首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
【目的】检测M41型A群链球菌(GAS)ATCC12373中Ⅰ型胶原样蛋白(Scl1)与人低密度脂蛋白(LDL)的相互作用。【方法】克隆了M41型GAS ATCC12373的Ⅰ型胶原样蛋白(Scl1)及其V区(Scl1-V)基因,并表达、纯化重组蛋白rScl1(C176)和rScl1-V(C176V)。通过重组蛋白与人血浆的亲和色谱层析、Western blot及酶联免疫吸附试验(ELISA)检测C176、C176V与LDL的相互作用;通过GAS与LDL的ELISA试验和人血浆与GAS的共孵育试验,检测GAS与LDL的相互作用。【结果】结果证明C176和C176V可以与LDL特异性结合;表达Scl1的M41型GAS可以与LDL相结合。【结论】M41型GAS的Scl1可以与LDL特异性结合。  相似文献   

2.
对虾肝胰腺坏死病的爆发造成了对虾养殖产业的严重亏损。从上海地区凡纳滨对虾中分离出1株欧文氏弧菌(Vibrio owensii SH-14),该菌株可导致凡纳滨对虾死亡,且死虾出现对虾肝胰腺坏死病的典型症状。经PCR扩增欧文氏弧菌毒力蛋白PirA与PirB对应基因序列,并将其连接到表达质粒pET-21b(pirA)和pGEX-4t-1(pirB)。通过优化诱导表达和亲和层析纯化条件,最终获得大量高纯度的目的蛋白。经冷冻干燥保存为后期抗体合成以及进一步毒力效应研究提供参考。  相似文献   

3.
A群链球菌C5a肽酶(SCPA)是促进A群链球菌局部感染建立的一个主要表面毒力蛋白(GAS),作者使用了标准的间接酶联免疫吸附检测方法测定了对SCPA的免疫应答,并测量了与GAS相关的小儿咽炎急性期和恢复期的双份血清样本,证明了对SCPA的免疫应答不受感染的M型和病人年龄的影响,  相似文献   

4.
肺炎克雷伯菌是一种常见的革兰阴性杆菌,是第二大容易引起院内感染的细菌。高毒力肺炎克雷伯菌(HvKP)又称高黏性肺炎克雷伯,是从传统肺炎克雷伯菌中分离出来的具有高毒力、高黏性的侵袭性细菌,其表现出的高毒力会引起健康人发生侵袭性感染,严重者会危及生命。目前,临床实验室主要通过拉丝实验与传统的肺炎克雷伯菌相鉴别。研究发现,Hv KP的高黏性与其K1、K2、K57等血清型,编码荚膜相关基因及铁载体相关。对HvKP的毒力增强因素以及该菌引起的肝脓肿做简要综述。  相似文献   

5.
MRSA的7种新SCCmec型别及其抗药特性   总被引:2,自引:0,他引:2  
为探明海口地区耐甲氧西林金黄色葡萄球菌(MRSA)的耐药性和携带的葡萄球菌染色体mec盒(SCCmec)型别,对收集的1174株金黄色葡萄球菌用PBP2a检测法确证为MRSA有686株,用多重PCR对58株进行SCCmec分型测定,并用K-B琼脂扩散法和E-test法测定其对临床常用7类抗生素的代表性药物耐药性。结果在17株中又发现了7种新的SCCmec型别,其结构特点为:New3含A、F、H、M4个位点,New4型含F、H、M3个位点,New5含D、B、M3个位点,New6型含A、B、M3个位点,New7型含H、E、C、M4个位点,New8型含A、M两个位点,New9型含A、C、M3个位点;它们均与报道型别的结构特点存在明显差异;且携带新型的MRSA菌株,其分布特点及抗药性也与已报道的菌株存在差异:多分自门诊病人,且耐药性高,抗药谱较广,值得引起高度重视和关注。  相似文献   

6.
A族乙型溶血性链球菌(group A streptococcus pyogens,GAS)是链球菌中致病性最强的一种,广泛存在于自然界、人及动物粪便和健康人的鼻咽部,是急性呼吸道感染尤其是上呼吸道感染的重要细菌病原,可以引起儿童和成人急性咽炎和扁桃体炎,也可引起严重的侵袭性感染如坏死性筋膜炎和中毒休克综合征。感染后及时有效的治疗可避免给患者带来的严重伤害。  相似文献   

7.
研究ABCE1对肺癌(95-D和 NCI-H446)细胞的作用.使用RNA干扰技术,抑制ABCE1基因的表达,通过Western blot 分析及FACS检测,观察ABCE1基因对E-钙黏附蛋白在95-D/NCI-H446细胞表达的影响;运用transwell 侵袭实验,观察M95-D/ NCI-H446细胞侵袭力的变化.RNA干扰ABCE1基因后,实验组与对照组相比,在48 h后可显著抑制肺癌(95-D和 NCI-H446)细胞ABCE1蛋白的表达,同时,伴随E-钙黏附蛋白的高表达,以及细胞侵袭力的降低. ABCE1基因与E-钙黏附蛋白相关,抑制ABCE1基因可增加肺癌95-D/NCI-H446细胞的E-钙黏附蛋白的表达,减低细胞的侵袭力.  相似文献   

8.
为了研究单核细胞增生李斯特菌毒力基因启动子的结构特点与转录调控因子PrfA蛋白之间的关系,应用PCR定点突变和重组PCR技术缺失了该菌毒力基因inlC启动子上可能与PrfA蛋白结合以及诱发转录起始相关的碱基序列,构建了一系列突变启动子与lacZ报告基因融合表达质粒, 使lacZ基因的表达置于inlC突变启动子下,并分别电转化单核细胞增生李斯特菌野生株P14、PrfA蛋白高表达突变株P14a 和prfA基因等位缺失突变株A42中,检测相应的β-半乳糖苷酶活性。结果表明:位于inlC启动子转录起始点下游22bp 处的一段17bp的类似PrfA蛋白结合序列TTAACAGCGTTTGTTAA并没有增强和抑制PrfA转录调控活性的功能;甚至将其改造成“完美的” PrfA蛋白结合序列TTAACATTTGTTAA后,也不影响inlC依赖于PrfA的转录活性地表达;但是,如果缺失inlC启动子上原始的PrfA蛋白结合序列,则使inlC依赖于PrfA的转录活性完全丧失;另外,单核细胞增生李斯特菌毒力基因inlC和plcA 依赖于PrfA的转录活性的表达也与启动子上PrfA蛋白结合区(PrfA-box)距离-10区的碱基个数有关:最适为22或23bp,长于23bp或短于22bp的突变启动子的依赖PrfA的转录活性大大降低,甚至没有活性。说明除PrfA蛋白结合序列外,受PrfA调控的毒力基因启动子上还可能存在其它尚未阐明的结构和序列影响PrfA蛋白的结合以及启动转录表达。  相似文献   

9.
A族β溶血性链球菌(beta—haemolyticgroup A Streptococcusisolate,GAS)又称为酿脓链球菌(Strepto—coccus pyogenes),是一种常见的致病性化脓性革兰阳性球菌,猩红热是由GAS引起的儿童常见呼吸道传染病。近年来,随着严重侵袭性GAS感染在欧美一些国家再次增多,猩红热在一些国家中的发病率也在升高。简要介绍GAS的分型、超抗原及耐药与猩红热之间的关系。  相似文献   

10.
目的:通过检测高糖培养条件下视网膜Müller细胞神经纤维酸性蛋白(glial fibrillary acid protein,GFAP)和牛磺酸转运蛋白(taurine transporter,TAUT)的表达变化,观察葡萄糖对Müller细胞牛磺酸(taurine)转运功能的影响,探讨牛磺酸对早期糖尿病视网膜病(DR)可能的保护作用。方法:高糖培养大鼠视网膜Mǜller细胞,用免疫细胞荧光化学双染色、Western blotting技术检测不同浓度牛磺酸干预下Müller细胞GFAP及TAUT的蛋白表达。结果:高糖可引起Müller细胞GFAP表达增强,TAUT表达减弱;牛磺酸可减弱高糖引起的Müller细胞GFAP表达增强,TAUT在0.1mmol/L~10mmol/L的牛磺酸干预后表达增强。结论:牛磺酸可以抑制高糖导致的Müller细胞功能改变。  相似文献   

11.
Group A streptococcus (GAS) is the most common pathogen causing bacterial pharyngitis. We isolated streptococcal strains from tonsils removed from patients with tonsillar disease (n=202) and studied their ability to bind the complement regulators factor H (FH) and C4b binding protein (C4BP) using 125 I-labeled proteins. Blood isolates of GAS (n=10) were obtained from patients with bacteraemia. Streptococci were isolated from 21% of the tonsillitis patients. The emm and T types of the GAS strains were determined. Of the 26 GAS strains studied, only six could bind FH and/or C4BP above the threshold levels. The fraction of the offered radioactive protein bound ranged between 6-12% for FH and 19-56% for C4BP. The clinical course of the tonsillar disease was not related to the binding of FH or C4BP by GAS. The binding strains were mostly of the T4M4 or T28M28 type. From the invasive strains (n=10), three bound FH (binding level: 8-11%) and two C4BP (36-39%). The binding correlated only partially to M-protein (emm) type suggesting that the binding was not exclusively due to M-protein. The results indicate that complement regulator binding by GAS is only partially related to pathogenicity and not a universal property of all group A streptococci.  相似文献   

12.
Group A streptococcus (GAS) causes variety of diseases ranging from common pharyngitis to life-threatening severe invasive diseases, including necrotizing fasciitis and streptococcal toxic shock-like syndrome. The characteristic of invasive GAS infections has been thought to attribute to genetic changes in bacteria, however, no clear evidence has shown due to lack of an intriguingly study using serotype-matched isolates from clinical severe invasive GAS infections. In addition, rare outbreaks of invasive infections and their distinctive pathology in which infectious foci without neutrophil infiltration hypothesized us invasive GAS could evade host defense, especially neutrophil functions. Herein we report that a panel of serotype-matched GAS, which were clinically isolated from severe invasive but not from non-invaive infections, could abrogate functions of human polymorphnuclear neutrophils (PMN) in at least two independent ways; due to inducing necrosis to PMN by enhanced production of a pore-forming toxin streptolysin O (SLO) and due to impairment of PMN migration via digesting interleukin-8, a PMN attracting chemokine, by increased production of a serine protease ScpC. Expression of genes was upregulated by a loss of repressive function with the mutation of csrS gene in the all emm49 severe invasive GAS isolates. The csrS mutants from clinical severe invasive GAS isolates exhibited high mortality and disseminated infection with paucity of neutrophils, a characteristic pathology seen in human invasive GAS infection, in a mouse model. However, GAS which lack either SLO or ScpC exhibit much less mortality than the csrS-mutated parent invasive GAS isolate to the infected mice. These results suggest that the abilities of GAS to abrogate PMN functions can determine the onset and severity of invasive GAS infection.  相似文献   

13.
Group A Streptococcus (GAS) are pathogenic bacteria of the genus Streptococcus and cause severe invasive infections that comprise a wide range of diverse diseases, including acute respiratory distress syndrome, renal failure, toxic shock‐like syndrome, sepsis, cellulitis and necrotizing fasciitis. The essential virulence, infected host and external environmental factors required for invasive GAS infections have not yet been determined. Superinfection with influenza virus and GAS induced invasive GAS infections was demonstrated by our team in a mouse model, after which clinical cases of invasive GAS infections secondary to influenza virus infection were reported by other investigators in Japan, USA, Canada, UK China, and other countries. However, the pathogenic mechanisms underlying influenza virus‐GAS superinfection are not yet fully understood. The present review describes the current knowledge about invasive GAS infections by superinfection. Topics addressed include the bacteriological, virological and immunological mechanisms impacting invasion upon superinfection on top of underlying influenza virus infection by GAS and other bacteria (i.e., Streptococcus pneumoniae and Staphylococcus aureus). Future prospects are also discussed.
  相似文献   

14.
The presence of M protein on the surface of group A streptococci (GAS) confers the ability of the cell to resist phagocytosis in the absence of type-specific antibodies. It undergoes antigenic variation with more than 80 different serotypes having been defined. We have sequenced the M protein gene (emm1.1) from strain CS190 and present evidence that individual nucleotide substitutions are responsible for sequence variation in the N-terminal non-repeat region of emm1.1 and these substitutions have altered antibody recognition of opsonic epitopes. The N-terminal non-repeat domains of two other closely related strains, 71-155 and 76-088, were found to have sequence identical to emm1.1 with the addition of a 21 bp insert. This study provides the first evidence that nucleotide substitutions and small insertions are responsible for size and antigenic variation in the N terminal non-repeat domain of the M protein of GAS.  相似文献   

15.
Group A Streptococcus (GAS) infections remain a significant health care problem due to high morbidity and mortality associated with GAS diseases, along with their increasing worldwide prevalence. Macrophages play a key role in the control and clearance of GAS infections. Moreover, pro-inflammatory cytokines production and GAS persistence and invasion are related. In this study we investigated the correlation between the GAS clinical isolates genotypes, their known clinical history, and their ability to modulate innate immune response. We constituted a collection of 40 independent GAS isolates representative of the emm types currently prevalent in France and responsible for invasive (57.5%) and non-invasive (42.5%) clinical manifestations. We tested phagocytosis and survival in mouse bone marrow-derived macrophages and quantified the pro-inflammatory mediators (IL-6, TNF-α) and type I interferon (INF-β) production. Invasive emm89 isolates were more phagocytosed than their non-invasive counterparts, and emm89 isolates more than the other isolates. Regarding the survival, differences were observed depending on the isolate emm type, but not between invasive and non-invasive isolates within the same emm type. The level of inflammatory mediators produced was also emm type-dependent and mostly invasiveness status independent. Isolates of the emm1 type were able to induce the highest levels of both pro-inflammatory cytokines, whereas emm89 isolates induced the earliest production of IFN-β. Finally, even within emm types, there was a variability of the innate immune responses induced, but survival and inflammatory mediator production were not linked.  相似文献   

16.
The group A Streptococcus (GAS) causes diseases that range from mild (e.g. pharyngitis) to severely invasive (e.g. necrotizing fasciitis). Strain- and serotype-specific differences influence the ability of isolates to cause individual diseases. At the center of this variability is the CovR/S two-component system and the accessory protein RocA. Through incompletely defined mechanisms, CovR/S and RocA repress the expression of more than a dozen immunomodulatory virulence factors. Alleviation of this repression is selected for during invasive infections, leading to the recovery of covR, covS or rocA mutant strains. Here, we investigated how RocA promotes CovR/S activity, identifying that RocA is a pseudokinase that interacts with CovS. Disruption of CovS kinase or phosphatase activities abolishes RocA function, consistent with RocA acting through the modulation of CovS activity. We also identified, in conflict with a previous study, that the RocA regulon includes the secreted protease-encoding gene speB. Finally, we discovered an inverse correlation between the virulence of wild-type, rocA mutant, covS mutant and covR mutant strains during invasive infection and their fitness in an ex vivo upper respiratory tract model. Our data inform on mechanisms that control GAS disease potential and provide an explanation for observed strain- and serotype-specific variability in RocA function.  相似文献   

17.
Streptococcus pyogenes, a group A Streptococcus (GAS), has been recognized as the causative pathogen in patients with severe invasive streptococcal infection with or without necrotizing fasciitis. In recent epidemiological studies, Streptococcus dysgalactiae subsp. equisimilis (SDSE) has been isolated from severe invasive streptococcal infection. Complete genome sequence showed that SDSE is the closest bacterial species to GAS, with approximately 70% of genome coverage. SDSE, however, lacks several key virulence factors present in GAS, such as SPE‐B, the hyaluronan synthesis operon and active superantigen against human immune cells. A key event in the ability of GAS to cause severe invasive streptococcal infection was shown to be the acquisition of novel genetic traits such as phages. Strikingly, however, during severe invasive infection, GAS destroys its own covRS two‐component system, which negatively regulates many virulence factor genes, resulting in a hyper‐virulent phenotype. In contrast, this phenomenon has not been observed in SDSE. The present review describes the epidemiology of severe invasive streptococcal infection and the detailed pathogenic mechanisms of GAS and SDSE, emphasizing findings from their genome sequences and analyses of gene expression.  相似文献   

18.
19.
In addition to beta-haemolytic streptococci belonging to Lancefield group A (Streptococcus pyogenes, GAS), human isolates of group C (GCS) and group G (GGS) streptococci (S. dysgalactiae subsp. equisimilis) have been implicated as causative agents in outbreaks of purulent pharyngitis, of wound infections and recently also of streptococcal toxic shock-like syndrome. Very little is known about the organisation of the genomic region in which the emm gene of GCS and GGS is located. We have investigated the genome sequences flanking the emm gene in GCS by sequencing neighbouring fragments obtained by inverse PCR. Our sequence data for GCS strains 25287 and H46A revealed two types of arrangement in the emm region, which differ significantly from the known types of mga regulon in GAS. We named this segment of the genome mgrC (for multigene regulon-like segment in group C streptococci). In strains belonging to the first mgrC type (prototype strain 25287) the emm gene is flanked up-stream by mgc, a gene that is 61% identical to the mga gene of GAS. A phylogenetic analysis of the deduced protein sequences showed that Mgc is related to Mga proteins of various types of GAS but forms a distinct cluster. Downstream of emm, the mgrC sequence region is bordered by rel. This gene encodes a protein that functions in the synthesis and degradation of guanosine 3',5' bipyrophosphate (ppGpp) during the stringent regulatory response to amino acid deprivation. In the second mgrC type (prototype strain H46A), the genes mgc and emm are arranged as in type 1. But an additional ORF (orf) is inserted in opposite orientation between emm and rel. This orf shows sequence homology to cpdB, which is present in various microorganisms and encodes 2',3' cyclo-nucleotide 2'-phosphodiesterase. PCR analysis showed that these two mgrC arrangements also exist in GGS. Our sequence and PCR data further showed that both types of mgrC region in GCS and GGS are linked via rel to the streptokinase region characterised recently in strain H46A. A gene encoding C5a peptidase, which is present at the 3' end of the mga regulon in GAS, was not found in the mgrC region identified in the GCS and GGS strains investigated here.  相似文献   

20.
Group A streptococcus (GAS) causes diseases ranging from benign to severe infections such as necrotizing fasciitis (NF). The reasons for the differences in severity of streptococcal infections are unexplained. We developed the polymorphic-tag-lengths-transposon-mutagenesis (PTTM) method to identify virulence genes in vivo. We applied PTTM on an emm14 strain isolated from a patient with NF and screened for mutants of decreased virulence, using a mouse model of human soft-tissue infection. A mutant that survived in the skin but was attenuated in its ability to reach the spleen and to cause a lethal infection was identified. The transposon was inserted into a small open reading frame (ORF) in a locus termed sil, streptococcal invasion locus. sil contains at least five genes (silA-E) and is highly homologous to the quorum-sensing competence regulons of Streptococcus pneumoniae. silA and silB encode a putative two-component system whereas silD and silE encode two putative ABC transporters. silC is a small ORF of unknown function preceded by a combox promoter. Insertion and deletion mutants of sil had a diminished lethality in the animal model. Virulence of a deletion mutant of silC was restored when injected together with the avirulent emm14-deletion mutant, but not when these mutants were injected into opposite flanks of a mouse. DNA transfer between these mutants occurred in vivo but could not account for the complementation of virulence. DNA exchange between the emm14-deletion mutant and mutants of sil occurred also in vitro, at a frequency of approximately 10-8 for a single antibiotic marker. Whereas silC and silD mutants exchanged markers with the emm14 mutant, silB mutant did not. Thus, we identified a novel locus, which controls GAS spreading into deeper tissues and could be involved in DNA transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号