directly activates Fas and subsequent caspase cascade resulting in apoptosis of SVHK cells. Furthermore, the expression level of Fas antigen in keratinocytes influenced their susceptibility to UVB-induced apoptosis.  相似文献   

11.
Fas-mediated apoptosis has been proposed to play an important role in the pathogenesis of Hashimoto's thyroiditis. Normal thyroid cells are resistant to Fas-mediated apoptosis in vitro but can be sensitized by the unique combination of interferon-gamma and IL-1beta cytokines. We sought to examine the mechanism of this sensitization and apoptosis signaling in primary human thyroid cells. Without the addition of cytokines, agonist anti-Fas antibody treatment of the thyroid cells resulted in the cleavage of proximal caspases, but this did not lead to the activation of caspase 7 and caspase 3. Apoptosis associated with the cleavage of caspases 7, 3, and Bid, and the activation of mitochondria in response to anti-Fas antibody occurred only after cytokine pretreatment. Cell surface expression of Fas, the cytoplasmic concentrations of procaspases 7, 8, and 10, and the proapoptotic molecule Bid were markedly enhanced by the presence of the cytokines. In contrast, P44/p42 MAPK (Erk) appeared to provide protection from Fas-mediated apoptosis because an MAPK kinase inhibitor (U0126) sensitized thyroid cells to anti-Fas antibody. In conclusion, Fas signaling is blocked in normal thyroid cells at a point after the activation of proximal caspases. Interferon-gamma/IL-1beta pretreatment sensitizes human thyroid cells to Fas-mediated apoptosis in a complex manner that overcomes this blockade through increased expression of cell surface Fas receptor, increases in proapoptotic molecules that result in mitochondrial activation, and late caspase cleavage. This process involves Bcl-2 family proteins and appears to be compatible with type II apoptosis regulation.  相似文献   

12.
alpha-Fetoprotein (AFP) is an oncoembryonal protein with multiple cell growth regulating, differentiating and immunosuppressive activities. Previous studies have shown that treatment of tumor cells in vitro with 1-10 microM AFP produces significant suppression of tumor cell growth by inducing dose-dependent cytotoxicity, but the molecular mechanisms underlying these AFP functions are obscure. Here, we show that AFP cytotoxicity is closely related to apoptosis, as shown by cell morphology, nuclear DNA fragmentation and caspase-3-like activity resulting in cleavage of poly(ADP-ribose) polymerase. Apoptosis was significantly inhibited by a CPP32 family protease inhibitor whereas a general caspase inhibitor had no inhibitory effect, showing some enhancement of AFP-mediated cell death. Using fluorogenic caspase substrates, we found that caspase-3-like proteases were activated as early as 4 h after treatment of Raji cells with 15 microM AFP, whereas caspase-1, caspase-8, and caspase-9-like activity was not detected during the time interval 0.5-17 h. AFP treatment of Raji cells increased Bcl-2 protein, showing that AFP-induced apoptosis is not explained by downregulation of the Bcl-2 gene. This also suggests that AFP operates downstream of the Bcl-2-sensitive step. AFP notably decreased basal levels of soluble and membrane-bound Fas ligand. Incubation of AFP-sensitive tumor cells (HepG2, Raji) with neutralizing anti-Fas, anti-tumor necrosis factor receptor (TNFR)1 or anti-TNFR2 mAb did not prevent AFP-induced apoptosis, demonstrating its independence of Fas-dependent and TNFR-dependent signaling. In addition, it was found that cells resistant to TNF-induced (Raji) or Fas-induced (MCF-7) apoptosis are, nevertheless, sensitive to AFP-mediated cell death. In contrast, cells sensitive to Fas-mediated cell death (Jurkat) are completely resistant to AFP. Taken as a whole, our data demonstrate that: (a) AFP induces apoptosis in tumor cells independently of Fas/Fas ligand or TNFR/TNF signaling pathways, and (b) AFP-mediated cell death involves activation of the effector caspase-3-like proteases, but is independent of upstream activation of the initiator caspase-1, caspase-8, and caspase-9-like proteases.  相似文献   

13.
Kuo PL 《Life sciences》2005,77(23):2964-2976
The survival of osteoblast cells is one of the determinants of the development of osteoporosis in patients with inflamed synovium, such as in rheumatoid arthritis (RA). By means of alkaline phosphatase (ALP) activity and osteocalcin ELISA assay, I have shown that myricetin exhibits a significant induction of differentiation in the human osteoblast-like cell line MG-63. In addition, I also assessed whether myricetin affects inflammatory cytokines-mediated apoptosis in osteoblast cells. TNF-alpha or IL-1beta enhances apoptotic DNA fragmentation in anti-Fas IgM-treated MG-63 cells by increasing Fas receptor expression. However, TNF-alpha or IL-1beta treatment alone does not induce apoptosis. Treatment of MG-63 cells with myricetin not only inhibited anti-Fas IgM-induced apoptosis, but also blocked the synergetic effect of anti-Fas IgM with TNF-alpha or IL-1beta on cell death. The apoptotic inhibition of myricetin is associated with inhibition of TNF-alpha and IL-1beta-mediated Fas expression and enhancement of FLIP expression, resulting in a decrease of caspase-8 and caspase-3 activation. These results indicate a potential use of myricetin in preventing osteoporosis by inhibiting inflammatory cytokines-mediated apoptosis in osteoblast cells.  相似文献   

14.
Trimerization of the Fas receptor (CD95, APO-1), a membrane bound protein, triggers cell death by apoptosis. The main death pathway activated by Fas receptor involves the adaptor protein FADD (for Fas-associated death domain) that connects Fas receptor to the caspase cascade. Anticancer drugs have been shown to enhance both Fas receptor and Fas ligand expression on tumor cells. The contribution of Fas ligand-Fas receptor interactions to the cytotoxic activity of these drugs remains controversial. Here, we show that neither the antagonistic anti-Fas antibody ZB4 nor the Fas-IgG molecule inhibit drug-induced apoptosis in three different cell lines. The expression of Fas ligand on the plasma membrane, which is identified in untreated U937 human leukemic cells but remains undetectable in untreated HT29 and HCT116 human colon cancer cell lines, is not modified by exposure to various cytotoxic agents. These drugs induce the clustering of Fas receptor, as observed by confocal laser scanning microscopy, and its interaction with FADD, as demonstrated by co-immunoprecipitation. Overexpression of FADD by stable transfection sensitizes tumor cells to drug-induced cell death and cytotoxicity, whereas down-regulation of FADD by transient transfection of an antisense construct decreases tumor cell sensitivity to drug-induced apoptosis. These results were confirmed by transient transfection of constructs encoding either a FADD dominant negative mutant or MC159 or E8 viral proteins that inhibit the FADD/caspase-8 pathway. These results suggest that drug-induced cell death involves the Fas/FADD pathway in a Fas ligand-independent fashion.  相似文献   

15.
Fas is a mouse monoclonal antibody-defined cell surface antigen of an unknown physiologic function. Previous studies demonstrated that the anti-Fas antibody mediated apoptosis in those cells sensitive to tumor necrosis factor (TNF) and, further, triggered the co-downregulation of tumor necrosis factor receptors (TNF-Rs). These findings led to speculation that Fas may be associated with TNF-Rs. The present studies were undertaken as an extension of our previous work on the obligate requirement for TNF in development and maintenance of cytotoxic lymphocytes and were designed to analyze the expression and consequences of Fas engagement in these cells. Herein, we demonstrate that, in contrast to TNF-R expression, both resting and IL-2-activated lymphocytes express Fas. In accordance with previous studies using tumor cell lines, lymphocytes rapidly downregulate TNF-Rs after treatment with anti-Fas. The ability of anti-Fas to mediate apoptotic cell death in lymphocytes, however, was dependent upon the status of cellular activation. For example, lymphocytes activated in IL-2 for longer than 4 days underwent rapid DNA fragmentation and cell death after anti-Fas treatment. Despite their expression of Fas, nonactivated lymphocytes and those activated for periods less than 4 days were refractory to antibody-mediated cell killing. Because anti-Fas-mediated lethality is selective for chronically activated lymphocytes, Fas may prove to be an appropriate target for immunosuppressive intervention.  相似文献   

16.
Death ligands not only induce apoptosis but can also trigger necrosis with distinct biochemical and morphological features. We recently showed that in L929 cells CD95 ligation induces apoptosis, whereas TNF elicits necrosis. Treatment with anti-CD95 resulted in typical apoptosis characterized by caspase activation and DNA fragmentation. These events were barely induced by TNF, although TNF triggered cell death to a similar extent as CD95. Surprisingly, whereas the caspase inhibitor zVAD prevented CD95-mediated apoptosis, it potentiated TNF-induced necrosis. Cotreatment with TNF and zVAD was characterized by ATP depletion and accelerated necrosis. To investigate the mechanisms underlying TNF-induced cell death and its potentiation by zVAD, we examined the role of poly(ADP-ribose)polymerase-1 (PARP-1). TNF but not CD95 mediated PARP activation, whereas a PARP inhibitor suppressed TNF-induced necrosis and the sensitizing effect of zVAD. In addition, fibroblasts expressing a noncleavable PARP-1 mutant were more sensitive to TNF than wild-type cells. Our results indicate that TNF induces PARP activation leading to ATP depletion and subsequent necrosis. In contrast, in CD95-mediated apoptosis caspases cause PARP-1 cleavage and thereby maintain ATP levels. Because ATP is required for apoptosis, we suggest that PARP-1 cleavage functions as a molecular switch between apoptotic and necrotic modes of death receptor-induced cell death.  相似文献   

17.
Apoptosis is mediated by members of the caspase family of proteases which can be activated by release of mitochondrial cytochrome c. Additional members of the caspase family are activated at the cell surface in response to direct stimulus from the external environment such as by activation of the Fas receptor. It has been suggested that these upstream caspases directly activate the downstream caspases which would obviate a role for cytochrome c in apoptosis induced by the Fas receptor. We demonstrate that cytochrome c is released from mitochondria of Jurkat cells in response to both staurosporine and an agonistic anti-Fas antibody and that only the latter is inhibited by the caspase inhibitor z-VAD-FMK. This suggests that an upstream caspase such as caspase-8 is required for the Fas-mediated release of mitochondrial cytochrome c. The protein phosphatase inhibitor calyculin A prevented cytochrome c release and apoptosis induced by both agents, suggesting that release of cytochrome c is required in both models. Zinc, once thought of as an endonuclease inhibitor, has previously been shown to prevent the activation of caspase-3. We show that zinc prevents the activation of downstream caspases and apoptosis induced by both insults, yet does not prevent release of mitochondrial cytochrome c. The ability of calyculin A and zinc to prevent DNA digestion implies that the mitochondrial pathway is important for induction of apoptosis by both agents. These results do not support an alternative pathway in which caspase-8 directly activates caspase-3. These results also demonstrate that a critical protein phosphatase regulates the release of cytochrome c and apoptosis induced by both insults.  相似文献   

18.
Apoptosis, Golgi fragmentation and elevated ceramide levels occur in Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) neurons, lymphoblasts and fibroblasts. Our purpose was to examine whether apoptosis is the mechanism of cell death in JNCL. This was tested by analyzing caspase-dependent/independent pathways and autophagy, and caspase effects on ceramide and Golgi fragmentation. zVAD prevented caspase activation, but not all cell death. Inhibiting caspase-8 suppressed caspases more than inhibition of any other caspase. Inhibiting caspase-8/6 was synergistic. zVAD suppressed autophagy. 3-methyladenine suppressed caspase activation less than zVAD did. Blocking autophagy/caspase-8/or-6 was synergistic. Blocking autophagy/caspase-3/or-9 was not. Inhibiting caspase-9/3 suppressed autophagy. Golgi fragmentation was suppressed by zVAD, and blocked by CLN3. CLN3, not zVAD, prevented ceramide elevation. In conclusion: caspase-dependent/independent apoptosis and autophagy occur caspase-dependent pathways initiate autophagy Golgi fragmentation results from apoptosis ceramide elevation is independent of caspases, and CLN3 blocks all cell death, prevents Golgi fragmentation and elevation of ceramide in JNCL.  相似文献   

19.
The role of protein kinase C-beta (PKC-beta) in apoptosis induced by tumor necrosis factor (TNF)-alpha and anti-Fas monoclonal antibody (mAb) in the human myeloid HL-60 leukemia cell line was studied by using its variant HL-525, which is deficient in PKC-beta. In contrast to the parental HL-60 cells, HL-525 is resistant to TNF-alpha-induced apoptosis but sensitive to anti-Fas mAb-induced apoptosis. Both cell types expressed similar levels of the TNF-receptor I, whereas the Fas receptor was detected only in HL-525 cells. Transfecting the HL-525 cells with an expression vector containing PKC-beta reestablished their susceptibility to TNF-alpha-induced apoptosis. The apoptotic effect of TNF-alpha in HL-60 and the transfectants was abrogated by fumonisin, an inhibitor of ceramide generation, and by the peptide Ac-YVAD-BoMK, an inhibitor of caspase-1 and -4. Supplementing HL-525 cells with exogenous ceramides bypassed the PKC-beta deficiency and induced apoptosis, which was also restrained by the caspase-1 and -4 inhibitor. The apoptotic effect of anti-Fas mAb in HL-525 cells was abrogated by the antioxidants N-acetylcysteine and glutathione and by the peptide z-DEVD-FMK, an inhibitor of caspase-3 and -7. We suggest that TNF-alpha-induced apoptosis involves PKC-beta and then ceramide and, in turn, caspase-1 and/or -4, whereas anti-Fas mAb-induced apoptosis utilizes reactive oxygen intermediates and, in turn, caspase-3 and/or -7.  相似文献   

20.
Cullen K  Davey R  Davey M 《Cytometry》2001,43(3):189-194
BACKGROUND: Multidrug resistance (MDR) is mediated by the drug resistance proteins, the multidrug resistance-associated protein (MRP) and P-glycoprotein, both of which confer resistance by the active efflux of chemotherapeutic drugs from the cell. Reduced Fas (CD95/APO-1) expression and resistance to Fas-mediated apoptosis have also been correlated with P-glycoprotein-mediated MDR. METHODS: We investigated cell surface Fas expression (using anti-Fas monoclonal antibody DX2.1) in a series of MRP-expressing drug-resistant leukemia sublines, and P-glycoprotein-expressing leukemia sublines, and their susceptibility to apoptosis induced by anti-Fas treatment (CH-11 monoclonal antibody). Caspase-3 activation was detected by Western blot and apoptosis was determined by flow cytometry with 7-aminoactinomycin D (7-AAD) staining of cells. RESULTS: Fas expression was not reduced in either the MRP- or P-glycoprotein-expressing drug-resistant cell lines, although expression was reduced by 15% in one low-level drug-resistant subline. Expression of MRP or P-glycoprotein did not confer resistance to caspase-3 activation or to anti-Fas-induced cell death. CONCLUSIONS: MDR mediated by the drug transport proteins MRP and P-glycoprotein does not correlate with resistance to Fas-mediated cell death or resistance to caspase-3 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号