首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The research on the spatial distribution of rotifers between the central and border part of the Myriophyllum bed (M. verticillatum) was carried out between 1998 and 1999 in the shallow part (approx. 1 m depth) of Budzyńskie Lake (Wielkopolski National Park, Poland). The comparison of both species composition and the numbers of individuals between both of the examined zones have not revealed statistically significant differences. However, a higher number of rotifer species and their higher densities, as well as increased participation of littoral species were observed in the middle of the vegetation bed. The structure of the dominating species also differed between both areas. Seven rotifer species were found to have significantly greater numbers in the central part of the Myriophyllum bed, while only one species was significantly correlated with the border part of the macrophyte stand. These differences in the behaviour of particular groups of rotifers may be dependent on the structure of their microhabitat and their position in relation to the open water zone. They may also be related to young fish predation in both habitats and better refuge conditions inside the thick macrophyte stand, as well as typical adaptation to littoral or limnetic life.

  相似文献   

2.
Research on the similarity of zooplankton in various stands of water vegetation, including rushes (Typha angustifolia), nymphaeids (Nymphaea alba) and submerged macrophytes (Charahispida, C. tomentosa, Myriophyllumverticillatum and Utricularia vulgaris) was carried out on the shallow Wielkowiejskie lake (Poland). The analysis of the similarity of the Rotifera community revealed the strongest relationship between the Myriophyllum and Chara tomentosa beds, with C. hispida attaching them. A second pair of habitats was represented by Typha and Nymphaea stands. Cladocerans revealed the greatest similarity between both zones of Chara. Additionally, two more pairs of habitats were distinguished – Typha and Nymphaea and also Utricularia and Myriophyllum. In most cases, the Shannon-Weaver values were high among macrophyte stations. Forward stepwise regression revealed that the length of Nymphaea stems was a single negative predictor determining the Cladocera densities. The water lily stand possessed the richest pelagic community of zooplankton and had the highest cladoceran diversity index. In accordance with CCA-ordination, out of the environmental variables, the macrophyte stem length and the concentration of Ptot were the strongest predictors in determining the distribution of particular species of the zooplankton community. Mainly pelagic species displayed preferences towards physical parameters of habitat, which is manifested in their greater affinity to a denser spatial structure of macrophyte substratum. The similarity of zooplankton communities in Wielkowiejskie lake was based on the characteristic architecture of particular macrophyte species, where the plant length was the strongest predictor. Moreover, the character of the zooplankton communities was also influenced by the concentrations of chlorophyll ‘a’ and the chemical variables, with the strongest impact of Ptot, of periphyton received from a particular macrophyte habitat and from water filling the spaces between plant stems.  相似文献   

3.
Walsh  Elizabeth J. 《Hydrobiologia》1995,313(1):205-211
The rotifer Euchlanis dilatata lives associated with submerged vegetation in the littoral zone of freshwater lakes and ponds. I assessed habitat-specific predation susceptibilities for this rotifer in the presence of three aquatic macrophytes (Myriophyllum exalbescens, Elodea canadensis, and Ceratophyllum demersum) and two predators (damselfly nymphs — Enallagma carunculata; and cnidarians — Hydra). Rotifer survival was greatest on Myriophyllum in the presence of both predators. Conversely, the presence of the other macrophyte species actually increase rotifer suspectibility to predation by damselfly nymphs. I also manipulated plant structural complexity. As predicted, decreasing the relative complexity of each plant resulted in lower rotifer survival.  相似文献   

4.
Diurnal vertical distribution of rotifers was investigated in the Chara bed and the water immediately above it in the shallow region (ca. 1 m depth) of Budzyskie Lake (Wielkopolski National Park, Poland) in early September 1998. Eighty one rotifer species were identified – 71 among Chara and 59 in the open water. Significant differences in rotifer densities were observed in the Chara, with highest numbers during the day (2316 ind. l–1) and lowest numbers early morning (521 ind. l–1) and at dusk (610 ind. l–1). Above the Chara, the numbers of rotifers did not change significantly (615–956 ind. l–1). Littoral- or limnetic-forms differed in their diel vertical distribution between both zones. One group of littoral species was characterized by increased densities in the Chara in the daytime, while a second group increased in density during the night. The densities of limnetic species, which were much higher in open water, decreased in the morning or daytime in this zone. These differences in the diel behaviour of particular groups of rotifers may be dependent on microhabitat and may also be related to different kinds of predation, the exploitative competition for shared food resources between rotifers and crustaceans, as well as typical adaptation to littoral or limnetic life.  相似文献   

5.
The ecology of periphytic rotifers   总被引:5,自引:2,他引:3  
Duggan  Ian C. 《Hydrobiologia》2001,(1):139-148
The ecology of rotifer assemblages in the periphyton has received little attention relative to that of pelagic rotifers. This paper reviews the ecology of periphytic rotifers, with particular emphasis on the role of macrophytes in the structuring of rotifer assemblages spatially and temporally, and compares these aspects with the dynamics of better known pelagic rotifer communities. Littoral rotifer periphyton communities are typically diverse in lakes, and have composition dissimilar to that of the open water. In rivers, diversity and composition in the pelagic and littoral appear to be similar. Rotifers show preference for macrophyte species they associate with, probably through differences in physical structure or complexity, food concentration or composition, chemical factors, macrophyte age, and differences in the degree of protection from predation provided by macrophytes. These mechanisms are in general not well investigated in rotifers. Factors affecting the seasonal dynamics of periphytic communities appear to be similar to pelagic communities, with seasonal dynamics of substrates and disturbance by flooding or drying also being important.  相似文献   

6.
Worldwide, there have been few comparative studies on rotifer communities in subtropical lakes. We studied changes in rotifer community structure over 1 year and its relationship to several physicochemical variables in five subtropical shallow lakes in East China, covering a nutrient gradient from mesotrophy to moderate eutrophy. In these lakes, the genera Brachionus, Lecane, and Trichocerca dominated the rotifer species composition, and Polyarthra dolichoptera, Keratella cochlearis, Filinia longiseta, T. pusilla, and Anuraeopsis fissa were the dominant species. With increased nutrient loading, total rotifer abundance and species dominance increased, indicating that rotifer abundance might be a more sensitive indicator of trophic state than species composition. Comparative analyses of the six rotifer community indices calculated in this study and redundancy analysis (RDA) revealed that the two slightly eutrophic lakes and the other two moderately eutrophic lakes exhibited a high degree similarity in community structure. This suggests that the trophic state of a lake determines the rotifer community structure. In contrast, in the two moderately eutrophic lakes, the mass ratios of TN:TP and the contents of TP suggested N-limitation and cyanobacteria dominance in phytoplankton communities might be possible. In these lakes TN played a more important role in shaping the rotifer community according to stepwise multiple regression and RDA. RDA analysis also suggested that rotifer species distribution was strongly associated with trophic state and water temperature, with water temperature being the most important factor in determining seasonality.  相似文献   

7.
The paper presents the results of an examination of the phycical-chemical parameters of water together with an analysis of the chlorophyll a concentration of 12 small water bodies situated within urban and suburban areas of the city of Poznań (mid-west Poland)—typical mid-forest, strongly anthropogenically modified in the urban landscape, strongly antropogenically modified in an agricultural area and clay-pits. There were zones of open water (Unvegetated Zone) as well as zones of rush and aquatic vegetation (Vegetated Zone) distinguished in the examined ponds. The influence of the rush vegetation, nymphaeids and elodeids on the abiotic parameters of an aquatic environment was examined. Water samples were taken during the summer of 2004 from 12 stations within the open water and 24 within macrophytes. The plant matter was randomly collected in triplicate from the central part of the vegetated stand. The influence of macrophytes on the abiotic features of water was estimated using the parameter of the plant length (cm l−1) and the plant biomass (g l−1). In the studied ponds 12 aquatic macrophyte communities were distinguished. A salient feature of submerged macrophytes was a great density of plant stems along with considerebly low biomass, however, the rush vegetation (Phragmitetum communis, Typhetum latifoliae) when compared to nymphaeids (Polygonetum natantis, Potametum natantis) and elodeids (Potametum lucentis) was characterised by lower stem densities and higher biomass. The water bodies were alkaline and of pronounced hardness. In most of them high trophy conditions were found with especially high concentrations of phosphorus (96 μg l−1 on average). There was significant differentiation in the water chemistry (mainly in respect to mineral compounds) between the Vegetated and Unvegetated Zones as well as between particular aquatic macrophyte communities.  相似文献   

8.
Priyadarshana  Tilak  Asaeda  Takashi  Manatunge  Jagath 《Hydrobiologia》2001,442(1-3):231-239
In the littoral zones of lakes, aquatic macrophytes produce considerable structural variation that can provide protection to prey communities by hindering predator foraging activity. The swimming and feeding behaviour of a planktivore, Pseudorasbora parva(Cyprinidae) on its prey (Daphnia pulex) was studied in a series of laboratory experiments with varying densities (0, 350, 700, 1400, 2100 and 2800 stems m–2) of simulated submerged vegetation. Prey availability was varied from 0.5, 1.0, 2.0, 5.0, 10.0 and 25.0 prey l–1. As the stem density increased, the predator's swimming speed and the number of prey captured decreased relative to feeding in open water. A good relation existed between the number of successful prey captures and swimming speed with the average stem distance to fish body length ratio (D). An abrupt reduction in feeding and swimming was recorded when D was reduced to values less than one.  相似文献   

9.
Data from two shallow macrophyte‐dominated lakes (Eastern Poland) sampled with standardized methods, were evaluated in order to examine the effects of various stands of macrophytes in predicting protozooplankton community structure. Differences in macrophyte structure led to two distinct groups of habitats having different patterns of ciliate distribution. The first group consists of two vegetated habitats of sparse stem density and of the open water zone, and the second of submerged macrophyte species, which were more dense and complex. The number of significant correlations was different in the studied habitats. In central zones of macrophyte habitats the number of ciliates had the strongest correlation with concentrations of total organic carbon and Ptot. On the other side in the border zone a significant correlation between the number of ciliates and the chlorophyll a concentration was found. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
1. The effect of macrophytes on the spatial distribution of littoral rotifers was examined in Lake Rotomanuka, New Zealand (37°55'S, 175°19'E). Total rotifer abundances and those of abundant species, were compared between three macrophyte species, Myriophyllum propinquum , Eleocharis sphacelata and Egeria densa , and spatially across a littoral transect in relation to these species.
2. The abundances of many species, for example Euchlanis dilatata, Lecane closterocerca and L. lunaris, differed significantly between macrophyte species. More planktonic forms, Ascomorpha saltans , Keratella cochlearis and Synchaeta oblonga, however, showed no significant preference for macrophyte species.
3. Differences in rotifer abundances were evident even when different species of macrophyte grew in close proximity to one another, indicating that variations in physical and chemical conditions, which occur in the littoral of Lake Rotomanuka, could be largely discounted for much of the variation between macrophyte species.
4. Variation in rotifers between macrophytes was probably the result of a number of factors, including differences in macrophyte morphology, macrophyte age, epiphytic algal growths and the differential effects of predation by invertebrates and fish between macrophytes.
5. Variability of rotifer abundances spatially across the ecotone was less marked than between macrophyte species. The species of macrophyte occurring, and therefore the community composition and distribution of macrophyte species in the littoral, appears to be a major influence in the spatial structuring of rotifer communities in the littoral region of lakes.  相似文献   

11.
As a recent invader of North American lakes, Bythotrephes longimanus has induced large changes in crustacean zooplankton communities through direct predation effects. Here we demonstrate that Bythotrephes can also have indirect food web effects, specifically on rotifer fauna. In historical time series data, the densities of the colonial rotifer Conochilus unicornis significantly increased after Bythotrephes invasion in Harp Lake, Ontario. No such changes were observed in a non-invaded reference lake, the nearby Red Chalk Lake. Evidence for two mechanisms explaining the Conochilus increase was examined based on changes to the crustacean zooplankton community over time. Rapid and severe declines in several herbivorous species of cladoceran zooplankton after Bythotrephes detection indicated a decrease in exploitative competition pressure on Conochilus. Secondly, a later and significant decline to virtual extinction of native invertebrate predators (Mesocyclops and Leptodora) could account for the observed Conochilus increase which also began 1–2 years after invasion by Bythotrephes. Ultimately, it appears that both reduced competition followed by a loss of native invertebrate predators were necessary to lead to the large Conochilus densities observed following invader establishment. From this analysis of long-term community data, it appears that Bythotrephes has important indirect, as well as direct, food web effects in newly invaded North American lakes with implications for trophic relationships.  相似文献   

12.
We examined the temporal and vertical dynamics of zooplankton in Weavers Lake, New Zealand, between October 2004 and October 2005, at a time when it was colonised by a non-indigenous Daphnia species. Zooplankton community composition changed during the study from one of rotifer dominance (e.g. Asplanchna, Polyarthra, Brachionus and Keratella species) to cladoceran (Daphnia dentifera) dominance. Temporal changes in zooplankton community composition were strongly associated with a gradual increase in lake water clarity, and were attributable to the highly efficient filter feeding of D. dentifera. The corresponding reduction in rotifer densities may have resulted from the superior competitive abilities of the newly established Daphnia. As Daphnia were rare inhabitants of New Zealand lakes before 1990, the arrival and rapid spread of the non-indigenous D. dentifera has lead to widespread changes in both water clarity and zooplankton community composition. An apparent lack of mixing in the lake was facilitated by the lake’s extremely small surface area:depth ratio. However, we conclude that physical features of the lake had minimal influence on water clarity relative to the invasion of D. dentifera.  相似文献   

13.
The influence of different macrophyte taxa or growth forms on biological and environmental variables is often analysed in one-lake studies. However, the unique combination of non-vegetational characteristics of a waterbody, i.e. its site identity, can be an influential factor in itself, shaping the measured parameters irrespective of the presence or absence of certain macrophyte species. In this situation, the relative strengths of all factors can be determined best in a study that explicitly accounts for differences in the identity of the waterbodies. Several functional macrophyte groups are known to provide a potent microinvertebrate refuge or permanent habitat. The objective of this study was to detect patterns in the zooplankton assemblages associated with different extensive habitats of macrophyte species and to relate these patterns to three major factors: the microhabitat, the pond identity and the seasonality in the warmer months of the year. Five ponds located in the Woluwe catchment of the Brussels-Capital Region (Belgium) were studied monthly for macrophyte and zooplankton characteristics from July until October 2005. The vegetation in the clear ponds was characterized by extensive monospecific stands (Ceratophyllum, Chara, Nitella, Potamogeton, Nuphar and filamentous algae). Zooplankton could be analysed in seven different vegetation types and in the open water zones and contained a total of 17 cladoceran and 27 rotifer genera. Principal components analysis (PCA) ordination of zooplankton communities showed a seasonal gradient and a tendency to group within-pond habitats, although they differed in macrophyte species and habitat structure. Despite the absence of clustering of similar microhabitats across ponds, percent volume infested (PVI), vegetation biomass density and Daphnia length (used as a proxy for fish predation pressure) contributed significantly positive to the Shannon zooplankton biodiversity indices. Moreover, densities of most zooplankton subgroups and of total zooplankton were significantly and positively related to PVI. It is assumed that in eutrophic ponds, extensive, often monospecific macrophyte vegetations provide an ecological environment suitable for both macrophyte-associated species and migrating pelagic zooplankton, thereby maintaining a high microinvertebrate biodiversity.  相似文献   

14.
The structure of the mid-summer planktonic rotifer communities of 101 Adirondack lakes ranging in pH from 4.0 to 7.3 were characterized in relation to acidity and selected water quality parameters. More than 70 rotifer species were identified from collections in 1982 and 1984. None of the species collected could be considered acidobiontic or alkalibiontic. Keratella taurocephala was the most commonly collected rotifer, occurring in 94 of the study lakes. It was abundant throughout the range of pH investigated but was particularly dominant in acidic waters, averaging > 85 % of the rotifers collected from waters of pH < 5.0.Rotifer community structure can be related to three groups of water quality parameters. Community parameters (richness and diversity) are most highly correlated with parameters indicative of acidity status. Rotifer abundance correlates with trophic state indicators, i.e. chlorophyll a and total phosphorus, over the full range of pH investigated. However, in acidic lakes, rotifer abundance is related to true color and DOC, indicators of humic influences.The rotifer communities of the Adirondacks can be classified into four broad types: 1) A diverse, productive community of the more alkaline lakes, generally with 13 species, and dominated by Conochilus unicornis, Kellicottia bostoniensis, Kellicottia longispina, and Polyarthra major; 2) Relatively diverse communities of productive, highly colored acid lakes, with 8 species, and often with very large populations (> 200 · 1–1) dominated by K. bostoniensis and K. taurocephala; 3) Depauperate (< 4 species) communities of clear water acid lakes with generally low density populations dominated by K. taurocephala (> 90 % of rotifers in each sample); and 4) Extremely depauperate (2–3 species) acid lake communities associated with small lakes with high flushing rates dominated by C. unicornis.  相似文献   

15.
Fox  A. D.  Jones  T. A.  Singleton  R.  Agnew  A. D. Q. 《Hydrobiologia》1994,279(1):253-261
The Cotswold Water Park, an area of over 100 flooded gravel pits in south central Britain, supports Nationally Important numbers of wintering Pochard Aythya ferina associated with abundant Stoneworts Chara spp. Based on extensive presence/absence data and intensive biomass sampling, the submerged macrophyte communities were surveyed. Charophytes were most frequent and developed highest biomass at water depths below 3 m. Counts of wintering Pochard showed that water-based recreational activity displaced birds from lakes. Analysis of bird density showed significantly higher use of reserves with restricted bankside access than lakes where angling, walking or other bank-side activities were permitted. These in turn supported higher Pochard densities than lakes with water-based recreation.  相似文献   

16.
Schmid-Araya  J. M. 《Hydrobiologia》1993,255(1):397-409
During the last decade much information has been produced about the zooplankton communities in southern Chile; however, most of this is related to the crustacean assemblages. The present communication examines the spatial and temporal distribution of rotifer assemblages and their relation to the environmental variables during one-year period in four Araucanian lakes. A total of 19 species was found in these oligotrophic lakes. Keratella cochlearis, Synchaeta stylata, Trichocerca porcellus, Conochilus unicornis and Collotheca pelagica were widespread, and seven species exhibited a more restricted distribution among the lakes. Species richness varied from 6 to 12; similarly, one or two dominant species usually accounted for more than 80% of the total annual abundance. Similar dominant species occurred in two lakes, but their maximum peaks of abundance differed in time; in the remaining lakes the most important species were different. Calculated rotifer diversity showed a fluctuating pattern, with low values during the year in three lakes, and high ones in Lake Llanquihue. Species diversity was significantly related to species richness in all lakes. Discriminant analysis based on the occurrence and abundances of species throughout the year revealed that the rotifer assemblage in Lake Llanquihue was different from that in the rest of the Araucanian lakes. Furthermore, the same analysis using environmental variables showed that this lake is clearly discriminated from the others on the basis of the ionic composition of the water (i.e. Cl, Na+, Mg2+). Rotifer abundances in these lakes were significantly influenced by a number of abiotic variables, including those related to water ionic composition. These relationships may imply that the small differences in chemical characteristics of these lakes influence the structure of the rotifer community.  相似文献   

17.
1. To evaluate the effect of habitat patch heterogeneity on abundance and growth of macroinvertebrates in arctic lakes, macroinvertebrate abundance, individual biomass, and potential food resources were studied in three patch types in two arctic lakes on the Alaskan North Slope near the Toolik Lake Field Station. An experiment was conducted to determine which sediment patch type supported higher growth rates for Chironomus sp., a commonly occurring macroinvertebrate. 2. Potential organic matter (OM) resources were significantly higher in both rock and macrophyte patches than in open‐mud patches. Total macroinvertebrate densities in both lakes were highest in rock patches, intermediate in macrophytes and lowest in open‐mud. The open‐mud patches also had lower species richness compared with other patch types. Additionally, individual biomass for one clam species and two chironomid species was significantly greater in rock patches than in open‐mud. 3. In a laboratory experiment, Chironomus showed two to three times greater mass increase in sediments from macrophyte and rock patches than from open‐mud patches. Rock and macrophyte experimental sediments had at least 1.5 × the percentage OM as open‐mud sediments. 4. Chlorophyll a appeared to be the best predictor for invertebrate abundances across all patch types measured, whereas OM content appeared to be the variable most closely associated with Chironomus growth. 5. Our results combined with previous studies show that the relationships between macroinvertebrate community structure, individual growth, and habitat heterogeneity are complex, reflecting the interaction of multiple resources, and biotic interactions, such as the presence or absence of a selective vertebrate predator (lake trout, Salvelinus namaycush).  相似文献   

18.
Spring phytoplankton of 54 small lakes in southern Finland   总被引:4,自引:4,他引:0  
Lauri Arvola 《Hydrobiologia》1986,137(2):125-134
The abundance and species composition of phytoplankton communities were studied rapidly following the spring ice-melt in 54 small Finnish lakes that form a unique mosaic of water bodies. Phytoplankton biomass and cell density varied among the study lakes with a factor 100 between the lowest and highest values. Highest biomass and densities of phytoplankton characterized small ( < 0.05 km2) lakes with moderate or high water colour (> 80 mg Pt l–1). In contrast, biomass was low in clear-water lakes and lakes where water throughflow was strong. Typically one species dominated most phytoplankton communities, and usually comprised up to about 45% of the total phytoplankton biomass. Two-thirds of the 103 taxa observed were Chrysophyceans and Chlorophyceans. The most common taxa wereChlamydomonas spp. (Chlorophyceae) andCryptomonas ovata (Cryptophyceae).  相似文献   

19.
Pelagic rotifer plankton was studied in four stratified lakes with different degrees of human impact from June to July 2001 and throughout 2002. Rotifer species diversity was closely correlated to temperature and oxygen concentration (correlation coefficients were 0.90 and 0.87, respectively) in the water column of the hypertrophic Lake Kruglik. In the mesotrophic lakes, the correlation coefficients were much lower and their reduction was related to decreasing human impact on the lakes. Species richness was similar in Lakes Kruglik and S. Volos, but the spatial structure of the community differed greatly. The maximum rotifer density was observed in the epilimnion of Lake Kruglik, with densities dropping sharply towards the hypolimnion. In the mesotrophic lakes, the highest rotifer density was recorded in the meta- and hypolimnion. A comparative analysis of the morphometric characteristics of Keratella cochlearis showed that (1)␣the lorica length of ovigerous females increased in all four lakes with decreasing temperature; (2) the shortest lorica length was in Lake Kruglik at the same temperature; (3) in the mesotrophic lakes a significant increase in lorica length occurred as the temperature decreased from 14.2 °C to 4.2 °C. There is the similar relationship in rotifers of the genus Filinia. Hypoxia in the clino- and hypolimnion of Lake Kruglik reduced the diversity of spatial niches created by thermal stratification. As a result, the number of non-overlapping niches for rotifers in Lake Kruglik is reduced by a factor of 2–5 compared to that in mesotrophic lakes, but the mean value of the overlapping index is significantly higher.  相似文献   

20.
1. To correctly interpret chironomid faunas for palaeoenvironmental reconstruction, it is essential that we improve our understanding of the relative influence of ecosystem variables, biotic as well as physicochemical, on chironomid larvae. To address this, we analysed the surface sediments from 39 shallow lakes (29 Norfolk, U.K., 10 Denmark) for chironomid head capsules, and 70 chironomid taxa (including Chaoborus) were identified. 2. The shallow lakes were selected over large environmental gradients of aquatic macrophytes, total phosphorus (TP) and fish communities. Redundancy analysis (RDA) identified two significant variables that explained chironomid distribution: macrophyte species richness (P < 0.001) and TP (P < 0.005). Generalised linear models (GLM) identified specific taxa that had significant relationships with both these variables. Macrophyte percentage volume infested (PVI) and species richness were significant in classifying the lake types based on chironomid communities under twinspan analysis, although other factors, notably nutrient concentrations and fish communities, were also important, illustrating the complexities of classifying shallow lake ecosystems. Lakes with plant species richness >10 all had relatively diverse (Hill’s N2) chironomid assemblages, and lakes with Hill’s N2 >10 all had TP <250 μg L−1 and total fish densities <2 fish per m2. 3. Plant density (PVI), and perhaps more importantly species richness, were primary controls on the distribution of chironomid communities within these lakes. This clearly has implications for palaeoenvironmental reconstructions using zoobenthos remains (i.e. chironomids) and suggests that they could be used to track changes in benthic/pelagic production and could be used as indicators of changing macrophyte habitat. 4. Measuring key biological gradients, in addition to physicochemical gradients, allowed the major controls on chironomid distribution to be assessed more directly, in terms of plant substrate, food availability, competition and predation pressure, rather than implying indirect mechanisms through relationships with nutrients. Many of these variables, notably macrophyte abundance and species richness, are not routinely measured in such studies, despite their importance in determining zoobenthos in temperate shallow lakes. 5. When physical, chemical and ecological gradients are considered, as is often the case with palaeo‐reconstructions rather than training sets chosen to maximise one gradient, complex relationships exist, and attempting to reconstruct a single trophic variable quantitatively may not be appropriate or reliable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号