首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hsu SC  Wu JC  Sheen IJ  Syu WJ 《Journal of virology》2004,78(6):2693-2700
The nucleotide sequences of hepatitis D viruses (HDV) vary 5 to 14% among isolates of the same genotype and 23 to 34% among different genotypes. The only viral-genome-encoded antigen, hepatitis delta antigen (HDAg), has two forms that differ in size. The small HDAg (HDAg-S) trans-activates viral replication, while the large form (HDAg-L) is essential for viral assembly. Previously, it has been shown that the packaging efficiency of HDAg-L is higher for genotype I than for genotype II. In this study, the question of whether other functional properties of the HDAgs are affected by genotype differences is addressed. By coexpression of the two antigens in HuH-7 cells followed by specific antibody precipitation, it was found that HDAgs of different origins interacted without genotypic discrimination. Moreover, in the presence of hepatitis B virus surface antigen, HDAg-S was incorporated into virion-like particles through interaction with HDAg-L without genotype restriction. As to the differences in replication activation of genotype I HDV RNA, all HDAg-S clones tested had some trans-activation activity, and this activity varied greatly among isolates. As to the support of HDV genotype II replication, only clones of HDAg-S from genotype II showed trans-activation activity, and this activity also varied among isolates. In conclusion, genotype has no effect on HDAg interaction and genotype per se only partly predicts how much the HDAg-S of an HDV isolate affects the replication of a second HDV isolate.  相似文献   

2.
Cheng Q  Jayan GC  Casey JL 《Journal of virology》2003,77(14):7786-7795
Hepatitis delta virus (HDV) produces two essential forms of the sole viral protein from the same open reading frame by using host RNA editing activity at the amber/W site in the antigenomic RNA. The roles of these two forms, HDAg-S and HDAg-L, are opposed. HDAg-S is required for viral RNA replication, whereas HDAg-L, which is produced as a result of editing, inhibits viral RNA replication and is required for virion packaging. Both the rate and amount of editing are important because excessive editing will inhibit viral RNA replication, whereas insufficient editing will reduce virus secretion. Here we show that for HDV genotype III, which is associated with severe HDV disease, HDAg-L strongly inhibits editing of a nonreplicating genotype III reporter RNA, while HDAg-S inhibits only when expressed at much higher levels. The different inhibitory efficiencies are due to RNA structural elements located ca. 25 bp 3' of the editing site in the double-hairpin RNA structure required for editing at the amber/W site in HDV genotype III RNA. These results are consistent with regulation of amber/W editing in HDV genotype III by a negative-feedback mechanism due to differential interactions between structural elements in the HDV genotype III RNA and the two forms of HDAg.  相似文献   

3.
Hepatitis delta virus (HDV) expresses two essential proteins with distinct functions. The small hepatitis delta antigen (HDAg-S) is expressed throughout replication and is needed to promote that process. The large form (HDAg-L) is farnesylated, is expressed only at later times via RNA editing of the amber/W site, and is required for virion assembly. When HDAg-L is artificially expressed at the onset of replication, it strongly inhibits replication. However, there is controversy concerning whether HDAg-L expressed naturally at later times as a consequence of editing and replication can similarly inhibit replication. Here, by stabilizing the predicted secondary structure downstream from the amber/W site, a replication-competent HDV mutant that exhibited levels of editing higher than those of the wild type was created. This mutant expressed elevated levels of HDAg-L early during replication, and at later times, its replication aborted prematurely. No further increase in amber/W editing was observed following the cessation of replication, indicating that editing was coupled to replication. A mutation in HDAg-L and a farnesyl transferase inhibitor were both used to abolish the ability of HDAg-L to inhibit replication. Such treatments rescued the replication defect of the overediting mutant, and even higher levels of amber/W editing resulted. It was concluded that when expressed naturally during replication, HDAg-L is able to inhibit replication and thereby inhibit amber/W editing and its own synthesis. In addition, the structure adjacent to the amber/W site is suboptimal for editing, and this creates a window of time in which replication can occur in the absence of HDAg-L.  相似文献   

4.
A host-mediated RNA-editing event allows hepatitis delta virus (HDV) to express two essential proteins, the small delta antigen (HDAg-S) and the large delta antigen (HDAg-L), from a single open reading frame. One or several members of the ADAR (adenosine deaminases that act on RNA) family are thought to convert the adenosine to an inosine (I) within the HDAg-S amber codon in antigenomic RNA. As a consequence of replication, the UIG codon is converted to a UGG (tryptophan [W]) codon in the resulting HDAg-L message. Here, we used a novel reporter system to monitor the editing of the HDV amber/W site in the absence of replication. In cultured cells, we observed that both human ADAR1 (hADAR1) and hADAR2 were capable of editing the amber/W site with comparable efficiencies. We also defined the minimal HDV substrate required for hADAR1- and hADAR2-mediated editing. Only 24 nucleotides from the amber/W site were sufficient to enable efficient editing by hADAR1. Hence, the HDV amber/W site represents the smallest ADAR substrate yet identified. In contrast, the minimal substrate competent for hADAR2-mediated editing contained 66 nucleotides.  相似文献   

5.
6.
Clathrin is involved in the endocytosis and exocytosis of cellular proteins and the process of virus infection. We have previously demonstrated that large hepatitis delta antigen (HDAg-L) functions as a clathrin adaptor, but the detailed mechanisms of clathrin involvement in the morphogenesis of hepatitis delta virus (HDV) are not clear. In this study, we found that clathrin heavy chain (CHC) is a key determinant in the morphogenesis of HDV. HDAg-L with a single amino acid substitution at the clathrin box retained nuclear export activity but failed to interact with CHC and to assemble into virus-like particles. Downregulation of CHC function by a dominant-negative mutant or by short hairpin RNA reduced the efficiency of HDV assembly, but not the secretion of hepatitis B virus subviral particles. In addition, the coexistence of a cell-permeable peptide derived from the C terminus of HDAg-L significantly interfered with the intracellular transport of HDAg-L. HDAg-L, small HBsAg, and CHC were found to colocalize with the trans-Golgi network and were highly enriched on clathrin-coated vesicles. Furthermore, genotype II HDV, which assembles less efficiently than genotype I HDV does, has a putative clathrin box in its HDAg-L but interacted only weakly with CHC. The assembly efficiency of the various HDV genotypes correlates well with the CHC-binding activity of their HDAg-Ls and coincides with the severity of disease outcome. Thus, the clathrin box and the nuclear export signal at the C terminus of HDAg-L are potential new molecular targets for HDV therapy.Pathogens often take advantage of intracellular pathways involved in the trafficking of cellular macromolecules in order to carry out their life cycle, which consists of virus entry, translation, genome replication, assembly, and release. The clathrin-mediated endocytic route is a pathway commonly used for virus entry (29). Following clathrin-mediated endocytosis, incoming viruses are transported together with their receptors from the plasma membrane into early and late endosomes. Several links between clathrin adaptor complexes and viral biogenesis, including those of influenza virus (37), reovirus (13), and vesicular stomatitis virus (33), have been demonstrated.Clathrin and its adaptor proteins (APs), which constitute the major components of clathrin-coated vesicles (CCVs), are often the carriers of proteins and lipids that are transported from the trans-Golgi network (TGN) to the endosome (20, 35). Clathrin-mediated exocytosis has been found to participate in viral multiplication. The envelope protein of vesicular stomatitis virus, glycoprotein 1, recruits clathrin adaptor complex adaptor protein 1 (AP1) onto Golgi membranes and possibly leaves the TGN in CCVs for subsequent transport to endosomes (1). It is also known that interaction of AP1 with the matrix domain of human immunodeficiency virus type 1 Gag protein promotes viral release (5). In addition, Vpu inhibits the endosomal accumulation of the human immunodeficiency virus type 1 structural proteins Env and Gag, which is known to enhance viral assembly and release at the plasma membrane (39). Furthermore, large hepatitis delta antigen (HDAg-L) encoded by the hepatitis delta virus (HDV) has recently been identified as a novel clathrin adaptor-like protein (18). HDAg-L specifically interacts with clathrin heavy chain (CHC) at the TGN and inhibits clathrin-mediated protein transport. However, the role of CHC in the life cycle of HDV remains unclear.HDV is a highly pathogenic virus. The virion is coated with the envelope proteins of hepatitis B virus (HBV), the hepatitis B virus surface antigens (HBsAgs) (24). Superinfection or coinfection with HBV may result in fulminant hepatitis and progressive chronic liver cirrhosis (3, 36). The small HDAg (HDAg-S) lacks the unique C-terminal 19-amino-acid sequence of HDAg-L (6, 41, 43) and functions as a transactivator of HDV genome replication in the nucleus (23, 24). Both HDAg-S and HDAg-L possess nuclear localization signals (NLSs) spanning amino acid residues 35 to 88 and are mainly localized in the nuclei of transfected cells in the absence of HBsAg (7, 8). However, HDAg-L has been demonstrated to be a nucleocytoplasmic shuttling protein with a nuclear export signal (NES) at its unique C terminus, and this is important for HDV assembly (27). In the presence of HBsAg, HDAg-L relocalizes to the cytoplasm (29). In addition, a NES-interacting protein of HDAg-L, NESI, has been identified to be essential for the HDAg-L-mediated nuclear export of HDV RNA (42). Furthermore, the proline-rich motif within the unique 19-amino-acid extension together with isoprenylation of the CXXX motif (15) are essential for HDAg-L to form delta virus-like particles (VLPs) with HBsAg (19, 22). Taken together, these results imply that an intracellular association between HDAg-L and HBsAg in the cytoplasm is the driving force of HDV assembly. The interaction of HDAg-L with HBsAg facilitates the assembly and secretion of HDV particles. Nevertheless, the cellular proteins and pathways involved in the transport, packaging, and secretion of HDV are poorly understood.In this study, the involvement of clathrin-mediated trafficking in the propagation of HDV is biochemically characterized. Downregulation of functional CHC significantly reduced the efficiency of the CCV-mediated HDV assembly. However, CHC is not essential for the assembly of HBV subviral particles (SVPs). These results indicate that, although HBV and HDV share common surface antigens, different mechanisms are involved in their viral assembly and release. In addition, the assembly efficiency of the various HDV genotypes correlates well with the ability of HDAg-L to interact with CHC. This may reflect the fact that there is lower pathogenicity among patients infected with HDV genotype II than among those infected with genotype I.  相似文献   

7.
Huang C  Chang SC  Yu IC  Tsay YG  Chang MF 《Journal of virology》2007,81(11):5985-5994
Clathrin-mediated endocytosis is a common pathway for viral entry, but little is known about the direct association of viral protein with clathrin in the cytoplasm. In this study, a putative clathrin box known to be conserved in clathrin adaptors was identified at the C terminus of the large hepatitis delta antigen (HDAg-L). Similar to clathrin adaptors, HDAg-L directly interacted with the N terminus of the clathrin heavy chain through the clathrin box. HDAg-L is a nucleocytoplasmic shuttle protein important for the assembly of hepatitis delta virus (HDV). Here, we demonstrated that brefeldin A and wortmannin, inhibitors of clathrin-mediated exocytosis and endosomal trafficking, respectively, specifically blocked HDV assembly but had no effect on the assembly of the small surface antigen of hepatitis B virus. In addition, cytoplasm-localized HDAg-L inhibited the clathrin-mediated endocytosis of transferrin and the degradation of epidermal growth factor receptor. These results indicate that HDAg-L is a new clathrin adaptor-like protein, and it may be involved in the maturation and pathogenesis of HDV coinfection or superinfection with hepatitis B virus through interaction with clathrin.  相似文献   

8.
9.
Nuclear export is an important process that not only regulates the functions of cellular factors but also facilitates the assembly of viral nucleoprotein complexes. Chromosome region maintenance 1 (CRM1) that mediates the transport of proteins bearing the classical leucine-rich nuclear export signal (NES) is the best-characterized nuclear export receptor. Recently, several CRM1-independent nuclear export pathways were also identified. The nuclear export of the large form of hepatitis delta antigen (HDAg-L), a nucleocapsid protein of hepatitis delta virus (HDV), which contains a CRM1-independent proline-rich NES, is mediated by the host NES-interacting protein (NESI). The mechanism of the NESI protein in mediating nuclear export is still unknown. In this study, NESI was characterized as a highly glycosylated membrane protein. It interacted and colocalized well in the nuclear envelope with lamin A/C and nucleoporins. Importantly, HDAg-L could be coimmunoprecipitated with lamin A/C and nucleoporins. In addition, binding of the cargo HDAg-L to the C terminus of NESI was detected for the wild-type protein but not for the nuclear export-defective HDAg-L carrying a P205A mutation [HDAg-L(P205A)]. Knockdown of lamin A/C effectively reduced the nuclear export of HDAg-L and the assembly of HDV. These data indicate that by forming complexes with lamin A/C and nucleoporins, NESI facilitates the CRM1-independent nuclear export of HDAg-L.  相似文献   

10.
Jayan GC  Casey JL 《Journal of virology》2005,79(17):11187-11193
RNA editing of the hepatitis delta virus (HDV) antigenome at the amber/W site by the host RNA adenosine deaminase ADAR1 is a critical step in the HDV replication cycle. Editing is required for production of the viral protein hepatitis delta antigen long form (HDAg-L), which is necessary for viral particle production but can inhibit HDV RNA replication. The RNA secondary structural features in ADAR1 substrates are not completely defined, but base pairing in the 20-nucleotide (nt) region 3' of editing sites is thought to be important. The 25-nt region 3' of the HDV amber/W site in HDV genotype I RNA consists of a conserved secondary structure that is mostly base paired but also has asymmetric internal loops and single-base bulges. To understand the effect of this 3' region on the HDV replication cycle, mutations that either increase or decrease base pairing in this region were created and the effects of these changes on amber/W site editing, RNA replication, and virus production were studied. Increased base pairing, particularly in the region 15 to 25 nt 3' of the editing site, significantly increased editing; disruption of base pairing in this region had little effect. Increased editing resulted in a dramatic inhibition of HDV RNA synthesis, mostly due to excess HDAg-L production. Although virus production at early times was unaffected by this reduced RNA replication, at later times it was significantly reduced. Therefore, it appears that the conserved RNA secondary structure around the HDV genotype I amber/W site has been selected not for the highest editing efficiency but for optimal viral replication and secretion.  相似文献   

11.
Hepatitis delta virus (HDV) is a satellite virus of hepatitis B virus, as it requires hepatitis B virus for virion production and transmission. We have previously demonstrated that sequences within the C-terminal 19-amino acid domain flanking the isoprenylation motif of the large hepatitis delta antigen (HDAg-L) are important for virion assembly. In this study, site-directed mutagenesis and immunofluorescence staining demonstrated that in the absence of hepatitis B virus surface antigen (HBsAg), the wild-type HDAg-L was localized in the nuclei of transfected COS7 cells. Nevertheless, in the presence of HBsAg, the HDAg-L became both nuclei- and cytoplasm-distributed in about half of the cells. An HDAg-L mutant with a substitution of Pro-205 to alanine could neither form HDV-like particles nor shift the subcellular localization in the presence of HBsAg. In addition, nuclear trafficking of HDAg-L in heterokaryons indicated that HDAg-L is a nucleocytoplasmic shuttling protein. A proline-rich HDAg peptide spanning amino acid residues 198 to 210, designated NES(HDAg-L), can function as a nuclear export signal (NES) in Xenopus oocytes. Pro-205 is critical for the NES function. Furthermore, assembly of HDV is insensitive to leptomycin B, indicating that the NES(HDAg-L) directs nuclear export of HDAg-L to the cytoplasm via a chromosome region maintenance 1-independent pathway.  相似文献   

12.
Characterizations of genetic variations among hepatitis delta virus (HDV) isolates have focused principally on phylogenetic analysis of sequences, which vary by 30 to 40% among three genotypes and about 10 to 15% among isolates of the same genotype. The significance of the sequence differences has been unclear but could be responsible for pathogenic variations associated with the different genotypes. Studies of the mechanisms of HDV replication have been limited to cDNA clones from HDV genotype I, which is the most common. To perform a comparative analysis of HDV RNA replication in genotypes I and III, we have obtained a full-length cDNA clone from an HDV genotype III isolate. In transfected Huh-7 cells, the functional roles of the two forms of the viral protein, hepatitis delta antigen (HDAg), in HDV RNA replication are similar for both genotypes I and III; the short form is required for RNA replication, while the long form inhibits replication. For both genotypes, HDAg was able to support replication of RNAs of the same genotype that were mutated so as to be defective for HDAg production. Surprisingly, however, neither genotype I nor genotype III HDAg was able to support replication of such mutated RNAs of the other genotype. The inability of genotype III HDAg to support replication of genotype I RNA could have been due to a weak interaction between the RNA and HDAg. The clear genotype-specific activity of HDAg in supporting HDV RNA replication confirms the original categorization of HDV sequences in three genotypes and further suggests that these should be referred to as types (i.e., HDV-I and HDV-III) rather than genotypes.  相似文献   

13.
Hepatitis delta virus (HDV) causes both acute and chronic liver disease throughout the world. Effective medical therapy is lacking. Previous work has shown that the assembly of HDV virus-like particles (VLPs) could be abolished by BZA-5B, a compound with farnesyltransferase inhibitory activity. Here we show that FTI-277, another farnesyltransferase inhibitor, prevented the production of complete, infectious HDV virions of two different genotypes. Thus, in spite of the added complexity and assembly determinants of infectious HDV virions compared to VLPs, the former are also sensitive to pharmacological prenylation inhibition. Moreover, production of HDV genotype III virions, which is associated with particularly severe clinical disease, was as sensitive to prenylation inhibition as was that of HDV genotype I virions. Farnesyltransferase inhibitors thus represent an attractive potential class of novel antiviral agents for use against HDV, including the genotypes associated with most severe disease.  相似文献   

14.
The functions of delta antigens (HDAgs) in the morphogenesis of hepatitis delta virus (HDV) have been studied previously. The C terminus of large HDAg has been shown to complex with the small surface antigen (HBsAg) of helper hepatitis B virus, whereas the assembly of small HDAg requires interaction with the N terminus of large HDAg (M.-F. Chang, C.-J. Chen, and S. C. Chang, J. Virol. 68:646-653, 1994). To further examine the molecular mechanisms by which HDAgs are involved in the assembly of HDV RNA, we have cotransfected Huh-7 cells with plasmids representing a longer than unit-length HDV and the small HBsAg cDNAs. We found that HDAg mRNA could be generated from an endogenous promoter within the HDV cDNA that was translated into large HDAg. Large HDAg is capable of complexing with monomeric HDV genomic RNA to form ribonucleoprotein particles (RNPs) and is capable of forming enveloped HDV-like particles in the presence of small HBsAg without undergoing HDV replication. In addition, the middle region from amino acid residues 89 to 145 of large HDAg is required for assembly of the RNPs but is dispensable for assembly of the enveloped particles. RNA assembly is also demonstrated with small HDAg when it is cotransfected with a packaging-defective large HDAg mutant and small HBsAg. Leu-115 within the putative helix-loop-helix structure of the small HDAg is important for the replication of HDV but is not essential for RNA assembly, suggesting that conformational requirements of small HDAg for replication and assembly of viral RNA may be different. Further studies indicate that a 312-nucleotide linear HDV RNA from one end of the HDV and structure is sufficient to form RNP complexes competent for assembly of virus-like particles with large HDAg and small HBsAg.  相似文献   

15.
Hepatitis delta virus (HDV) is a subviral human pathogen that uses specific RNA editing activity of the host to produce two essential forms of the sole viral protein, hepatitis delta antigen (HDAg). Editing at the amber/W site of HDV antigenomic RNA leads to the production of the longer form (HDAg-L), which is required for RNA packaging but which is a potent trans-dominant inhibitor of HDV RNA replication. Editing in infected cells is thought to be catalyzed by one or more of the cellular enzymes known as adenosine deaminases that act on RNA (ADARs). We examined the effects of increased ADAR1 and ADAR2 expression on HDV RNA editing and replication in transfected Huh7 cells. We found that both ADARs dramatically increased RNA editing, which was correlated with strong inhibition of HDV RNA replication. While increased HDAg-L production was the primary mechanism of inhibition, we observed at least two additional means by which ADARs can suppress HDV replication. High-level expression of both ADAR1 and ADAR2 led to extensive hyperediting at non-amber/W sites and subsequent production of HDAg variants that acted as trans-dominant inhibitors of HDV RNA replication. Moreover, we also observed weak inhibition of HDV RNA replication by mutated forms of ADARs defective for deaminase activity. Our results indicate that HDV requires highly regulated and selective editing and that the level of ADAR expression can play an important role: overexpression of ADARs inhibits HDV RNA replication and compromises virus viability.  相似文献   

16.
We have recently demonstrated the assembly of hepatitis delta virus-like particles (HDV VLP) by co-transducing hepatoma cells using two recombinant baculoviruses, one encoding hepatitis B surface antigen (HBsAg), and one encoding large delta antigen (L-HDAg). In this study, we further demonstrated the assembly and secretion of VLP in other mammalian cells. The assembly efficiency varied depending on cell lines, the baculovirus constructs and the relative dosage of both recombinant viruses. The co-transduction of BHK cells led to the formation of VLPs resembling authentic virions in size and appearance. The production process was transferred to a novel oscillating packed bed bioreactor, BelloCell, in which the transduction efficiency was up to approximately 90% for a high cell density of 1.5 x 10(7) cells/cm(3) bed and a total yield of 427 microg based on HBsAg in the VLP (harvested from 940 ml medium) was obtained. The particle yield corresponded to an average volumetric yield of 454 ngml(-1) and a specific yield of 285 microg/10(9) cells, and is significantly superior to that can be obtained by the commonly employed transfection method. The combination of baculovirus transduction and BelloCell reactor, thus, may represent a simple and efficient approach for the production of HDV VLP and viral vectors.  相似文献   

17.
The small hepatitis B virus surface antigen (S-HBsAg) is capable of driving the assembly and secretion of hepatitis delta virus (HDV) particles by interacting with the HDV ribonucleoprotein (RNP). Previously, a specific domain of the S-HBsAg protein carboxyl terminus, including a tryptophan residue at position 196 (W196), was proven essential for HDV maturation (S. Jenna and C. Sureau, J. Virol. 73: 3351-3358, 1999). Mutation of W196 to phenylalanine (W196F) was permissive for HBV subviral particle (SVP) secretion but deleterious to HDV virion assembly. Here, the W196F S-HBsAg deficiency was assigned to a loss of its ability for interaction with the large HDV antigen (L-HDAg), a major component of the RNP. Because the overall S-HBsAg carboxyl terminus is particularly rich in tryptophan, an amino acid frequently involved in protein-protein interactions, site-directed mutagenesis was conducted to investigate the function of the S-HBsAg Trp-rich domain in HDV assembly. Single substitutions of tryptophan between positions 163 and 201 with alanine or phenylalanine were tolerated for SVP secretion, but those affecting W196, W199, and W201 were detrimental for HDV assembly. This was proven to result from a reduced capacity of the mutants for interaction with L-HDAg. In addition, a W196S S-HBsAg mutant, which has been described in HBV strains that arose in a few cases of lamivudine-treated HBV-infected patients, was deficient for HDV assembly as a consequence of its impaired capacity for interacting with L-HDAg. Interestingly, the fact that even the most conservative substitution of phenylalanine for tryptophan at positions 196, 199, or 201 was sufficient to ablate interaction of S-HBsAg with L-HDAg suggests that W196, W199, and W201 are located at a binding interface that is central to HDV maturation.  相似文献   

18.
Casey JL 《Journal of virology》2002,76(15):7385-7397
RNA editing at the amber/W site plays a central role in the replication scheme of hepatitis delta virus (HDV), allowing the virus to produce two functionally distinct forms of the sole viral protein, hepatitis delta antigen (HDAg), from the same open reading frame. Editing is carried out by a cellular activity known as ADAR (adenosine deaminase), which acts on RNA substrates that are at least partially double stranded. In HDV genotype I, editing requires a highly conserved base-paired structure that occurs within the context of the unbranched rod structure characteristic of HDV RNA. This base-paired structure is disrupted in the unbranched rod of HDV genotype III, which is the most distantly related of the three known HDV genotypes and is associated with the most severe disease. Here I show that RNA editing in HDV genotype III requires a branched double-hairpin structure that deviates substantially from the unbranched rod structure, involving the rearrangement of nearly 80 bp. The structure includes a UNCG RNA tetraloop, a highly stable structural motif frequently involved in the folding of large RNAs such as rRNA. The double-hairpin structure is required for editing, and hence for virion formation, but not for HDV RNA replication, which requires the unbranched rod structure. HDV genotype III thus relies on a dynamic conformational switch between the two different RNA structures: the unbranched rod characteristic of HDV RNA and a branched double-hairpin structure that is required for RNA editing. The different mechanisms of editing in genotypes I and III underscore their functional differences and may be related to pathogenic differences as well.  相似文献   

19.
Analysis of hepatitis delta virus (HDV) genome sequences has revealed multiple genotypes with different geographical distributions and associated disease patterns. To date, replication-competent cDNA clones of HDV genotypes I, II, and III have been reported. HDV genotypes I, II, and IIb have been found in Taiwan. Although full-length sequences of genotype IIb have been published, its replication competence in cultured cells has yet to be reported. In order to examine this, we obtained a full-length cDNA clone, Taiwan-IIb-1, from a Taiwanese HDV genotype IIb isolate. Comparison of the complete nucleic acid sequence of Taiwan-IIb-1 with previously published genotype IIb isolates indicated that Taiwan-IIb-1 shares 98% identity with another Taiwanese isolate and 92% identity with a Japanese isolate. Transfection of Taiwan-IIb-1 into COS7 cells resulted in accumulation of the HDV genome and appearance of delta antigens, showing that cloned HDV genotype IIb can replicate in cultured cells.  相似文献   

20.
C Z Lee  P J Chen    D S Chen 《Journal of virology》1995,69(9):5332-5336
Hepatitis delta virus (HDV) encodes two proteins, the small delta antigen (SHDAg) and large delta antigen (LHDAg). The latter is identical to the former except for the presence of additional 19 amino acids at the C terminus. While SHDAg is required for HDV replication, LHDAg inhibits replication and, together with hepatitis B surface antigen (HBsAg), is required for the assembly of HDV. The last 19 C-terminal amino acids of LHDAg are essential for HDV assembly. Most of LHDAg (amino acids 19 to 146 and 163 to 195) had been shown to be dispensable for packaging with HBsAg. To discern whether the last 19 C-terminal amino acids solely constitute the signal for packaging with HBsAg, we constructed two LHDAg deletion mutants and tested their abilities to be packaged with HBsAg in cotransfection experiments. We found that deletion of amino acids 2 to 21 and 142 to 165 did not affect LHDAg packaging. This result suggested that only the last 19 C-terminal amino acids of LHDAg are required for packaging. We further constructed two plasmids which expressed c-H-ras with or without additional 19 C-terminal amino acids identical to those in LHDAg. Only c-H-ras with additional 19 amino acids could be cosecreted with HBsAg in the cotransfection experiment. This result confirmed that the C-terminal 19 amino acids are the packaging signal for HBsAg. We also tested the trans activation activity and trans-dominant inhibitory activity of the deletion mutants of SHDAg and LHDAg, respectively. In contrast to deletion of amino acids 142 to 165, deletion of amino acids 2 to 21 impaired the trans-dominant inhibitory activity of LHDAg. Deletion of amino acids 2 to 21 and 142 to 165 did not affect the trans activation activity of SHDAg. This result suggested that a functional domain which is important for the trans-dominant inhibitory activity of LHDAg exists in the amino terminus of HDAg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号