首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 320 毫秒
1.

Background

Oxygen may damage the lung directly via generation of reactive oxygen species (ROS) or indirectly via the recruitment of inflammatory cells, especially neutrophils. Overexpression of extracellular superoxide dismutase (EC-SOD) has been shown to protect the lung against hyperoxia in the newborn mouse model. The CXC-chemokine receptor antagonist (Antileukinate) successfully inhibits neutrophil influx into the lung following a variety of pulmonary insults. In this study, we tested the hypothesis that the combined strategy of overexpression of EC-SOD and inhibiting neutrophil influx would reduce the inflammatory response and oxidative stress in the lung after acute hyperoxic exposure more efficiently than either single intervention.

Methods

Neonate transgenic (Tg) (with an extra copy of hEC-SOD) and wild type (WT) were exposed to acute hyperoxia (95% FiO2 for 7 days) and compared to matched room air groups. Inflammatory markers (myeloperoxidase, albumin, number of inflammatory cells), oxidative markers (8-isoprostane, ratio of reduced/oxidized glutathione), and histopathology were examined in groups exposed to room air or hyperoxia. During the exposure, some mice received a daily intraperitoneal injection of Antileukinate.

Results

Antileukinate-treated Tg mice had significantly decreased pulmonary inflammation and oxidative stress compared to Antileukinate-treated WT mice (p < 0.05) or Antileukinate-non-treated Tg mice (p < 0.05).

Conclusion

Combined strategy of EC-SOD and neutrophil influx blockade may have a therapeutic benefit in protecting the lung against acute hyperoxic injury.  相似文献   

2.

Background

The role and mechanism of action of MIF in hyperoxia-induced acute lung injury (HALI) in the newborn lung are not known. We hypothesized that MIF is a critical regulatory molecule in HALI in the developing lung.

Methodology

We studied newborn wild type (WT), MIF knockout (MIFKO), and MIF lung transgenic (MIFTG) mice in room air and hyperoxia exposure for 7 postnatal (PN) days. Lung morphometry was performed and mRNA and protein expression of vascular mediators were analyzed.

Results

MIF mRNA and protein expression were significantly increased in WT lungs at PN7 of hyperoxia exposure. The pattern of expression of Angiopoietin 2 protein (in MIFKO>WT>MIFTG) was similar to the mortality pattern (MIFKO>WT>MIFTG) in hyperoxia at PN7. In room air, MIFKO and MIFTG had modest but significant increases in chord length, compared to WT. This was associated with decreased expression of Angiopoietin 1 and Tie 2 proteins in the MIFKO and MIFTG, as compared to the WT control lungs in room air. However, on hyperoxia exposure, while the chord length was increased from their respective room air controls, there were no differences between the 3 genotypes.

Conclusion

These data point to the potential roles of Angiopoietins 1, 2 and their receptor Tie2 in the MIF-regulated response in room air and upon hyperoxia exposure in the neonatal lung.  相似文献   

3.

Objective

To investigate possible correlations between apelin-12 levels and obesity in children in China and associations between apelin-12 and obesity-related markers, including lipids, insulin sensitivity and insulin resistance index (HOMA-IR).

Methods

Forty-eight obese and forty non-obese age- and gender-matched Chinese children were enrolled between June 2008 and June 2009. Mean age was 10.42±2.03 and 10.86±2.23 years in obesity and control groups, respectively. Main outcome measures were apelin-12, BMI, lipids, glucose and insulin. HOMA-IR was calculated for all subjects.

Results

All obesity group subjects had significantly higher total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), insulin levels and HOMA-IR (all P<0.05). In separate analyses, obese girls had significantly higher LDL-C, insulin and HOMA-IR than controls, and obese boys had significantly higher TC, TG, insulin and HOMA-IR than controls (all P<0.05). Apelin-12 levels were significantly higher in obese girls compared to controls (P = 0.024), and correlated positively with TG in all obese subjects. Among obese girls, apelin-12 levels correlated positively with TG, insulin and HOMA-IR after adjusting for age and BMI. In all boys (obese and controls) apelin-12 was positively associated with fasting plasma glucose (FPG). No significant correlations were found in either group between apelin-12 levels and other characteristics after adjusting for age, sex, and BMI.

Conclusions

Apelin-12 levels are significantly higher in obese vs. non-obese girls in China and correlate significantly with obesity-related markers insulin, HOMA-IR, and TG. Increased apelin-12 levels may be involved in the pathological mechanism of childhood obesity.  相似文献   

4.

Background

Mechanical ventilation and concomitant administration of hyperoxia in patients with acute respiratory distress syndrome can damage the alveolar epithelial and capillary endothelial barrier by producing inflammatory cytokines and reactive oxygen species. The Src tyrosine kinase and Smad3 are crucial inflammatory regulators used for ventilator-induced lung injury (VILI). The mechanisms regulating interactions between high-tidal-volume mechanical ventilation, hyperoxia, and acute lung injury (ALI) are unclear. We hypothesized that high-tidal-volume mechanical stretches and hyperoxia augment lung inflammation through upregulation of the Src and Smad3 pathways.

Methods

Wild-type or Src-deficient C57BL/6 mice, aged between 6 and 8 weeks, were exposed to high-tidal-volume (30 mL/kg) ventilation with room air or hyperoxia for 1–4 h after 2-mg/kg Smad3 inhibitor (SIS3) administration. Nonventilated mice were used as control subjects.

Results

We observed that the addition of hyperoxia to high-tidal-volume mechanical ventilation further induced microvascular permeability, neutrophil infiltration, macrophage inflammatory protein-2 and matrix metalloproteinase-9 (MMP-9) production, malondialdehyde, nicotinamide adenine dinucleotide phosphate oxidase activity, MMP-9 mRNA expression, hypoxemia, and Src and Smad3 activation (P < 0.05). Hyperoxia-induced augmentation of VILI was attenuated in Src-deficient mice and mice with pharmacological inhibition of Smad3 activity by SIS3 (P < 0.05). Mechanical ventilation of Src-deficient mice with hyperoxia further reduced the activation of Smad3.

Conclusions

Our data suggest that hyperoxia-increased high-tidal-volume ventilation-induced ALI partially depends on the Src and Smad3 pathways.  相似文献   

5.

Introduction

Lactic acidosis is a frequent cause of poor outcome in the intensive care settings. We set up an experimental model of lactic acid infusion in normoxic and normotensive rats to investigate the systemic effects of lactic acidemia per se without the confounding factor of an underlying organic cause of acidosis.

Methodology

Sprague Dawley rats underwent a primed endovenous infusion of L(+) lactic acid during general anesthesia. Normoxic and normotensive animals were then randomized to the following study groups (n = 8 per group): S) sustained infusion of lactic acid, S+B) sustained infusion+sodium bicarbonate, T) transient infusion, T+B transient infusion+sodium bicarbonate. Hemodynamic, respiratory and acid-base parameters were measured over time. Lactate pharmacokinetics and muscle phosphofructokinase enzyme''s activity were also measured.

Principal Findings

Following lactic acid infusion blood lactate rose (P<0.05), pH (P<0.05) and strong ion difference (P<0.05) drop. Some rats developed hemodynamic instability during the primed infusion of lactic acid. In the normoxic and normotensive animals bicarbonate treatment normalized pH during sustained infusion of lactic acid (from 7.22±0.02 to 7.36±0.04, P<0.05) while overshoot to alkalemic values when the infusion was transient (from 7.24±0.01 to 7.53±0.03, P<0.05). When acid load was interrupted bicarbonate infusion affected lactate wash-out kinetics (P<0.05) so that blood lactate was higher (2.9±1 mmol/l vs. 1.0±0.2, P<0.05, group T vs. T+B respectively). The activity of phosphofructokinase enzyme was correlated with blood pH (R2 = 0.475, P<0.05).

Conclusions

pH decreased with acid infusion and rose with bicarbonate administration but the effects of bicarbonate infusion on pH differed under a persistent or transient acid load. Alkalization affected the rate of lactate disposal during the transient acid load.  相似文献   

6.

Background

Greater diaphragm fatigue has been reported after hypoxic versus normoxic exercise, but whether this is due to increased ventilation and therefore work of breathing or reduced blood oxygenation per se remains unclear. Hence, we assessed the effect of different blood oxygenation level on isolated hyperpnoea-induced inspiratory and expiratory muscle fatigue.

Methods

Twelve healthy males performed three 15-min isocapnic hyperpnoea tests (85% of maximum voluntary ventilation with controlled breathing pattern) in normoxic, hypoxic (SpO2 = 80%) and hyperoxic (FiO2 = 0.60) conditions, in a random order. Before, immediately after and 30 min after hyperpnoea, transdiaphragmatic pressure (Pdi,tw ) was measured during cervical magnetic stimulation to assess diaphragm contractility, and gastric pressure (Pga,tw ) was measured during thoracic magnetic stimulation to assess abdominal muscle contractility. Two-way analysis of variance (time x condition) was used to compare hyperpnoea-induced respiratory muscle fatigue between conditions.

Results

Hypoxia enhanced hyperpnoea-induced Pdi,tw and Pga,tw reductions both immediately after hyperpnoea (Pdi,tw : normoxia -22 ± 7% vs hypoxia -34 ± 8% vs hyperoxia -21 ± 8%; Pga,tw : normoxia -17 ± 7% vs hypoxia -26 ± 10% vs hyperoxia -16 ± 11%; all P < 0.05) and after 30 min of recovery (Pdi,tw : normoxia -10 ± 7% vs hypoxia -16 ± 8% vs hyperoxia -8 ± 7%; Pga,tw : normoxia -13 ± 6% vs hypoxia -21 ± 9% vs hyperoxia -12 ± 12%; all P < 0.05). No significant difference in Pdi,tw or Pga,tw reductions was observed between normoxic and hyperoxic conditions. Also, heart rate and blood lactate concentration during hyperpnoea were higher in hypoxia compared to normoxia and hyperoxia.

Conclusions

These results demonstrate that hypoxia exacerbates both diaphragm and abdominal muscle fatigability. These results emphasize the potential role of respiratory muscle fatigue in exercise performance limitation under conditions coupling increased work of breathing and reduced O2 transport as during exercise in altitude or in hypoxemic patients.  相似文献   

7.

Background

Postnatal glucocorticoid therapy in premature infants diminishes chronic lung disease, but it also increases the risk of hypertension in adulthood. Since glucocorticoid excess leads to overproduction of free radicals and endothelial dysfunction, this study tested the hypothesis that adverse effects on cardiovascular function of postnatal glucocorticoids are secondary to oxidative stress. Therefore, combined postnatal treatment of glucocorticoids with antioxidants may diminish unwanted effects.

Methodology/Principal Findings

Male rat pups received a course of dexamethasone (Dex), or Dex with vitamins C and E (DexCE), on postnatal days 1–6 (P1–6). Controls received vehicle (Ctrl) or vehicle with vitamins (CtrlCE). At P21, femoral vascular reactivity was determined via wire myography. Dex, but not DexCE or CtrlCE, increased mortality relative to Ctrl (81.3 versus 96.9 versus 90.6 versus 100% survival, respectively; P<0.05). Constrictor responses to phenylephrine (PE) and thromboxane were enhanced in Dex relative to Ctrl (84.7±4.8 versus 67.5±5.7 and 132.7±4.9 versus 107.0±4.9% Kmax, respectively; P<0.05); effects that were diminished in DexCE (58.3±7.5 and 121.1±4.3% Kmax, respectively; P<0.05). Endothelium-dependent dilatation was depressed in Dex relative to Ctrl (115.3±11.9 versus 216.9±18.9, AUC; P<0.05); however, this effect was not restored in DexCE (68.3±8.3, AUC). Relative to Ctrl, CtrlCE alone diminished PE-induced constriction (43.4±3.7% Kmax) and the endothelium-dependent dilatation (74.7±8.7 AUC; P<0.05).

Conclusions/Significance

Treatment of newborn rats with dexamethasone has detrimental effects on survival and peripheral vasoconstrictor function. Coadministration of dexamethasone with antioxidant vitamins improves survival and partially restores vascular dysfunction. Antioxidant vitamins alone affect peripheral vascular function.  相似文献   

8.

Background and Purpose

The relationship between right-to-left shunts (RLS) and migraine and cryptogenic stroke is not well understood. In this study, we investigated whether RLS are associated with impairment of dynamic cerebral autoregulation (dCA), which may play a role in migraine and cryptogenic stroke.

Methods

Sixty-six migraineurs were enrolled in the study, including 36 non-RLS patients and 30 RLS patients. Non-invasive continuous cerebral blood flow velocity and arterial blood pressure were recorded simultaneously from each patient by using transcranial Doppler and servo-controlled plethysmograph, respectively. Transfer function analysis was applied to derive autoregulatory parameters of gain, phase difference (PD), and autoregulation index.

Results

The PD in migraineurs with RLS was 50.6±22.9 degrees, which was significantly lower than that observed in the non-RLS group (67.2±18.2 degrees, P<0.001). The PD in the large RLS group (45.4±22.6 degrees) was significantly lower than that of the small RLS group (64.9±17.1 degrees, P<0.01) and non-RLS group (P<0.001); however, the PD in the small RLS group was similar to that of the non-RLS group. The PD in the permanent group (48.8±19.9 degrees) was similar to that of the latent group (52.6±26.1 degrees), and both were significantly lower than that of the non-RLS group (P<0.05). The autoregulation index results were similar to the PD findings.

Conclusions

dCA is impaired in migraineurs with large RLS, and this may represent a potential mechanism linking RLS, migraine, and cryptogenic stroke.  相似文献   

9.

Background

Low biomass in the bacterial lung tissue microbiome utilizes quantitative PCR (qPCR) 16S bacterial assays at their limit of detection. New technology like droplet digital PCR (ddPCR) could allow for higher sensitivity and accuracy of quantification. These attributes are needed if specific bacteria within the bacterial lung tissue microbiome are to be evaluated as potential contributors to diseases such as chronic obstructive pulmonary disease (COPD). We hypothesize that ddPCR is better at quantifying the total bacterial load in lung tissue versus qPCR.

Methods

Control (n = 16) and COPD GOLD 2 (n = 16) tissue samples were obtained from patients who underwent lung resection surgery, were cut on a cryotome, and sections were assigned for use in quantitative histology or for DNA extraction. qPCR and ddPCR were performed on these samples using primers spanning the V2 region on the 16S rRNA gene along with negative controls. Total 16S counts were compared between the two methods. Both methods were assessed for correlations with quantitative histology measurements of the tissue.

Results

There was no difference in the average total 16S counts (P>0.05) between the two methods. However, the negative controls contained significantly lower counts in the ddPCR (0.55 ± 0.28 16S/uL) than in the qPCR assay (1.00 ± 0.70 16S copies) (P <0.05). The coefficient of variation was significantly lower for the ddPCR assay (0.18 ± 0.14) versus the qPCR assay (0.62 ± 0.29) (P<0.05).

Conclusion

Overall the ddPCR 16S assay performed better by reducing the background noise in 16S of the negative controls compared with 16S qPCR assay.  相似文献   

10.

Background

Although a significant progress has been made in the management of ischemic heart disease (IHD), the number of severe IHD patients is increasing. Thus, it is crucial to develop new, non-invasive therapeutic strategies. In the present study, we aimed to develop low-intensity pulsed ultrasound (LIPUS) therapy for the treatment of IHD.

Methods and Results

We first confirmed that in cultured human endothelial cells, LIPUS significantly up-regulated mRNA expression of vascular endothelial growth factor (VEGF) with a peak at 32-cycle (P<0.05). Then, we examined the in vivo effects of LIPUS in a porcine model of chronic myocardial ischemia with reduced left ventricular ejection fraction (LVEF) (n = 28). The heart was treated with either sham (n = 14) or LIPUS (32-cycle with 193 mW/cm2 for 20 min, n = 14) at 3 different short axis levels. Four weeks after the treatment, LVEF was significantly improved in the LIPUS group (46±4 to 57±5%, P<0.05) without any adverse effects, whereas it remained unchanged in the sham group (46±5 to 47±6%, P = 0.33). Capillary density in the ischemic region was significantly increased in the LIPUS group compared with the control group (1084±175 vs. 858±151/mm2, P<0.05). Regional myocardial blood flow was also significantly improved in the LIPUS group (0.78±0.2 to 1.39±0.4 ml/min/g, P<0.05), but not in the control group (0.84±0.3 to 0.97±0.4 ml/min/g). Western blot analysis showed that VEGF, eNOS and bFGF were all significantly up-regulated only in the LIPUS group.

Conclusions

These results suggest that the LIPUS therapy is promising as a new, non-invasive therapy for IHD.  相似文献   

11.

Background

Current evidence suggests that endothelial progenitor cells (EPC) contribute to ischemic tissue repair by both secretion of paracrine factors and incorporation into developing vessels. We tested the hypothesis that cell-free administration of paracrine factors secreted by cultured EPC may achieve an angiogenic effect equivalent to cell therapy.

Methodology/Principal Findings

EPC-derived conditioned medium (EPC-CM) was obtained from culture expanded EPC subjected to 72 hours of hypoxia. In vitro, EPC-CM significantly inhibited apoptosis of mature endothelial cells and promoted angiogenesis in a rat aortic ring assay. The therapeutic potential of EPC-CM as compared to EPC transplantation was evaluated in a rat model of chronic hindlimb ischemia. Serial intramuscular injections of EPC-CM and EPC both significantly increased hindlimb blood flow assessed by laser Doppler (81.2±2.9% and 83.7±3.0% vs. 53.5±2.4% of normal, P<0.01) and improved muscle performance. A significantly increased capillary density (1.62±0.03 and 1.68±0.05/muscle fiber, P<0.05), enhanced vascular maturation (8.6±0.3 and 8.1±0.4/HPF, P<0.05) and muscle viability corroborated the findings of improved hindlimb perfusion and muscle function. Furthermore, EPC-CM transplantation stimulated the mobilization of bone marrow (BM)-derived EPC compared to control (678.7±44.1 vs. 340.0±29.1 CD34+/CD45 cells/1×105 mononuclear cells, P<0.05) and their recruitment to the ischemic muscles (5.9±0.7 vs. 2.6±0.4 CD34+ cells/HPF, P<0.001) 3 days after the last injection.

Conclusions/Significance

Intramuscular injection of EPC-CM is as effective as cell transplantation for promoting tissue revascularization and functional recovery. Owing to the technical and practical limitations of cell therapy, cell free conditioned media may represent a potent alternative for therapeutic angiogenesis in ischemic cardiovascular diseases.  相似文献   

12.

Aims

The aim of this study was to elucidate the effects of regulator of G-protein signaling 5 (Rgs5), a negative regulator of G protein-mediated signaling, on atrial repolarization and tachyarrhythmia (ATA) in mice.

Methods and Results

In present study, the incidence of ATA were increased in Rgs5−/− Langendorff-perfused mouse hearts during program electrical stimulation (PES) (46.7%, 7 of 15) and burst pacing (26.7%, 4 of 15) compared with wild-type (WT) mice (PES: 7.1%,1 of 14; burst:7.1%,1 of 14) (P<0.05). And the duration of ATA also shown longer in Rgs5−/− heart than that in WT, 2 out of 15 hearts exhibited sustained ATA (>30 s) but none of them observed in WT mice. Atrial prolonged repolarization was observed in Rgs5−/− hearts including widened P wave in surface ECG recording, increased action potential duration (APD) and atrial effective refractory periods (AERP), all of them showed significant difference with WT mice (P<0.05). At the cellular level, whole-cell patch clamp recorded markedly decreased densities of repolarizing K+ currents including IKur (at +60 mV: 14.0±2.2 pF/pA) and Ito (at +60 mV: 16.7±1.3 pA/pF) in Rgs5−/− atrial cardiomyocytes, compared to those of WT mice (at +60 mV Ito: 20.4±2.0 pA/pF; Ikur: 17.9±2.0 pF/pA) (P<0.05).

Conclusion

These results suggest that Rgs5 is an important regulator of arrhythmogenesis in the mouse atrium and that the enhanced susceptibility to atrial tachyarrhythmias in Rgs5−/− mice may contribute to abnormalities of atrial repolarization.  相似文献   

13.

Introduction

We analyzed the short-term efficacy of endovascular treatment for aortic diseases by summarizing all available published data on endovascular stent-graft treatment for abdominal aortic aneurysm (AAA), thoracic aortic aneurysm (TAA), type A aortic dissection (type A AD) and type B aortic dissection (type B AD) in China.

Methods

We performed a systematic analysis of 935 published series on retrograde endovascular treatment for aortic diseases in China from January 1996 to November 2010. Based on the inclusion criteria, 159 studies, involving a total of 5531 patients, were included.

Results

There were no significant differences in procedural success among the studies (P>0.05). The rates of overall neurologic complications and stroke were significantly different in all two-group comparisons (P<0.01). The type A AD patients had the highest rates of neurologic complications (both 6.67±0.00%), and the AAA patients had the lowest rates (0.31±0.04% and 0.11±0.02%). Significant differences were noted in the rates of cardiac, renal, pulmonary and visceral complications, which were all higher in the type A AD patients than in the other three groups (P<0.01). The endoleak rate was highest in the TAA patients (19.27±5.74%) and was similar in the type A AD patients (P>0.05). A significant difference was noted between the 30-day mortality rate of the type A AD patients and the AAA or type B AD patients (P<0.05).

Conclusion

Endovascular stent-graft is a feasible and safe treatment for aortic diseases, with high procedural success and low incidences of post-procedural complications and short-term mortality. Endovascular treatment for AAA and type B AD is more efficient than for type A AD and TAA.  相似文献   

14.
There is increasing evidence that hyperoxia, particularly at the time of birth, may result in neurological injury, in particular to the susceptible vasculature of these tissues. This study was aimed at determining whether overexpression of extracellular superoxide dismutase (EC-SOD) is protective against brain injury induced by hyperoxia. Transgenic (TG) mice (with an extra copy of the human extracellular superoxide dismutase gene) and wild-type (WT) neonate mice were exposed to hyperoxia (95% of F(i) o(2) ) for 7 days after birth versus the control group in room air. Brain positron emission tomography (PET) scanning with fludeoxyglucose (FDG) isotope uptake was performed after exposure. To assess apoptosis induced by hyperoxia exposure, caspase 3 ELISA and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were performed. Quantitative western blot for the following inflammatory markers was performed: glial fibrillary acidic protein, ionized calcium-binding adaptor molecule 1, macrophage-inhibiting factor, and phospho-AMP-activated protein kinase. PET scanning with FDG isotope uptake showed significantly higher uptake in the WT hyperoxia neonate brain group (0.14 ± 0.03) than in both the TG group (0.09 ± 0.01) and the control group (0.08 ± 0.02) (P< 0.05). Histopathological investigation showed more apoptosis and dead neurons in hippocampus and cerebellum brain sections of WT neonate mice after exposure to hyperoxia than in TG mice; this finding was also confirmed by TUNEL staining. The caspase 3 assay confirmed the finding of more apoptosis in WT hyperoxia neonates (0.814 ± 0.112) than in the TG hyperoxic group (0.579 ± 0.144) (P < 0.05); this finding was also confirmed by TUNEL staining. Quantitative western blotting for the inflammatory and metabolic markers showed significantly higher expression in the WT group than in the TG and control groups. Thus, overexpression of EC-SOD in the neonate brain offers significant protection against hyperoxia-induced brain damage.  相似文献   

15.

Background and Purpose

Maternal glucocorticoid treatment for threatened premature delivery dramatically improves neonatal survival and short-term morbidity; however, its effects on neurodevelopmental outcome are variable. We investigated the effect of maternal glucocorticoid exposure after acute asphyxia on injury in the preterm brain.

Methods

Chronically instrumented singleton fetal sheep at 0.7 of gestation received asphyxia induced by complete umbilical cord occlusion for 25 minutes. 15 minutes after release of occlusion, ewes received a 3 ml i.m. injection of either dexamethasone (12 mg, n = 10) or saline (n = 10). Sheep were killed after 7 days recovery; survival of neurons in the hippocampus and basal ganglia, and oligodendrocytes in periventricular white matter were assessed using an unbiased stereological approach.

Results

Maternal dexamethasone after asphyxia was associated with more severe loss of neurons in the hippocampus (CA3 regions, 290±76 vs 484±98 neurons/mm2, mean±SEM, P<0.05) and basal ganglia (putamen, 538±112 vs 814±34 neurons/mm2, P<0.05) compared to asphyxia-saline, and with greater loss of both total (913±77 vs 1201±75/mm2, P<0.05) and immature/mature myelinating oligodendrocytes in periventricular white matter (66±8 vs 114±12/mm2, P<0.05, vs sham controls 165±10/mm2, P<0.001). This was associated with transient hyperglycemia (peak 3.5±0.2 vs. 1.4±0.2 mmol/L at 6 h, P<0.05) and reduced suppression of EEG power in the first 24 h after occlusion (maximum −1.5±1.2 dB vs. −5.0±1.4 dB in saline controls, P<0.01), but later onset and fewer overt seizures.

Conclusions

In preterm fetal sheep, exposure to maternal dexamethasone during recovery from asphyxia exacerbated brain damage.  相似文献   

16.

Background

Tumor necrosis factor related apoptosis inducing ligand (TRAIL) as a member of the TNF gene superfamily induces apoptosis primarily in tumor cells. TRAIL also plays an important role in the modulation of inflammatory responses, especially in the process of immune paralysis. The aim of the present study was to examine soluble TRAIL (sTRAIL) levels in septic patients in an attempt to explore the association between sTRAIL level and the risk of mortality.

Methods

Plasma sTRAIL levels were detected by ELISA in 50 septic patients and 20 healthy volunteers. HLA-DR expression in monocytes was detected by flow cytometry. Selective biochemical parameters were recorded, and patients were monitored in a 28-day period for mortality.

Results

The mean plasma sTRAIL level in septic patients was significantly lower than that in healthy controls (16.9±8.3 vs. 68.3±8.6 pg/ml, P<0.01), and was significantly higher in 28-day survivors than those in non-survivors (19.4±9.8 vs. 13.9±4.7 pg/ml, P<0.05). Univariate analysis indicated that plasma sTRAIL level was positively correlated with monocyte and lymphocyte counts and HLA-DR expression level (r = 0.5, P<0.01; r = 0.3, P<0.05; r = 0.43, P<0.01, respectively). STRAIL level was negatively correlated with APACHE II score, BUN and age (r = −0.48, P<0.01; r = −0.29, P<0.05; r = −0.45, P<0.01, respectively). Multiple linear regression analysis indicated that the predictor of plasma soluble TRAIL level was HLA-DR expression (P<0.01).

Conclusion

Low plasma sTRAIL levels were associated with immune paralysis and a high risk of mortality in patients with septic shock. sTRAIL may prove to be a potential biomarker of immune function and predict the survival of septic patients.  相似文献   

17.

Background

Previous studies observed the high prevalence of venous thromboembolism in patients with antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). The current study analyzed the coagulation and fibrinolysis index profile in AAV patients.

Methods

The current study recruited 321 AAV patients in active stage and 78 AAV patients in quiescent stage. Coagulation and fibrinolysis index profiles in these AAV patients were analysed, and their associations with various clinical and pathological parameters were further investigated.

Results

The circulating levels of D-dimer, fibrin degradation products and platelet count were significantly higher in AAV patients in active stage compared with those in remission [0.8 (0.4, 1.5) mg/L vs. 0.28 (0.2, 0.55) mg/L, P<0.05; 5.6 (5.0, 10.0) mg/L vs. 1.9 (1.2, 2.8) mg/L, P<0.05; 269±127×109/L vs. 227±80×109/L, P<0.05, respectively]. Among the 321 AAV patients in active stage, compared with patients with normal levels of D-dimer, patients with elevated D-dimer levels had significantly higher levels of initial serum creatinine, erythrocyte sedimentation rate, C reactive protein and the Birmingham Vasculitis Activity Scores (P = 0.014, P<0.001, P<0.001, P = 0.002, respectively). Moreover, correlation analysis showed that the levels of D-dimer correlated with erythrocyte sedimentation rate and C reactive protein levels (r = 0.384, P<0.001; r = 0.380, P<0.001, respectively).

Conclusion

Patients with active AAV are in hypercoagulable states, and circulating levels of D-dimer are associated with disease activity of AAV.  相似文献   

18.

Objectives

The pathogenesis of the higher occurrence of peptic ulcer disease in cirrhotic patients is complex. Platelets can stimulate angiogenesis and promote gastric ulcer healing. We compared the expressions of proangiogenic growth factors and their receptors in the gastric ulcer margin between cirrhotic patients with thrombocytopenia and those of non-cirrhotic patients to elucidate possible mechanisms.

Methods

Eligible cirrhotic patients (n = 55) and non-cirrhotic patients (n = 55) who had gastric ulcers were enrolled. Mucosa from the gastric ulcer margin and non-ulcer areas were sampled and the mRNA expressions of the proangiogenic growth factors (vascular endothelial growth factor [VEGF], platelet derived growth factor [PDGF], basic fibroblast growth factor [bFGF]) and their receptors (VEGFR1, VEGFR2, PDGFRA, PDGFRB, FGFR1, FGFR2) were measured and compared. Platelet count and the expressions of these growth factors and their receptors were correlated with each other.

Results

The two groups were comparable in terms of gender, ulcer size and infection rate of Helicobacter pylori. However, the cirrhotic group were younger in age, had a lower platelet count than those in the non-cirrhotic group (p<0.05). The cirrhotic patients had diminished mRNA expressions of PDGFB, VEGFR2, FGFR1, and FGFR2 in gastric ulcer margin when compared with those of the non-cirrhotic patients (p<0.05). Diminished expressions of PDGFB and VEGFR2, FGFR1, and FGFR2 were well correlated with the degree of thrombocytopenia in these cirrhotic patients (ρ>0.5, p<0.001).

Conclusions

Our findings implied that diminished activity of proangiogenic factors and their receptors may contribute to the pathogenesis of gastric ulcers in cirrhotic patients.  相似文献   

19.

Background

Caffeine is one of the most widely consumed pharmacologically active substances. Its acute effect on myocardial blood flow is widely unknown. Our aim was to assess the acute effect of caffeine in a dose corresponding to two cups of coffee on myocardial blood flow (MBF) in coronary artery disease (CAD).

Methodology/Principal Findings

MBF was measured with 15O-labelled H2O and Positron Emission Tomography (PET) at rest and after supine bicycle exercise in controls (n = 15, mean age 58±13 years) and in CAD patients (n = 15, mean age 61±9 years). In the latter, regional MBF was assessed in segments subtended by stenotic and remote coronary arteries. All measurements were repeated fifty minutes after oral caffeine ingestion (200 mg). Myocardial perfusion reserve (MPR) was calculated as ratio of MBF during bicycle stress divided by MBF at rest. Resting MBF was not affected by caffeine in both groups. Exercise-induced MBF response decreased significantly after caffeine in controls (2.26±0.56 vs. 2.02±0.56, P<0.005), remote (2.40±0.70 vs. 1.78±0.46, P<0.001) and in stenotic segments (1.90±0.41 vs. 1.38±0.30, P<0.001). Caffeine decreased MPR significantly by 14% in controls (P<0.05 vs. baseline). In CAD patients MPR decreased by 18% (P<0.05 vs. baseline) in remote and by 25% in stenotic segments (P<0.01 vs. baseline).

Conclusions

We conclude that caffeine impairs exercise-induced hyperaemic MBF response in patients with CAD to a greater degree than age-matched controls.  相似文献   

20.

Background

Prolonged exposure to hyperoxia in neonates can cause hyperoxic acute lung injury (HALI), which is characterized by increased pulmonary permeability and diffuse infiltration of various inflammatory cells. Disruption of the epithelial barrier may lead to altered pulmonary permeability and maintenance of barrier properties requires intact epithelial tight junctions (TJs). However, in neonatal animals, relatively little is known about how the TJ proteins are expressed in the pulmonary epithelium, including whether expression of TJ proteins is regulated in response to hyperoxia exposure. This study determines whether changes in tight junctions play an important role in disruption of the pulmonary epithelial barrier during hyperoxic acute lung injury.

Methods

Newborn rats, randomly divided into two groups, were exposed to hyperoxia (95% oxygen) or normoxia for 1–7 days, and the severity of lung injury was assessed; location and expression of key tight junction protein occludin and ZO-1 were examined by immunofluorescence staining and immunobloting; messenger RNA in lung tissue was studied by RT-PCR; transmission electron microscopy study was performed for the detection of tight junction morphology.

Results

We found that different durations of hyperoxia exposure caused different degrees of lung injury in newborn rats. Treatment with hyperoxia for prolonged duration contributed to more serious lung injury, which was characterized by increased wet-to-dry ratio, extravascular lung water content, and bronchoalveolar lavage fluid (BALF):serum FD4 ratio. Transmission electron microscopy study demonstrated that hyperoxia destroyed the structure of tight junctions and prolonged hyperoxia exposure, enhancing the structure destruction. The results were compatible with pathohistologic findings. We found that hyperoxia markedly disrupted the membrane localization and downregulated the cytoplasm expression of the key tight junction proteins occludin and ZO-1 in the alveolar epithelium by immunofluorescence. The changes of messenger RNA and protein expression of occludin and ZO-1 in lung tissue detected by RT-PCR and immunoblotting were consistent with the degree of lung injury.

Conclusions

These data suggest that the disruption of the pulmonary epithelial barrier induced by hyperoxia is, at least in part, due to massive deterioration in the expression and localization of key TJ proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号