首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 543 毫秒
1.
Structural variation in the stroma‐grana (SG) arrangement of the thylakoid membranes, such as changes in the thickness of the grana stacks and in the ratio between grana and inter‐grana thylakoid, is often observed. Broadly, such alterations are considered acclimation to changes in growth and the environment. However, the relation of thylakoid morphology to plant growth and photosynthesis remains obscure. Here, we report changes in the thylakoid during leaf development under a fixed light condition. Histological studies on the chloroplasts of fresh green Arabidopsis leaves have shown that characteristically shaped thylakoid membranes lacking the inter‐grana region, referred to hereafter as isolated‐grana (IG), occurred adjacent to highly ordered, large grana layers. This morphology was restored to conventional SG thylakoid membranes with the removal of bolting stems from reproductive plants. Statistical analysis showed a negative correlation between the incidences of IG‐type chloroplasts in mesophyll cells and the rates of leaf growth. Fluorescence parameters calculated from pulse‐amplitude modulated fluorometry measurements and CO2 assimilation data showed that the IG thylakoids had a photosynthetic ability that was equivalent to that of the SG thylakoids under moderate light. However, clear differences were observed in the chlorophyll a/b ratio. The IG thylakoids were apparently an acclimated phenotype to the internal condition of source leaves. The idea is supported by the fact that the life span of the IG thylakoids increased significantly in the later developing leaves. In conclusion, the heterogeneous state of thylakoid membranes is likely important in maintaining photosynthesis during the reproductive phase of growth.  相似文献   

2.
This review provides a brief historical account of how microscopical studies of chloroplasts have contributed to our current knowledge of the structural and functional organization of thylakoid membranes. It starts by tracing the origins of the terms plastid, grana, stroma and chloroplasts to light microscopic studies of 19th century German botanists, and then describes how different types of electron microscopical techniques have added to this field. The most notable contributions of thin section electron microscopy include the elucidation of the 3-D organization of thylakoid membranes, the discovery of prolamellar bodies in etioplasts, and the structural changes in thylakoid architecture that accompany the light-dependent transformation of etioplasts into chloroplasts. Attention is then focused on the roles that freeze-fracture and freeze-etch electron microscopy and immuno electron microscopy have played in defining the extent to which the functional complexes of thylakoids are non-randomly distributed between appressed, grana and non-appressed stroma thylakoids. Studies reporting on how this lateral differentiation can be altered experimentally, and how the spatial organization of functional complexes is affected by alterations in the light environment of plants are also included in this discussion. Finally, the review points to the possible uses of electron microscope tomography techniques in future structural studies of thylakoid membranes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Grana are not essential for photosynthesis, yet they are ubiquitous in higher plants and in the recently evolved Charaphyta algae; hence grana role and its need is still an intriguing enigma. This article discusses how the grana provide integrated and multifaceted functional advantages, by facilitating mechanisms that fine-tune the dynamics of the photosynthetic apparatus, with particular implications for photosystem II (PSII). This dynamic flexibility of photosynthetic membranes is advantageous in plants responding to ever-changing environmental conditions, from darkness or limiting light to saturating light and sustained or intermittent high light. The thylakoid dynamics are brought about by structural and organizational changes at the level of the overall height and number of granal stacks per chloroplast, molecular dynamics within the membrane itself, the partition gap between appressed membranes within stacks, the aqueous lumen encased by the continuous thylakoid membrane network, and even the stroma bathing the thylakoids. The structural and organizational changes of grana stacks in turn are driven by physicochemical forces, including entropy, at work in the chloroplast. In response to light, attractive van der Waals interactions and screening of electrostatic repulsion between appressed grana thylakoids across the partition gap and most probably direct protein interactions across the granal lumen (PSII extrinsic proteins OEEp-OEEp, particularly PsbQ-PsbQ) contribute to the integrity of grana stacks. We propose that both the light-induced contraction of the partition gap and the granal lumen elicit maximisation of entropy in the chloroplast stroma, thereby enhancing carbon fixation and chloroplast protein synthesizing capacity. This spatiotemporal dynamic flexibility in the structure and function of active and inactive PSIIs within grana stacks in higher plant chloroplasts is vital for the optimization of photosynthesis under a wide range of environmental and developmental conditions.  相似文献   

4.
Changes of chloroplast thylakoid membrane stacks and Chl a/b ratio in the plumule of sacred lotus (Nelumbo nucifera Gaertn) seeds during their germination under light were as follows: Before germination there were giant grana and very low Chi a/b ratio (0.9) in the chloroplasts. Two days after germination, the thylakoid membranes of the giant grana gradually loosened and even destacked (disintegrated), the Chl a/b ratio was 1.06. Four clays after germination, the newly formed grana thylakoid membranes were 3–5 times shorter than those of the supergrana thylakoid membranes before germination and less grana stacks were seen; the Chl a/b ratio was 1.42. Six days after germination, the stacked thylakoi membranes became more orderly arranged. In addition the grana increased in number, the stroma thylakoid membranes were scarce, the Chl a/b ratio was 2.16. Eiglt days after germination, the thylakoid membranes in each granum decreased, but the total number of grana increased only slightly. In the meantime, some large starch grains and more stroma thylakoid membranes appeared; the Chl a/b ratio was 2.77. Ten days after germination normal thylakoid membrane structure was formed both in grana and stroma lamellae. They were arranged orderly as in the chloroplasts of other higher plants; the Chl a/b ratio was 2.80. The following conclusions could be drawn from the above mentioned results: 1) There was a negative correlation between the degree of stacking of the grana thylakoid membranes and the Chl a/b ratio. This statement further proved that the membranes stacking might mainly be induced by LHCII. 2) Development of the grana thylakoid membranes within chloroplasts from sacred lotus plumule followed that of the stroma thylakoid membranes, and the tendency of changes of their Chl 2/b ratio being from the lowest to the highest and then to normal were quite different from those of other higher plants. The chloroplasts iri the latter plants contain long parallel stacks of nonappressed primary thylakoids at second step, and the changes of their ratio of Chl a/b tend to be from the highest to the lowest and then to normal. There are indications that sacred lotus plumule might employ a distinctive developing pathway. This provides an important basis for Nelumbo to possess an unique position in phylogeny of Angiospermae.  相似文献   

5.
We have investigated the three-dimensional (3D) architecture of the thylakoid membranes of Arabidopsis (Arabidopsis thaliana), tobacco (Nicotiana tabacum), and spinach (Spinacia oleracea) with a resolution of approximately 7 nm by electron tomography of high-pressure-frozen/freeze-substituted intact chloroplasts. Higher-plant thylakoids are differentiated into two interconnected and functionally distinct domains, the photosystem II/light-harvesting complex II-enriched stacked grana thylakoids and the photosystem I/ATP synthase-enriched, nonstacked stroma thylakoids. The grana thylakoids are organized in the form of cylindrical stacks and are connected to the stroma thylakoids via tubular junctions. Our data confirm that the stroma thylakoids are wound around the grana stacks in the form of multiple, right-handed helices at an angle of 20° to 25° as postulated by a helical thylakoid model. The junctional connections between the grana and stroma thylakoids all have a slit-like architecture, but their size varies tremendously from approximately 15 × 30 nm to approximately 15 × 435 nm, which is approximately 5 times larger than seen in chemically fixed thylakoids. The variable slit length results in less periodicity in grana/stroma thylakoid organization than proposed in the original helical model. The stroma thylakoids also exhibit considerable architectural variability, which is dependent, in part, on the number and the orientation of adjacent grana stacks to which they are connected. Whereas some stroma thylakoids form solid, sheet-like bridges between adjacent grana, others exhibit a branching geometry with small, more tubular sheet domains also connecting adjacent, parallel stroma thylakoids. We postulate that the tremendous variability in size of the junctional slits may reflect a novel, active role of junctional slits in the regulation of photosynthetic function. In particular, by controlling the size of junctional slits, plants could regulate the flow of ions and membrane molecules between grana and stroma thylakoid membrane domains.  相似文献   

6.
Summary We analyzed the formation of thylakoids and grana during the development of pea chloroplasts, illuminated by white, red and blue low intensity light. The total length of granal and intergranal thylakoids, and the length of granal thylakoids per unit area of plastid section were measured. Initially the greatest increase in length of granal thylakoids and the highest incidence of grana with large thylakoid content occurred in red light. On the other hand, with illumination times of over 12 hours blue light appeared to be more efficient in stimulating grana formation and thylakoid growth.  相似文献   

7.
It has been reported in quite a number of literatures that doubled CO2 concentration increased the photosynthetic rate and dry matter production of C3 plants, but substantially affected C4 plants little. However, why may CO2 enrichment promote growth and either no change or decrease reproductive allocation of the C3 species, but havinag no effects on growth characteristics of the C4 plants? So far, there has been no satisfactory explanation on that mentioned above, except the differences in their CO2 compensatory points. In the past, although some studies on ultrastructure of the chloroplasts under doubled CO2 concentration were limitedly conducted. Almost all the relevant experimental materials were only from C3 plants not from C4 plants, and even though the results were of inconsistancy. Thereby, it needs to verify whether the differences in photosynthesis of C3 and C4 plants at doubled CO2 level is caused by the difference in their chloroplast deterioration. Experiments to this subject were conducted at the Botanical Garden of Institute of Botany, Academia Sinica in 1993 and 1994. Both experimental materials from C3 plant alfalfa (Medicago sativa) and C4 plant foxtail millet (Setaria italica) were cultivated in the cylindrical open-top chambers (2.2 m in diameter × 2.4 m in height) with aluminum frames covered by polyethylene film. Natural air or air with 350× 10-6 CO2 were blown from the bottom of the chamber space with constant temperature between inside and outside of the chamber 〈0.2℃〉. Electron microscopic observation revealed that the ultrastructure of the chloroplasts from C3 plant Medicago sativa and C4 plant Seteria italica growing under the same doubled CO2 concentration were quite different from each other. The differential characteristics in ultrastructure of chloro plasts displayed mainly in the configuration of thylakoid membrances and the accumulation of starch grains. They were as follows: 1. The most striking feature was the building up of starch grains in the chloroplasts of the bundle sheath cells (BSCs) and the mesophyll cells (MCs) at doubled CO2 concentra tion. The starch grains appeared centrifugally first in the BSCs and then in the chloroplast of the other MCs. It was worthy to note that the starch grains in the chloroplasts of C4 plant Setaria ira/ica were much more than those of the C3 plant Medicago sativa . The decline of photosynthesis in the doubled CO2-grown C4 plants might be caused by an over accumulation of starch grains, that deformed the chloroplast even demaged the stroma thylakoids and grana. There might exsist a correlation between the comformation of thylakoid system and starch grain accumulation, namely conversion and transfer of starch need energy from ATP, and coupling factor (CF) for ATP formation distributed mainly on protoplastic surface (PSu) of stroma thylakoid membranes, as well as end and margin membranes of grana thylakoids. Thereby, these results could provide a conclusive evidence for the reason of non effectiveness on growth characteristics of C4 plant. 2. Under normal condition , the mature chlolroplats of higher plants usually develop complete and regularly arranged photosynthetic membrane systems . Chloroplasts from the C4 plant Setaria italica, however, exerted significant changes on stacking degree, grana width and stroma thylakoid length under doubled CO2 concentration; In these changes, the grana stacks were smaller and more numerous, and the number of thylakoids per granum was greatly increased, and the stroma thylakoid was greatly lengthened as compared to those of the control chloroplasts. But the grana were mutually intertwined by stroma thylakoid. The integrity of some of the grana were damaged due to the augmentation of the intrathylakoid space . Similarly, the stroma thylakoids were also expanded. In case. the plant was seriously effected by doubled CO2 concentration as observed in C4 plant Setaria italica , its chloroplasts contained merely the stroma (matrix) with abundant starch grains, while grana and stroma thylakoid membranes were unrecognizable, or occasionally a few residuous pieces of thylakoid membranes could be visualized, leaving a situation which appeared likely to be chloroplast deterioration. However, under the same condition the C3 plant Medicago sativa possessed normally developed chloroplasts, with intact grana and stroma thylakoid membranes. Its chloroplasts contained grana intertwined with stroma thylakoid membranes, and increased in stacking degree and granum width, in spite of more accumulated starch grains within the chloroplasts. These configuration changes of the thylakoid system were in consistant with the results of the authors another study on chloroplast function, viz. the increased capacity of chloroplasts for light absorption and efficiency of PSⅡ.  相似文献   

8.
Summary Changes of membrane thickness and loculi were studied after red (650 nm) and far-red (707 nm) light in thylakoids of maize with different stacking and pigment compositions.The most intensive shrinkage of thylakoid membranes occurred in grana and under red light. Membranes of stroma thylakoids responded more to far-red light. Bundle sheath thylakoid membranes did not change in thickness. Loculi decreased in all types of thylakoids under both, red and far-red light. Thylakoids obtained from a -carotenic mutant exhibited a contrasting response: swelling under red light followed by photodestruction. Changes under far-red light were similar to that of normal stroma thylakoids.The data on normal chloroplasts show that the light induced shrinkage of membranes and the decrease of loculi are coupled to a different degree in various kinds of thylakoids; that the thylakoid flattening can be correlated with the Photosystem content of the membranes; and that two kinds of single thylakoids (stroma lamellae and bundle sheath lamellae) are different in molecular structure and function.Data on carotenoid deficient chloroplasts indicate a photooxidative destruction of the thylakoids by Photosystem 2 that occurs in the absence of normal carotenoids.  相似文献   

9.
Abstract. The ultrastructure of chloroplasts from palisade and spongy tissue was studied in order to analyse the adaptation of chloroplasts to the light gradient within the bifacial leaves of pea. Chloroplasts of two nuclear gene mutants of Pisum sativum (chlorotica-29 and chlorophyll b-less 130A), grown under normal light conditions, were compared with the wild type (WT) garden-pea cv. ‘Dippes Gelbe Viktoria’. The differentiation of the thylakoid membrane system of plastids from normal pea leaves exhibited nearly the same degree of grana formation in palisade and in spongy tissue. Using morphometrical measurements, only a slight increase in grana stacking capacity was found in chloroplasts of spongy tissue. In contrast, chloroplasts of mutant leaves differed in grana development in palisade and spongy tissue, respectively. Their thylakoid systems appeared to be disorganized and not developed as much as in chloroplasts from normal pea leaves. Grana contained fewer lamellae per granum, the number of grana per chloroplast section was reduced and the length of appressed thylakoid regions was decreased. Nevertheless, chloroplasts of the mutants were always differentiated into grana and stroma thylakoids. The structural changes observed and the reduction of the total chlorophyll content correlated with alterations in the polypeptide composition of thylakoid membrane preparations from mutant chloroplasts. In sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), polypeptide bands with a relative molecular mass of 27 and 26 kilodalton (kD) were markedly reduced in mutant chloroplasts. These two polypeptides represented the major apoproteins of the light harvesting chlorophyll a/b complex from photosystem II (LHC-II) as inferred from a comparison with the electrophoretic mobility of polypeptides isolated from the LHC-II.  相似文献   

10.
The leaves of Acer negundo L. var. odessanum (H. Rothe), if permanently exposed to strong sunlight, do not green, but remain yellow and finally become bleached. In yellow leaves the plastids contain single thylakoids and no grana. In plastids of bleached leaves, however, only vesicles are present. The concentration of chlorophylls and photosynthetic activity are much lower in those leaves than in the green ones. If the illumination is reduced (e.g. by shading) both the yellow and the bleached leaves become greenish, and even fully green after a few days at a sufficiently low light intensity. The plastids of yellow-green leaves contain small grana. In dark green leaves the thylakoid system of the chloroplasts is normally developed forming true grana, regardless of whether the leaves were originally green, or became green by shading the yellow or bleached ones. Their pigment concentration and photosynthetic activity are also normal. If green leaves are exposed to sunlight they do not yellow or bleach. During a 3-week period the structure of the thylakoid system did not perceivably change, with the exception that large plastoglobules formed in the stroma.  相似文献   

11.
In higher plants, thylakoid membrane protein complexes show lateral heterogeneity in their distribution: photosystem (PS) II complexes are mostly located in grana stacks, whereas PSI and adenosine triphosphate (ATP) synthase are mostly found in the stroma-exposed thylakoids. However, recent research has revealed strong dynamics in distribution of photosystems and their light harvesting antenna along the thylakoid membrane. Here, the dark-adapted spinach (Spinacia oleracea L.) thylakoid network was mechanically fragmented and the composition of distinct PSII-related proteins in various thylakoid subdomains was analyzed in order to get more insights into the composition and localization of various PSII subcomplexes and auxiliary proteins during the PSII repair cycle. Most of the PSII subunits followed rather equal distribution with roughly 70% of the proteins located collectively in the grana thylakoids and grana margins; however, the low molecular mass subunits PsbW and PsbX as well as the PsbS proteins were found to be more exclusively located in grana thylakoids. The auxiliary proteins assisting in repair cycle of PSII were mostly located in stroma-exposed thylakoids, with the exception of THYLAKOID LUMEN PROTEIN OF 18.3 (TLP18.3), which was more evenly distributed between the grana and stroma thylakoids. The TL29 protein was present exclusively in grana thylakoids. Intriguingly, PROTON GRADIENT REGULATION5 (PGR5) was found to be distributed quite evenly between grana and stroma thylakoids, whereas PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) was highly enriched in the stroma thylakoids and practically missing from the grana cores. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

12.
A theoretical analysis is made on the relation between light-induced thylakoid shrinkage, slow light-induced absorbancy changes about 520 nm, and light-induced scattering changes observed at 90°, which occur in isolated chloroplasts. A simple model of the thylakoids stacks (grana) is assumed and by a mathematical formalism a correlation of these effects is shown. The light minus dark difference spectrum is shown to peak around 520 nm, a fact that confirms earlier suggestions that this difference band is due to the combined effects of the selective dispersion and optical-conformational changes in the grana.  相似文献   

13.
The light environment during plant growth determines the structural and functional properties of higher plant chloroplasts, thus revealing a dynamically regulated developmental system. Pisum sativum plants growing under intermittent illumination showed chloroplasts with fully functional photosystem (PS) II and PSI reaction centers that lacked the peripheral chlorophyll (Chi) a/b and Chl a light-harvesting complexes (LHC), respectively. The results suggest a light flux differential threshold regulation in the biosynthesis of the photosystem core and peripheral antenna complexes. Sun-adapted species and plants growing under far-red-depleted illumination showed grana stacks composed of few (3–5) thylakoids connected with long intergrana (stroma) thylakoids. They had a PSII/PSI reaction center ratio in the range 1.3–1.9. Shade-adapted species and plants growing under far-red-enrichcd illumination showed large grana stacks composed of several thylakoids, often extending across the entire chloroplast body, and short intergrana stroma thylakoids. They had a higher PSII/PSI reaction center ratio, in the range of 2.2–4.0. Thus, the relative extent of grana and stroma thylakoid formation corresponds with the relative amounts of PSII and PSI in the chloroplast, respectively. The structural and functional adaptation of the photosynthetic membrane system in response to the quality of illumination involves mainly a control on the rate of PSII and PSI complex biosynthesis.  相似文献   

14.
Deep‐shade plants have adapted to low‐light conditions by varying morphology and physiology of cells and chloroplasts, but it still remains unclear, if prolonged periods of high‐light or darkness induce additional modifications in chloroplasts' anatomy and pigment patterns. We studied giant chloroplasts (bizonoplasts) of the deep‐shade lycopod Selaginella erythropus in epidermal cells of mature fully developed microphylls and subjected them to prolonged darkness and high‐light conditions. Chloroplast size and ultrastructure were investigated by light and electron microscopy. Physiological traits were studied by pigment analyses, photosynthetic performance of photosystem II, and formation of reactive oxygen species. Results show that (a) thylakoid patterns and shape of mature bizonoplasts vary in response to light and dark conditions. (b) Prolonged darkness induces transitory formation of prolamellar bodies, which so far have not been described in mature chloroplasts. (c) Photosynthetic activity is linked to structural responses of chloroplasts. (d) Photosystem II is less active in the upper zone of bizonoplasts and more efficient in the grana region. (e) Formation of reactive oxygen species reflects the stress level caused by high‐light. We conclude that during prolonged darkness, chlorophyll persists and even increases; prolamellar bodies form de novo in mature chloroplasts; bizonoplasts have spatial heterogeneity of photosynthetic performance.  相似文献   

15.
Leaf specimens of evergreen Diapensia lapponica were collected monthly in Northern Finland (ca 70°N) in order to study seasonal changes in the ultrastructure of the chloroplasts of the palisade mesophyll.
The volume fraction of chloroplasts per cell was lowest in summer and increased towards autumn and winter. However, the relative size seemed to be higher in summer than in other seasons. Length/width (L/W) ratio was calculated as an index of the chloroplast shape. The shape varied from elongated (usually concavo-convex in profile), with an L/W ratio from 1.9 to 2.5 in summer, to roundish or irregular (L/W ratio from 1.2 to 1.4) in midwinter. In autumn the chloroplasts were most elongated (LW ratio 2.6). The starch content was highest at the end of June when it constituted 38% of the volume of chloroplast. It decreased from then till November and was absent during the rest of the winter. Changes in the thylakoid system involved an increase in the number of partitions from an average of three in early summer to 11 in autumn and a decrease to M again towards winter. In spring it was up to 7 again. The large grana and high portion of stroma thylakoids observed in late August - September (the period of rhythmic light) are consistent with the high photosynthesis activity reported previously in D. lapponica in laboratory conditions.  相似文献   

16.
In cyanobacteria and chloroplasts, thylakoids are the complex internal membrane system where the light reactions of oxygenic photosynthesis occur. In plant chloroplasts, thylakoids are differentiated into a highly interconnected system of stacked grana and unstacked stroma membranes. In contrast, in cyanobacteria, the evolutionary progenitors of chloroplasts, thylakoids do not routinely form stacked and unstacked regions, and the architecture of the thylakoid membrane systems is only now being described in detail in these organisms. We used electron tomography to examine the thylakoid membrane systems in one cyanobacterium, Cyanothece sp. ATCC 51142. Our data showed that thylakoids form a complicated branched network with a rudimentary quasi-helical architecture in this organism. A well accepted helical model of grana-stroma architecture of plant thylakoids describes an organization in which stroma thylakoids wind around stacked granum in right-handed spirals. Here we present data showing that the simplified helical architecture in Cyanothece 51142 is lefthanded in nature. We propose a model comparing the thylakoid membranes in plants and this cyanobacterium in which the system in Cyanothece 51142 is composed of non-stacked membranes linked by fret-like connections to other membrane components of the system in a limited left-handed arrangement.Key words: cyanobacteria, Cyanothece 51142, thylakoid membrane, electron tomography, chloroplast  相似文献   

17.
In Chlamydomonas reinhardii the elongation factor EF-Tu is encoded in the chloroplast DNA. We identified EF-Tu in the electrophoretic product pattern of chloroplast-made proteins and showed that this protein is only synthesized in the first half of the light period in synchronized cells. The newly synthesized EF-Tu contributed little to the almost invariable content of EF-Tu in chloroplasts during the light period of the cell cycle. However, increasing cell volume and the lack of EF-Tu synthesis in the second half of the light period led to a decrease in the concentration of EF-Tu in chloroplasts. At different times in the vegetative cell cycle, the RNA was extracted from whole chloroplasts and from free and thylakoid-bound chloroplast polysomes. The content of mRNA of EF-Tu in chloroplasts and the distribution between stroma and thylakoids were determined. During the light period, the content of the mRNA for EF-Tu varied in parallel to the rate of EF-Tu synthesis. However, in the dark, some mRNA was present even in the absence of EF-Tu synthesis. Most of the mRNA was bound to thylakoids during the whole cell cycle. This suggests that synthesis of EF-Tu is associated with thylakoid membranes.  相似文献   

18.
Previous work indicated more polysomes bound to pea (Pisum sativum cv Progress No. 9) thylakoids in light than in the dark, in vivo (LE Fish, AT Jagendorf 1982 Plant Physiol 69: 814-825). With isolated intact chloroplasts incubated in darkness, addition of MgATP had no effect but 24 to 74% more RNA was thylakoid-bound at pH 8.3 than at pH 7. Thus, the major effect of light on ribosome-binding in vivo may be due to higher stroma pH. In isolated pea chloroplasts, initiation inhibitors (pactamycin and kanamycin) decreased the extent of RNA binding, and elongation inhibitors (lincomycin and streptomycin) increased it. Thus, cycling of ribosomes is controlled by translation, initiation, and termination. Bound RNA accounted for 19 to 24% of the total chloroplast RNA and the incorporation of [3H]leucine into thylakoids was proportional to the amount of this bound RNA. These data support the concept that stroma ribosomes are recruited into thylakoid polysomes, which are active in synthesizing thylakoid proteins.  相似文献   

19.
A mathematical model of electron and proton transport in chloroplasts of higher plants was developed, which takes into account the lateral heterogeneity of the lamellar system. Based on the results of numerical experiments, lateral profiles of pH in the thylakoid lumen and in the narrow gap between grana thylakoids under different metabolic conditions (in the state of photosynthetic control and under photophosphorylation conditions) were simulated. Lateral profiles of pH in the thylakoid lumen and in the intrathylakoid gap were simulated for different values of the proton diffusion coefficient and stroma pH. The model demonstrated that there might be two mechanisms of regulation of electron and proton transport in chloroplasts: (1) the slowing down of noncyclic electron transport due to a decrease in the intrathylakoid pH, and (2) the retardation of plastoquinone reduction due to slow diffusion of protons inside the narrow gap between the thylakoids of grana.  相似文献   

20.
In this work, we studied theoretically the effects of diffusion restrictions and topological factors that could influence the efficiency of energy coupling in the heterogeneous lamellar system of higher plant chloroplasts. Our computations are based on a mathematical model for electron and proton transport in chloroplasts coupled to ATP synthesis in chloroplasts that takes into account the nonuniform distribution of electron transport and ATP synthase complexes in the thylakoids of grana and stroma. Numerical experiments allowed the lateral profiles of pH in the thylakoid lumen and in the narrow gap between grana thylakoids to be simulated under different metabolic conditions (in the state of photosynthetic control and under conditions of photophosphorylation). This model also provided an opportunity to simulate the effects of steric constraints (the extent of appression of thylakoids in grana) on the rates of non-cyclic electron transport and ATP synthesis. This model demonstrated that there might be two mechanisms of regulation of electron and proton transport in chloroplasts: 1) slowing down of non-cyclic electron transport due to a decrease in the intra-thylakoid pH, and 2) retardation of plastoquinone reduction due to slow diffusion of protons inside the narrow gap between the thylakoids of grana. Numerical experiments for model systems that differ with respect to the arrangement of thylakoids in grana allowed the effects of osmolarity on the photophosphorylation rate in chloroplasts to be explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号