首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Recruitment is an important process in regulating many marine benthic communities and many studies have examined factors controlling the dispersal and distribution of larval immigrants. However, benthic species also have early post-settlement life-stages that are dramatically different from adult and larval stages. Predation on these stages potentially impacts measured recruitment and the benthic populations and communities that ultimately develop.We examined the consequences of post-settlement predation on 1-day-old to 1-month-old recruits of sessile invertebrates at two field sites in southern New England. One site (Breakwater) was in a protected area with few predators and the other (Pine Island) was <1 km away in an open coast area with three different predator guilds: small and large invertebrates and fish. The Breakwater site had been dominated for >10 years by colonial and solitary ascidians. These species were absent from the Pine Island site which was dominated by bryozoans. Our goal was to examine whether post-settlement predation influenced the development and subsequent structure of the epifaunal community.Here we examine long-term changes in community development resulting from post-settlement predation, and contrast these results to those of earlier experiments examining the reductions in observed recruitment by post-settlement predation. Our first long-term experiment examined natural community development at the two sites and whether transplanted communities changed when exposed to the different levels of predation at these sites. The communities that developed at both sites were consistently different from each other and similar to resident communities at their respective sites. On panels transplanted from the Breakwater to Pine Island, solitary ascidians and the colonial ascidian, Botryllus schlosseri, suffered high mortalities on both caged and uncaged treatments, indicative of predation by small predators that could enter cages. Some solitary ascidians did survive inside cages and the colonial ascidian, Botrylloides violaceus, became dominant on all transplanted treatments. On panels transplanted from Pine Island to the Breakwater, ascidians invaded and dominated all treatments except those that were originally caged at Pine Island.In the second long-term experiment, natural communities were allowed to develop on panels exposed at the Breakwater for 1, 2, 3, and 4 weeks. Each set was transplanted to three treatments at Pine Island: open uncaged pilings, caged pilings to exclude fish and large invertebrates, and racks suspended above the bottom to exclude all predators. When 1-week-old communities were transplanted, after 2-3 weeks only bryozoans were found on the open and caged pilings, while colonial ascidians dominated the suspended rack treatment. When older 2-week-old communities were transplanted, colonial ascidians also became dominant in the caged piling treatment and when 3- and 4-week-old communities were transplanted colonial ascidians dominated all three treatments. Solitary ascidians were never abundant on open pilings exposed to fish and large benthic invertebrate predators.Post-settlement predator-prey interactions involved newly settled and juvenile life-stages of a variety of prey species and many invertebrate and vertebrate predator species. The effects of these interactions on recruitment did result in differences in the development and eventual species composition of the communities, even though predators had little if any effect on the adults of the prey species.  相似文献   

2.
Variability of predation intensity is an important cause of spatial differences of community structure and organization in the intertidal rocky shore. Field experiments were conducted to evaluate the within- and between-patch variability of the effects of different types of predators (small invertebrates and birds) on Mytilus trossulus Gould, which occupies an intermediate position in the competitive hierarchy among sessile organisms in disturbance patches within a California mussel (Mytilus californianus Conrad) bed community on the central Oregon Coast. Predation by birds did not significantly affect the mortality of M. trossulus. On the contrary, predation by small invertebrate whelks (Nucella spp.) had a significant effect on M. trossulus mortality. Predation by whelks also caused between- and within-patch variability of mortality of M. trossulus. Within patches, M. trossulus mortality at patch margins was significantly higher than at patch centers only when invertebrate predators were present. Wave exposure did not cause between-patch variability of predation intensity. Between-and within-patch variability of predation intensity may be caused by the variability of supply of whelks from the surrounding mussel mat. The movement of predators between patches and surrounding matrices may play an important role in the patch dynamics of these communities.  相似文献   

3.
We studied the effects of predation and oviposition activity on reproductive success of a late-season moth, Epirrita autumnata by exposing adult females and eggs to predation in their natural habitat in two successive years. Daily survival rates of adult females ranged from 0.4 to 0.8, average being 0.7. Most predation occurred during nights and was caused by harvestmen and other invertebrate predators. Avian predation did not have an effect on adult survival rates, most likely because of the lateness of E. autumnata flight season. Eggs were also preyed upon by invertebrate predators, although a notable proportion of egg mortality was attributable to causes other than predation. Daily survival rates of eggs were more than 0.99. Using modeling based on empirical data on eclosion of female adults, their oviposition behavior and survival rates of adults and eggs, the daily survival rates were translated into population level consequences. Adult predation was estimated to decrease reproductive success of non-outbreaking E. autumnata by 60–85 percent and egg mortality by 20–40 percent. Predation on adult lepidopterans is a mortality factor potentially as relevant as predation in any other life history stage and thus, should not be ignored in studies of population regulation.  相似文献   

4.
Predation on flatfish during the early juvenile stage is an important factor regulating year-class strength and recruitment. In this study, immunological dietary analysis was performed on green crabs (Carcinus maenas) collected from the Niantic River, Connecticut, in an effort to evaluate the predatory impact of this species on post-settlement winter flounder (Pseudopleuronectes americanus). Through the use of species-specific antiserum, winter flounder proteins were identified in 4.8% of the green crab stomachs analyzed (n = 313, size range = 14-74 mm carapace width, CW), revealing that crabs ≥ 29 mm CW are predators of post-settlement winter flounder in natural populations. The most significant factor underlying the predator-prey interaction was the relative size relationship between species, such that the incidence of winter flounder remains in the stomach contents of green crabs was positively correlated with predator-to-prey size ratio. Results from dietary analysis were incorporated into a deterministic model to estimate the average daily instantaneous mortality and cumulative mortality of winter flounder owing to green crab predation. Accordingly, green crabs may account for 0.4% to 7.7% (mean = 2.2%) of the daily mortality of winter flounder and consume 1.1% to 32.3% (mean = 10.2%) of the flounder year-class. Model simulations further indicate that variations in green crab abundance and size-structure account for the greatest variability in winter flounder mortality. Relative to other macro-crustacean predators, however, predation by green crabs has a minimal effect on winter flounder survival, due in large part to the low densities of these crabs in temperate estuaries.  相似文献   

5.
1. Forest fragmentation affects many ecosystem processes by spatially altering relationships among organisms. Herbivory by arthropods is an important ecosystem processes in forests that fragmentation alters by changing relationships among herbivores, their predators, and their hosts. The relative importance of these factors remains unclear. 2. It was tested whether the exclusion of vertebrate predators affected the arthropod abundance or amounts of herbivory in a fragmented, deciduous forest landscape in southern Quebec. Differences in the abundance of arthropod herbivores and amounts of herbivory in forest patches with different landscape characteristics (small isolated patches versus large connected ones), on sugar maple saplings with or without exclosures that restricted access by large vertebrate predators were measured. 3. Saplings protected from predators with exclosures had greater abundances of all arthropods (herbivores and invertebrate predators) than those without, indicating potential top‐down effects of vertebrate predators on arthropods. Analysis of effect sizes between exclosure treatments and controls suggests the magnitude of predation effects may be affected by fragmentation. 4. Strong top‐down effects of predators on arthropods, and weak effects of fragmentation on predation or amounts of herbivory were found. As a result, herbivory may be regulated by factors other than vertebrate predation in this system.  相似文献   

6.
Recent increases in the frequency and size of desert wildfires bring into question the impacts of fire on desert invertebrate communities. Furthermore, consumer communities can strongly impact invertebrates through predation and top‐down effects on plant community assembly. We experimentally applied burn and rodent exclusion treatments in a full factorial design at sites in both the Mojave and Great Basin deserts to examine the impact that fire and rodent consumers have on invertebrate communities. Pitfall traps were used to survey invertebrates from April through September 2016 to determine changes in abundance, richness, and diversity of invertebrate communities in response to fire and rodent treatments. Generally speaking, rodent exclusion had very little effect on invertebrate abundance or ant abundance, richness or diversity. The one exception was ant abundance, which was higher in rodent access plots than in rodent exclusion plots in June 2016, but only at the Great Basin site. Fire had little effect on the abundances of invertebrate groups at either desert site, with the exception of a negative effect on flying‐forager abundance at our Great Basin site. However, fire reduced ant species richness and Shannon's diversity at both desert sites. Fire did appear to indirectly affect ant community composition by altering plant community composition. Structural equation models suggest that fire increased invasive plant cover, which negatively impacted ant species richness and Shannon's diversity, a pattern that was consistent at both desert sites. These results suggest that invertebrate communities demonstrate some resilience to fire and invasions but increasing fire and spread of invasive due to invasive grass fire cycles may put increasing pressure on the stability of invertebrate communities.  相似文献   

7.
8.
Field studies quantified predation on Colorado potato beetle [Leptinotarsa decemlineata(Say)] eggs and determined the relationship between predation and egg mass abundance in research and commercial potato plantings in eastern North Carolina. Predator exclusion experiments were conducted weekly in research plantings. In addition, egg mass density and predation on egg masses were monitored throughout the season in research plots and commercial potato fields. Predation was an important source of mortality for Colorado potato beetle eggs. Survivorship of eggs exposed to predators was consistently, significantly lower than survivorship of eggs protected from predation. Averaged over 2 years, the mean survivorship of eggs protected from predation was 69%, compared with 26% survivorship of eggs exposed to predation. Regression analysis failed to detect any relationship between egg mortality due to predation and egg abundance. These results imply that efforts to reduce Colorado potato beetle populations selectively will not be offset by an according decline in abundance of natural enemies and therefore should be fully compatible with naturally occurring biological control.  相似文献   

9.
1. Predation‐exclusion experiments have highlighted that top‐down control is pervasive in terrestrial communities, but most of these experiments are simplistic in that they only excluded a single group of predators and the effect of removal was evaluated on a few species from the community. The main goal of our study was to experimentally establish the relative effects of ants and birds on the same arthropod assemblage of canopy trees. 2. We conducted 1‐year long manipulative experiments in an organic citrus grove intended to quantify the independent effects of bird and ant predators on the abundance of arthropods. Birds were excluded with plastic nets whereas ants were excluded with sticky barriers on the trunks. The sticky barrier also excluded other ground dwelling insects, like the European earwig Forficula auricularia L. 3. Both the exclusion of ants and birds affected the arthropod community of the citrus canopies, but the exclusion of ants was far more important than the exclusion of birds. Indeed, almost all groups of arthropods had higher abundance in ant‐excluded than in control trees, whereas only dermapterans were more abundant in bird‐excluded than in control trees. A more detailed analysis conducted on spiders also showed that the effect of ant exclusion was limited to a few families rather than being widespread over the entire diverse spectrum of spiders. 4. Our results suggest that the relative importance of vertebrate and invertebrate predators in regulating arthropod populations largely depends on the nature of the predator–prey system.  相似文献   

10.
Two large pelagic enclosures were installed in a culturally eutrophic lake to assess the importance of predation by immature fish and invertebrate predators on efficient filter-feeders. Predation pressure in the pelagic zone from invertebrate predators (mainly Cyclops scutifer ) was similar to that from 2-year-old roach and led to suppression of the most important filter-feeding genus Daphnia. Those predators thus may have a stabilizing effect on culturally eutrophic lakes, by maintaining the eutrophic phase beyond the predictions from spring nutrient values. To speed up the recovery of such lakes it is necessary to suppress both types of predators.  相似文献   

11.
SUMMARY. 1. A range of sizes of Erpobdelta octoculata fL.), Glossiphonia complanata (L.) and Helobdella stagnalis (L.) were introduced to a small weeded pond harbouring invertebrate and amphibian predators. Control leeches were kept in protective cages. Subsequently, gut contents of potential predators were tested against three anti-leech sera, using the precipitin test. Five of fifteen species tested had fed on leeches; Agabus, Pyrrhosoma, Aeshna, Sympetrum and larval Trilurus.
2. The size distributions of introduced and surviving leeches were compared. Predation pressure had been greatest on smaller leeches and this may have accounted for the observed differential mortality between leech species.
3. It is concluded that predation may cause significant mortality in leech populations in weeded ponds, with severity determined by the types and abundance of predators present.  相似文献   

12.
Generalist natural enemies such as carabid beetles have the potential to maintain a variety of pests below outbreak levels in annual crops. To assess the relationship between carabid beetle abundance and field rates of prey removal, we created plots surrounded by different boundaries that selectively affected dispersal of edaphic arthropods, primarily carabids. Three treatments were established: (1) naturally occurring communities, (2) augmented communities using ingress boundaries, and (3) reduced communities using egress boundaries. Selective boundaries altered carabid communities with minimal habitat alteration and without use of insecticides. Three times during the growing season, a fixed number of onion fly pupae were placed in plots to evaluate the impact of carabid abundance on predation rates. A combination of vertebrate and invertebrate exclosures allowed us to evaluate prey removal by invertebrates alone. In comparison to the no boundary treatment, carabids increased 54.2% and decreased 83.1% in plots surrounded by ingress and egress boundaries respectively. Predation rates were positively correlated with carabid abundance (r2 = 0.70, p < 0.0001). Significantly more pupae were removed from exclosures allowing access to invertebrates alone than from total exclosures, suggesting that invertebrates represented an important group of predators. Laboratory trials tested the feeding potential of the four most abundant carabid species and showed that they readily consumed onion fly pupae, supporting our hypothesis that carabids were the main predators in field tests. This study corroborates and extends previous observations of the importance of carabid beetles as generalist predators of insect pests in agricultural fields.  相似文献   

13.
Jan H. Mol 《Oecologia》1996,107(3):395-410
This study investigated the role of predators in preventing competitive exclusion among three closely related armoured catfishes (Callichthys callichthys, Hoplosternum littorale and H. thoracatum) that occur synthopically in multi-predator freshwater swamps of Suriname, South America. The potential impact of predation on armoured catfish was determined by combining laboratory measurements of predation rates on five early developmental stages of the armoured catfish H. thoracatum for 24 aquatic predators with field studies of the density of the predators in the swamps. The contribution of a particular predator to the total predation pressure on its prey was determined to a large extent by the density of the predator in the swamp. Seemingly innocuous predators with low or moderate predation rates in the laboratory may be extremely important in the swamps due to their high abundance. Small-sized omnivorous fishes and aquatic invertebrates were major predators of early developmental stages of armoured catfish. Both qualitative and quantitative ontogenetic changes in the predation pressure on armoured catfish were observed. Major predation on eggs, larvae and juveniles of H. thoracatum resulted from a different set of predators in each developmental stage of the prey. In all developmental stages of H. thoracatum the predation pressure involved several predator species and not a single, dominant predator. The potential predation pressure of the 24 predators taken together and the number of predators that were able to prey on H. thoracatum decreased sharply with increasing age (size) of the prey. Even if egg (nest) predation is prevented by the guarding male, the potential impact of the 24 predators on the populations of armoured catfish is large. Predation may account for the high mortality of H. thoracatum observed in the swamps. The high predation pressure on callichthyid catfishes may help to explain the coexistence of three closely related and morphologically quite similar armoured catfishes in Surinamese swamps.  相似文献   

14.
High nest predation is one of the factors potentially driving farmland bird declines, particularly in the case of ground-nesting species. Accordingly, recent calls have been made to address predation in agri-environment schemes, but this is hindered by limited understanding of how processes operating at different scales affect predation patterns and how additional factors such as livestock trampling contribute to reduced nest survival. Using an artificial nest experiment, we assessed how field management, landscape composition and configuration, and the abundance of potential avian predators and mammalian carnivores affected predation and trampling rates in grassland fields (pastures and fallows) embedded in intensive Mediterranean farmland. Mean predation and trampling rates per field were 0.18?±?0.23 SD and 0.12?±?0.17 SD, respectively. However, there was strong spatial variation, with high nest losses (>50 %) occurring in about one quarter of the fields. Variation in failure rates was mainly related to livestock grazing and predator abundances, while the effects of landscape context were negligible. Predation and trampling rates were highest in fields with short swards. Predation rate was positively related to the abundance of Egyptian mongooses and dogs. To increase nest survival, agri-environment schemes designed for ground-nesting birds should contribute for maintaining low stocking density. Further evaluation is required on the need for controlling populations of fast-expanding generalist predators such as mongooses.  相似文献   

15.
Predation by reef fishes may play an important role in structuring nearby soft-bottom communities. Here we evaluate the hypothesis that the abundance and spatial distribution of an epibenthic mobile organism, the squat lobster Munida gregaria (=M. subrugosa), is influenced by predation by fishes that shelter in temperate rocky reefs of northern Patagonia. The density of squat lobsters on sandy bottoms around three reefs, one natural and two artificial, was estimated at increasing distances (0, 5, 15 and 45 m) from the reefs. In one of the artificial reefs a sample was first collected four months after the reef was created, before it was colonized by fish, and again nine months later when a population of reef-dwelling fish had been established. An area between 5 and 19 m wide free of squat lobsters surrounded all colonized reefs, and no effect was evident at a distance of 45 m from the reefs. In contrast, the density of squat lobsters did not vary with distance from the reef in the new, uncolonized, artificial reef. A predation exclusion experiment conducted around both artificial reefs resulted in a larger presence of squat lobsters within exclusion cages than in partial and open cages. The caging experiment provides strong evidence for attributing the halo around the reefs to predation by fishes, and to confirm that off-reef foraging behaviour depletes prey abundance in nearby soft bottoms.  相似文献   

16.
1. The identification of factors determining the patchy distribution of organisms in space and time is a central concern of ecology. Predation and abiotic disturbance are both well-known drivers of this patchiness, but their interplay is still poorly understood, especially for communities dominated by mobile organisms in frequently disturbed ecosystems. 2. We investigated the separate and interactive influences of bed disturbance by floods and predation by fish on the benthic community in a flood-prone stream. Electric fields excluded fish predators from half of 48 stream bed patches (area 0·49 m(2) ) with contrasting disturbance treatments. Three types of bed disturbance were created by either scouring or filling patches to a depth of 15-20 cm or by leaving the patches undisturbed, thus mimicking the mosaic of scour and fill caused by a moderate flood. Benthic invertebrates and algae were sampled repeatedly until 57 days after the disturbance. 3. Disturbance influenced all ten investigated biological response variables, whereas predation affected four variables. Averaged across time, invertebrate taxon richness and total abundance were highest in stable patches. Algal biomass and densities of five of the seven most common invertebrate taxa (most of which were highly mobile) were higher in fill than in scour patches, whereas two taxa were more abundant in scour and stable than in fill patches. Furthermore, two common invertebrate grazers were more abundant and algal biomass tended to be reduced in fish exclusion patches, suggesting a patch-scale trophic cascade from fish to algae. 4. Our results highlight the importance of patchy physical disturbance for the microdistribution of mobile stream organisms and indicate a notable, but less prevalent, influence of fish predation at the patch scale in this frequently disturbed environment. Disturbance and predation treatments interacted only once, suggesting that the observed predation effects were largely independent of local bed disturbance patterns.  相似文献   

17.
Indirect effects occur when two species interact through one or more intermediate species. Theoretical studies indicate that indirect interactions between two prey types that share common predators can be positive, neutral or negative. We document a positive indirect interaction between different types of prey fish on coral reefs in Australia. A high abundance of one type of prey fish (cardinalfishes: Apogonidae) resulted in higher recruitment, abundance and species richness of other prey fish. Our evidence indicates that these effects were not due to differential settlement but were instead due to differential post-settlement predation. We hypothesize that resident piscivores altered their foraging behaviour by concentrating on highly abundant cardinal-fish when they were present, leaving recruits of other species relatively unmolested. Indirect effects were evident within 48 h of settlement and persisted throughout the 42-day experiment, highlighting the importance of early post-settlement processes in these communities.  相似文献   

18.
Predation among aquatic invertebrate predators can have important effects on patterns of exclusion and coexistence in aquatic habitats, especially if these predators also act as intraguild predators. Such patterns may be explained by variation in predator foraging mode and in the extent and overlap of habitat use. Predaceous diving beetles (Coleoptera: Dytiscidae) are abundant in isolated bodies of water and are effective predators on many aquatic organisms, including other dytiscids. The under-investigated role of hunting behavior and habitat use in altering outcomes of predation under different plant densities may offer insights into patterns of coexistence among larval dytiscids. I performed experiments that quantified behavior of larvae of three common genera of dytiscids that share common prey and then measured predation among genera in the presence or absence of aquatic plants. Behavioral analyses concluded that there were significant differences in foraging modes, with Dytiscus primarily exhibiting sit-and-wait tactics, Graphoderus engaging in active, open water searching, and Rhantus displaying combinations of these behaviors. Predation among larvae was common and occurred when predators were larger than the prey, with no indication of prey preference. Incidence of predation among generic combinations depended on the presence of plants and appeared to be related to behavioral differences among genera. The presence or absence of plants and differences in larval behavior may help to mitigate predation by reducing negative interactions in natural aquatic systems. These results have implications for IGP interactions and may be one of the explanations for the observed richness of this group of predators within aquatic habitats.  相似文献   

19.
20.
The pelagic environment is characterized by unevenly distributed resources and risks. Such unpredictability presents adaptive challenges to diverse planktonic organisms including the larvae of benthic marine invertebrates. Estimates of mortality during planktonic development are highly variable, ranging from 0% to 100% per day. Predation is considered a significant source of this mortality, but what explains the variability in estimates of the mortality of marine invertebrate larvae? While differential exposure of larval prey to predators may explain these widely variable estimates, adaptations that reduce vulnerability of marine larvae to predators may also be important. Although there are excellent reviews of predation upon larvae and of larval mortality and defenses, nearly 15 years have elapsed since these topics were formally reviewed. Here, we highlight recent advances in understanding the behavioral, chemical, and morphological defenses that larvae possess and assess their effectiveness in reducing the risk of predation. While recent work confirms that larval mortality is generally high, it also demonstrates that larvae can reduce their risk of predation in several ways, including: (1) temporarily escaping the benthos during vulnerable early stages, (2) producing chemical compounds that reduce palatability, (3) possessing morphological defenses such as spines and shells, and (4) exhibiting induced defensive responses whereby larvae can alter their behavior, morphology, and life histories in the presence of predators. Taken together, these studies indicate that marine invertebrate larvae possess a sophisticated suite of defensive phenotypes that have allowed them to persist in the life cycle of benthic invertebrates for eons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号