首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Clinical isolates of Streptococcus pyogenes were classified by serological typing of their surface M protein. Non-M typeable strains with the emm1 gene were characterized as the degradation of M protein caused by overproduction of the extracellular cysteine protease, SpeB. These events are dependent on the growth phase. M protein produced prior to expression of SpeB is degraded in the stationary phase when the active form of SpeB is detected. The proteolytic degradation of M protein should be considered for precise M typing analysis.  相似文献   

2.
3.
4.
Pulse-electrophoresis, sequencing of emm genes coding protein M and PCR analysis of speA, speB, and speC genes were used for characterization of group A streptococci (GAS) isolated in different years in Moscow and Tuapse mostly from children and military staff. It has been shown that epidemic process of streptococcal infection caused by GAS in Moscow is based on circulation of many independent clones of Streptococcus pyogenes. Obtained data on complex typing of S. pyogenes would be useful for study of molecular epidemiology of diseases caused by GAS and improvement of epidemiologic surveillance.  相似文献   

5.
A组链球菌(Group A Streptococcus,GAS)常导致咽炎和皮肤感染,也能引起严重侵袭性感染.根据其表面M蛋白编码基因emm可将GAS分为200多型,严重侵袭性感染多由高毒力株引起,以emm1、emm3、emm12、emm28和emm89型常见.研究发现高毒力GAS株中CovRS基因突变可导致细菌逃逸固...  相似文献   

6.
7.
Group A streptococci (GAS) specifically attach to and internalize into human epithelial host cells. In some GAS isolates, fibronectin-binding proteins were identified as being responsible for these virulence traits. In the present study, the previously identified global negative regulator Nra was shown to control the binding of soluble fibronectin probably via regulation of protein F2 and/or SfbII expression in the serotype M49 strain 591. According to results from a conventional invasion assay based on the recovery of viable intracellular bacteria, the increased fibronectin binding did not affect bacterial adherence to HEp-2 epithelial cells, but was associated with a reduction in the internalization rates. However, when examined by confocal and electron microscopy techniques, the nra-mutant bacteria were shown to exhibit higher adherence and internalization rates than the corresponding wild type. The mutant bacteria escaped from the phagocytic vacuoles much faster, promoting consistent morphological changes which resulted in severe host cell damage. The apoptotic and lytic processes observed in nra-mutant infected host cells were correlated with an increased expression of the genes encoding superantigen SpeA, the cysteine protease SpeB, and streptolysin S in the nra-mutant bacteria. Adherence and internalization rates of a nra/speB-double mutant at wild-type levels indicated that the altered speB expression in the nra mutant contributed to the observed changes in both processes. The Nra-dependent effects on bacterial virulence were confined to infections carried out with stationary growth phase bacteria. In conclusion, the obtained results demonstrated that the global GAS regulator Nra modulates virulence genes, which are involved in host cell damage. Thus, by helping to achieve a critical balance of virulence factor expression that avoids the injury of target cells, Nra may facilitate GAS persistence in a safe intracellular niche.  相似文献   

8.
9.
10.
11.
12.
Primary infection of the human host by group A streptococci (GAS) most often involves either the epidermis of the skin or the oropharyngeal mucosa. A humanized in vivo model for impetigo was used to investigate the basis for host tissue tropism among GAS. Disruption of the speB gene (encoding for a secreted cysteine proteinase) led to a loss of virulence for two impetigo-derived strains (M-types 33 and 53), as evidenced by a diminution in tissue damage and a lack of reproductive growth. The level of cysteine proteinase activity in overnight cultures was associated with the extent of gross pathological changes induced by strains displaying varied degrees of virulence in the impetigo model. Moreover, high levels of secreted cysteine proteinase activity correlated with a genetic marker for preferred tissue site of infection at the skin (emm pattern D). The addition of exogenous SpeB to a speB mutant (emm pattern D) or to an avirulent throat-like strain (emm pattern A) led to increased bacterial reproduction at the skin. The data provide both experimental and epidemiological evidence for a critical role of a secreted bacterial protease in promoting host tissue-specific infection.  相似文献   

13.
Streptococcus pyogenes (group A Streptococcus, GAS) is a human pathogen that causes diseases of various intensity, from mild strep throat to life threatening invasive infections and postinfectional sequelae. S. pyogenes encodes multiple, often phage encoded, virulence factors and their presence is related to severity of the disease. Acquisition of mobile genetic elements, carrying virulence factors, as phages or ICEs (integrative and cojugative elements) has been shown previously to promote selection of virulent clones. We designed the system of eight low volume multi- and one singleplex PCR reactions to detect genes encoding twenty virulence factors (spd3, sdc, sdaB, sdaD, speB, spyCEP, scpA, mac, sic, speL, K, M, C, I, A, H, G, J, smeZ and ssa) and twenty one phage and ICE integration sites described so far for S. pyogenes. Classification of strains based on the phage and virulence factors absence or presence, correlates with PFGE MLST and emm typing results. We developed a novel, fast and cost effective system that can be used to detect GAS virulence factors. Moreover, this system may become an alternative and effective system to differentiate between GAS strains.  相似文献   

14.
15.
16.
Group A Streptococcus (GAS) is a leading human pathogen producing a diverse array of infections from simple pharyngitis (“strep throat”) to invasive conditions, including necrotizing fasciitis and toxic shock syndrome. The surface-anchored GAS M1 protein is a classical virulence factor that promotes phagocyte resistance and exaggerated inflammation by binding host fibrinogen (Fg) to form supramolecular networks. In this study, we used a virulent WT M1T1 GAS strain and its isogenic M1-deficient mutant to examine the role of M1-Fg binding in a proximal step in GAS infection-interaction with the pharyngeal epithelium. Expression of the M1 protein reduced GAS adherence to human pharyngeal keratinocytes by 2-fold, and this difference was increased to 4-fold in the presence of Fg. In stationary phase, surface M1 protein cleavage by the GAS cysteine protease SpeB eliminated Fg binding and relieved its inhibitory effect on GAS pharyngeal cell adherence. In a mouse model of GAS colonization of nasal-associated lymphoid tissue, M1 protein expression was associated with an average 6-fold decreased GAS recovery in isogenic strain competition assays. Thus, GAS M1 protein-Fg binding reduces GAS pharyngeal cell adherence and colonization in a fashion that is counterbalanced by SpeB. Inactivation of SpeB during the shift to invasive GAS disease allows M1-Fg binding, increasing pathogen phagocyte resistance and proinflammatory activities.  相似文献   

17.
A clonal variant of serotype M1 group A streptococcus (designated M1inv+) has been linked to severe and invasive infections, including sepsis, necrotizing fasciitis and toxic shock. High frequency internalization of cultured epithelial cells by the M1inv+ strain 90-226 is dependent upon the M1 protein. Invasion of HeLa cells was blocked by an anti-M1 antibody, invasion by an M1- strain (90-226 emm1::km) was greatly reduced, and latex beads bound to M1 protein were readily internalized by HeLa cells. Beads coated with a truncated M1 protein were internalized far less frequently. Scanning electron microscopy indicated that streptococci invade by a zipper-like mechanism, that may be mediated by interactions with host cell microvilli. Initially, internalized streptococci and streptococci undergoing endocytosis are associated with polymerized actin. Later in the internalization process, streptococcal-containing vacuoles are associated with the lysosomal membrane glycoprotein, LAMP-1.  相似文献   

18.
Streptococcus gordonii is a commensal bacterium that colonizes the hard and soft tissues present in the human mouth and nasopharynx. The cell wall-anchored polypeptides SspA and SspB expressed by S. gordonii mediate a wide range of interactions with host proteins and other bacteria. In this article we have determined the role of SspA and SspB proteins, which are members of the streptococcal antigen I/II (AgI/II) adhesin family, in S. gordonii adherence and internalization by epithelial cells. Wild-type S. gordonii DL1 expressing AgI/II polypeptides attached to and was internalized by HEp-2 cells, whereas an isogenic AgI/II- mutant was reduced in adherence and was not internalized. Association of S. gordonii DL1 with HEp-2 cells triggered protein tyrosine phosphorylation but no significant actin rearrangement. By contrast, Streptococcus pyogenes A40 showed 50-fold higher levels of internalization and this was associated with actin polymerization and interleukin-8 upregulation. Adherence and internalization of S. gordonii by HEp-2 cells involved beta1 integrin recognition but was not fibronectin-dependent. Recombinant SspA and SspB polypeptides bound to purified human alpha5beta1 integrin through sequences present within the NAV (N-terminal) region of AgI/II polypeptide. AgI/II polypeptides blocked interactions of S. gordonii and S. pyogenes with HEp-2 cells, and S. gordonii DL1 cells expressing AgI/II proteins inhibited adherence and internalization of S. pyogenes by HEp-2 cells. Conversely, S. gordonii AgI/II- mutant cells did not inhibit internalization of S. pyogenes. The results suggest that AgI/II proteins not only promote integrin-mediated internalization of oral commensal streptococci by host cells, but also potentially influence susceptibility of host tissues to more pathogenic bacteria.  相似文献   

19.
M protein is an important virulence determinant in Streptococcus pyogenes, but the amounts of M protein in various strains of the species remain to be elucidated. To assess the amount of M protein in strains of each emm genotype, dot blot analysis was performed on 141 clinically isolated strains. Among the cell membrane-associated proteins, M protein was present in greater quantities in the emm1, 3, and 6 strains than in the other emm strains. In addition three strains, one each of the emm1, 3, and 6 types, showed prolific M protein production (M protein-high producers). These three emm genotypes are frequently isolated in clinical practice. Sequencing of the csrRS gene, one of the two-component signal transduction systems implicated in virulence, was performed on 25 strains bearing different amounts of M protein. CsrS mutations, in contrast to CsrR protein, were detected in 11 strains. The M protein-high producer strain of emm1 type carried two amino acid substitutions, whereas the other three emm1 strains carried only one substitution each. The M protein-high producer expressed its emm gene more strongly than the corresponding M protein-low producer did according to TaqMan RT-PCR. These observations suggest that the accumulation of amino acid substitutions in CsrS protein may contribute, at least in part, to the large amount of M protein production seen in several emm genotypes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号