首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim CK  Han JS  Lee HS  Oh JY  Shigaki T  Park SH  Hirschi K 《Plant cell reports》2006,25(11):1226-1232
Previously, we made a chimeric Arabidopsis thaliana vacuolar transporter CAX2B [a variant of N-terminus truncated form of CAX2 (sCAX2) containing the “B” domain from CAX1] that has enhanced calcium (Ca2+) substrate specificity and lost the manganese (Mn2+) transport capability of sCAX2. Here, we demonstrate that potato (Solanum tuberosum L.) tubers expressing the CAX2B contain 50–65% more calcium (Ca2+) than wild-type tubers. Moreover, expression of CAX2B in potatoes did not show any significant increase of the four metals tested, particularly manganese (Mn2+). The CAX2B-expressing potatoes have normally undergone the tuber/plant/tuber cycle for three generations; the trait appeared stable through the successive generations and showed no deleterious alternations on plant growth and development. These results demonstrate the enhanced substrate specificity of CAX2B in potato. Therefore, CAX2B can be a valuable tool for Ca2+ nutrient enrichment of potatoes with reduced accumulation of undesirable metals.  相似文献   

2.
We demonstrate that carrots expressing the Arabidopsis H+/Ca2+ transporter CAX1 (Cation Exchanger 1) contained up to 50% more calcium (Ca) than plants transformed with control vectors. The CAX1-expressing carrots were fertile, and robust plant growth was seen in the majority of the transgenic plants. CAX1-expressing carrots were crossed to a commercial carrot variety to confirm that the increased Ca accumulation was mediated by CAX1-expression, and the increased Ca content was clearly correlated with the transgene. This study suggests that modulation of ion transporters could be an important means of increasing the Ca content of agriculturally important crops. To our knowledge, this study represents the first attempts to use biotechnology to increase the Ca content of an agriculturally important crop.  相似文献   

3.
Plant calcium (Ca(2+)) gradients, millimolar levels in the vacuole and micromolar levels in the cytoplasm, are regulated in part by high-capacity vacuolar cation/H(+) exchangers (CAXs). Several CAX transporters, including CAX1, appear to contain an approximately 40-amino acid N-terminal regulatory region (NRR) that modulates transport through N-terminal autoinhibition. Deletion of the NRR from several CAXs (sCAX) enhances function in plant and yeast expression assays; however, to date, there are no functional assays for CAX3 (or sCAX3), which is 77% identical and 91% similar in sequence to CAX1. In this report, we create a series of truncations in the CAX3 NRR and demonstrate activation of CAX3 in both yeast and plants by truncating a large portion (up to 90 amino acids) of the NRR. Experiments with endomembrane-enriched vesicles isolated from yeast expressing activated CAX3 demonstrate that the gene encodes Ca(2+)/H(+) exchange with properties distinct from those of CAX1. The phenotypes produced by activated CAX3-expressing in transgenic tobacco lines are also distinct from those produced by sCAX1-expressing plants. These studies demonstrate shared and unique aspects of CAX1 and CAX3 transport and regulation.  相似文献   

4.
The vacuolar sequestration of metals is an important metal tolerance mechanism in plants. The Arabidopsis thaliana vacuolar transporters CAX1 and CAX2 were originally identified in a Saccharomyces cerevisiae suppression screen as Ca2+/H+ antiporters. CAX2 has a low affinity for Ca2+ but can transport other metals including Mn2+ and Cd2+. Here we demonstrate that unlike cax1 mutants, CAX2 insertional mutants caused no discernable morphological phenotypes or alterations in Ca2+/H+ antiport activity. However, cax2 lines exhibited a reduction in vacuolar Mn2+/H+ antiport and, like cax1 mutants, reduced V-type H+-ATPase (V-ATPase) activity. Analysis of a CAX2 promoter -glucoronidase (GUS) reporter gene fusion confirmed that CAX2 was expressed throughout the plant and strongly expressed in flower tissue, vascular tissue and in the apical meristem of young plants. Heterologous expression in yeast identified an N-terminal regulatory region in CAX2, suggesting that Arabidopsis contains multiple cation/H+ antiporters with shared regulatory features. Furthermore, despite significant variations in morphological and biochemical phenotypes, cax1 and cax2 lines both significantly alter V-ATPase activity, hinting at coordinate regulation among transporters driven by H+ gradients and the V-ATPase.  相似文献   

5.
In plants, cytosolic Ca2+ levels are tightly regulated, and changes in cytosolic Ca2+ have been implicated in converting numerous signals into adapted responses. Vacuolar ion transporters are thought to be key mediators of cytosolic Ca2+ concentrations. In an attempt to interpret the role of vacuolar Ca2+ transport in plant processes, we have expressed the yeast vacuolar Ca2+/H+ antiporter, VCX1, in Arabidopsis and tobacco. This transporter localizes to the plant vacuolar membrane. VCX1-expressing Arabidopsis plants displayed increased sensitivity to sodium and other ions. These ion sensitivities could be suppressed by addition of calcium to the media. VCX1-expressing plants demonstrated increased tonoplast-enriched Ca2+/H+ antiport activity as well as increased Ca2+ accumulation. These results suggest that VCX1 expression in Arabidopsis could be a valuable tool with which to experimentally dissect the role of Ca2+ transport around the plant vacuole.  相似文献   

6.
In plants, high capacity tonoplast cation/H+ antiport is mediated in part by a family of cation exchanger (CAX) transporters. Functional association between CAX1 and CAX3 has previously been shown. In this study we further examine the interactions between CAX protein domains through the use of nonfunctional halves of CAX transporters. We demonstrate that a protein coding for an N-terminal half of an activated variant of CAX1 (sCAX1) can associate with the C-terminal half of either CAX1 or CAX3 to form a functional transporter that may exhibit unique transport properties. Using yeast split ubiquitin, in planta bimolecular fluorescence complementation, and gel shift experiments, we demonstrate a physical interaction among the half proteins. Moreover, the half-proteins both independently localized to the same yeast endomembrane. Co-expressing variants of N- and C-terminal halves of CAX1 and CAX3 in yeast suggested that the N-terminal region mediates Ca2+ transport, whereas the C-terminal half defines salt tolerance phenotypes. Furthermore, in yeast assays, auto-inhibited CAX1 could be differentially activated by CAX split proteins. The N-terminal half of CAX1 when co-expressed with CAX1 activated Ca2+ transport, whereas co-expressing C-terminal halves of CAX variants with CAX1 conferred salt tolerance but no apparent Ca2+ transport. These findings demonstrate plasticity through hetero-CAX complex formation as well as a novel means to engineer CAX transport.  相似文献   

7.
Ca(2+) levels in plants, fungi, and bacteria are controlled in part by H(+)/Ca(2+) exchangers; however, the relationship between primary sequence and biological activity of these transporters has not been reported. The Arabidopsis H(+)/cation exchangers, CAX1 and CAX2, were identified by their ability to suppress yeast mutants defective in vacuolar Ca(2+) transport. CAX1 has a much higher capacity for Ca(2+) transport than CAX2. An Arabidopsis thaliana homolog of CAX1, CAX3, is 77% identical (93% similar) and, when expressed in yeast, localized to the vacuole but did not suppress yeast mutants defective in vacuolar Ca(2+) transport. Chimeric constructs and site-directed mutagenesis showed that CAX3 could suppress yeast vacuolar Ca(2+) transport mutants if a nine-amino acid region of CAX1 was inserted into CAX3 (CAX3-9). Biochemical analysis in yeast showed CAX3-9 had 36% of the H(+)/Ca(2+) exchange activity as compared with CAX1; however, CAX3-9 and CAX1 appear to differ in their transport of other ions. Exchanging the nine-amino acid region of CAX1 into CAX2 doubled yeast vacuolar Ca(2+) transport but did not appear to alter the transport of other ions. This nine-amino acid region is highly variable among the plant CAX-like transporters. These findings suggest that this region is involved in CAX-mediated Ca(2+) specificity.  相似文献   

8.
The Arabidopsis Ca(2+)/H(+) antiporters cation exchanger (CAX) 1 and 2 utilise an electrochemical gradient to transport Ca(2+) into the vacuole to help mediate Ca(2+) homeostasis. Previous whole plant studies indicate that activity of Ca(2+)/H(+) antiporters is regulated by pH. However, the pH regulation of individual Ca(2+)/H(+) antiporters has not been examined. To determine whether CAX1 and CAX2 activity is affected by pH, Ca(2+)/H(+) antiport activity was measured in vacuolar membrane vesicles isolated from yeast heterologously expressing either transporter. Ca(2+) transport by CAX1 and CAX2 was regulated by cytosolic pH and each transporter had a distinct cytosolic pH profile. Screening of CAX1/CAX2 chimeras identified an amino acid domain within CAX2 that altered the pH-dependent Ca(2+) transport profile so that it was almost identical to the pH profile of CAX1. Results from mutagenesis of a specific His residue within this domain suggests a role for this residue in pH regulation.  相似文献   

9.
The steady-state levels of Ca2+ within the endoplasmic reticulum (ER) and the transport of 45Ca2+ into isolated ER of barley (Hordeum vulgare L. cv. Himalaya) aleurone layers were studied. The Ca2+-sensitive dye indo-1. Endoplasmic reticulum was isolated and purified from indo-1-loaded protoplasts, and the Ca2+ level in the ER was measured using the Ca2+-sensitive dye indo-1. Endoplasmic reticulum was isolated and purified from indo-1-loaded protoplasts, and the Ca2+ level in the lumen of the ER was determined by the fluorescence-ratio method to be at least 3 M. Transport of 45Ca2+ into the ER was studied in microsomal fractions isolated from aleurone layers incubated in the presence and absence of gibberellic acid (GA3) and Ca2+. Isopycinic sucrose density gradient centrifugation of microsomal fractions isolated from aleurone layers or protoplasts separates ER from tonoplast and plasma membranes but not from the Golgi apparatus. Transport of 45Ca2+ occurs primarily in the microsomal fraction enriched in ER and Golgi. Using monensin and heat-shock treatments to discriminate between uptake into the ER and Golgi, we established that 45Ca2+ transport was into the ER. The sensitivity of 45Ca2+ transport to inhibitors and the Km of 45Ca2+ uptake for ATP and Ca2+ transport in the microsomal fraction of barley aleurone cells. The rate of 45Ca2+ transport is stimulated several-fold by treatment with GA3. This effect of GA3 is mediated principally by an effect on the activity of the Ca2+ transporter rather than on the amount of ER.Abbreviations CCR cytochrome-c reductase - DCCD dicyclohexylcarbodiimide - EGTA ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - ER endoplasmic reticulum - FCCP carbonylcyanide p-trifluoromethoxyphenyl hydrazone - GA3 gibberellic acid - IDPase inosine diphosphatase - Mon monensin  相似文献   

10.
Acidic Ca2+ stores are important sources of Ca2+ during cell signaling but little is known about how Ca2+ enters these stores. In this issue, Melchionda et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201510019) identify a Ca2+/H+ exchanger (CAX) that is required for Ca2+ uptake and cell migration in vertebrates.Intracellular Ca2+ signaling is of fundamental importance in processes such as cell migration but we do not fully understand the contribution made by different intracellular Ca2+ stores to this particular function. Elevation of cytosolic Ca2+ by 10- to 100-fold the normal resting levels can occur by entry of external Ca2+ across the plasma membrane and release of Ca2+ from intracellular organelles such as the ER. Ca2+ ions are transported across membranes by ligand-gated ion channels, energy-dependent pumps, and transporters (Berridge et al., 2003; Lloyd-Evans et al., 2010). Intracellular Ca2+ levels are regulated in this manner from simple organisms, such as yeast, through to complex multicellular organisms, suggesting a degree of conservation across the taxonomic kingdoms (Patel and Cai, 2015). Recent evidence has indicated that “acidic Ca2+ stores” such as lysosomes in mammalian cells are a key intracellular Ca2+ signaling store, like the ER (Lloyd-Evans and Platt, 2011; Patel and Muallem, 2011). The Ca2+ concentration of the lysosome (500 µM) is similar to the ER (Christensen et al., 2002; Lloyd-Evans et al., 2008) but lysosomes are smaller in volume and their impact on cellular Ca2+ signaling seems localized to events that regulate endocytosis, vesicular fusion, and recycling (Ruas et al., 2010; López-Sanjurjo et al., 2013). However, there is a significant amount of evidence emerging that lysosomes are capable of triggering much larger changes in cytosolic Ca2+ during signaling via the induction of Ca2+ release from the ER. This effect appears to be mediated by the most potent intracellular Ca2+–releasing second messenger nicotinic acid adenine dinucleotide phosphate (NAADP), which triggers Ca2+ release from lysosomes via two-pore channels (Brailoiu et al., 2009; Calcraft et al., 2009). In addition to two-pore channels, acidic stores also express other Ca2+-permeable channels (summarized in Fig. 1).Open in a separate windowFigure 1.Lysosomal Ca2+ transporters and channels. Our current understanding of lysosomal Ca2+ transport and the proteins that regulate the transport of Ca2+ into and out of the lysosome is heavily stacked in favor of Ca2+ release channels. To date, voltage-gated (CaV2.1/CACNA1A), ligand-gated (TRPML1 and TRPM2), and nucleotide-gated (TPC1, TPC2, and P2X4) channels have all been identified or implicated in lysosomal Ca2+ release (Patel and Cai, 2015). Much less is known about the mechanisms of Ca2+ entry into lysosomes. In lower order organisms, CAX mediates lysosomal Ca2+ entry against the proton gradient. In this issue, Melchionda et al. (2016) provide the first evidence for a mammalian lysosomal Ca2+ uptake mechanism in nonplacental mammals. These findings provide further support for the key role of the lysosome as an intracellular Ca2+ store.Despite recent advances in our knowledge of lysosomal Ca2+ release channels, we have so far failed to identify the transport proteins that fill the lysosome with Ca2+. Ca2+ entering the cell by endocytosis is removed by the early endosome after the initiation of endosomal acidification by the vATPase; therefore, it is likely that lysosomes have their own transporters or pumps to take up Ca2+ (Gerasimenko et al., 1998; Christensen et al., 2002). Although there have been studies suggesting the presence of ATPases and putative ion exchangers on mammalian cells (Styrt et al., 1988), the identity of the proteins that mediate lysosomal Ca2+ uptake remains elusive. In this issue, Melchionda et al. describe the first lysosomal CAX in nonplacental mammals and link lysosomal Ca2+ import via CAX to the maintenance of normal cellular migration during development.To identify novel regulators of Ca2+ transport in vertebrates, Melchionda et al. (2016) searched gene databases for homologues of the CAX proteins, which are known to use the proton gradient across the vacuole to drive Ca2+ uptake in plant and yeast cells (Dunn et al., 1994). They identified putative CAX genes in many species, from sea urchins and frogs to reptiles and birds. The CAX homologues discovered in the genomes of the platypus and Tasmanian devil are the first lysosomal Ca2+ exchangers to be identified in any mammalian species. This new work is a significant finding as it suggests that these mechanisms do clearly exist in some mammalian cells and are required for lysosomal Ca2+ store filling. To examine the regulation of lysosomal Ca2+ uptake by vertebrate CAX transporters, the authors cloned full-length CAX from the frog and found that expression of frog CAX could rescue Ca2+ transport in yeast lacking their own CAX. Furthermore, the authors show that the frog CAX channels correctly localize to lysosomes when expressed in human cell lines and that these CAX are capable of manipulating lysosomal and cytosolic Ca2+ levels (in a manner perhaps comparable to plasma membrane Ca2+ ATPases). The findings reported in Melchionda et al. (2016) also have significance for researchers who are using simpler model organisms to characterize mechanisms regulating acidic store Ca2+. A study by Churchill et al. (2002) that used acidic stores purified from sea urchin egg homogenate to monitor acidic store Ca2+ entry concluded that vanadate-sensitive Ca2+ pumps were absent and suggested instead the presence of a CAX. This now appears to be the case through the reported cloning of sea urchin CAX. The findings of Melchionda et al. (2016) are a step forward in unraveling the molecular mechanisms of Ca2+ handling in model animals.Ca2+ signaling plays an important role in development, particularly for cellular migration, where localized elevations in intracellular Ca2+ drive rearrangement of the cytoskeleton, cellular contraction, and adhesion (Wei et al., 2009; Sumoza-Toledo et al., 2011; Praitis et al., 2013). A concentration gradient of Ca2+ exists across the migrating cell, with higher levels at the rear that contribute to cellular detachment and contraction (Praitis et al., 2013). Recent evidence has highlighted the presence of Ca2+ flickers at the leading edge of the migrating cell that have been shown to underlie changes in direction (Wei et al., 2009). Despite the clear importance of Ca2+ in mediating cellular migration events and the emergent role of lysosomes in maintaining intracellular Ca2+ signaling, very little is known about the roles of lysosomal Ca2+ stores in cellular migration. ER Ca2+ channels including the inositol 1,4,5-trisphosphate receptors and ryanodine receptors as well as the secretory pathway Ca2+ ATPase and lysosomal TRPM2 have all been implicated in regulating changes in intracellular Ca2+ to mediate cellular migration, but to date no lysosomal transporters have been implicated in this process (Wei et al., 2009; Sumoza-Toledo et al., 2011; Praitis et al., 2013). Melchionda et al. (2016) investigated the migration of neural crest cells during frog development to find out whether or not CAX transporters control cell motility. CAX proteins are expressed in the neural crest of developing frogs and morpholino-mediated knockdown of CAX expression increased cytosolic Ca2+ levels and impeded neural crest cell migration. Confocal imaging of neural crest tissue in vitro revealed the dynamic recruitment of CAX-containing vesicles to the protrusions that contain focal adhesion complexes at the leading edge of the migrating neural cells. Loss of CAX protein expression reduced the ability of neural crest cells to form stable focal adhesions and undergo the initial cell spreading required for migration. The work presented by Melchionda et al. (2016) is a significant discovery providing evidence that lysosomal Ca2+ uptake is involved in cell migration and that lower organisms are useful model systems to investigate the role of acidic store Ca2+ in this critical cellular function during embryo development.Melchionda et al. (2016) have made a significant step forward in our understanding of the mechanisms that regulate lysosomal/vacuolar Ca2+ entry. However, we remain in the dark about the identity of the transporters that pump Ca2+ into the lysosomes of placental mammals. What led to the loss of CAX genes in these organisms is as much a mystery as the identity of the transporters that have replaced CAX. Evidence from a study using purified mammalian lysosomes to observe Ca2+ uptake indicates that the process is ATP-dependent (Styrt et al., 1988). Placental mammals may have completely different ATP-dependent mechanisms governing lysosomal Ca2+ uptake compared with lower order organisms and nonplacental mammals. Interestingly, defects in lysosomal Ca2+ uptake are associated with two human diseases, Niemann-Pick type C and Chediak-Higashi syndrome (CHS; Styrt et al., 1988; Lloyd-Evans et al., 2008). The lysosomal accumulation of sphingosine, a Ca2+ ATPase inhibitor (Lloyd-Evans and Platt, 2011), leads to reduced lysosomal Ca2+ levels in Niemann-Pick type C disease cells and defects in NAADP-mediated lysosomal Ca2+ release (Lloyd-Evans et al., 2008). In CHS, there have been reports of enhanced lysosomal Ca2+ ATPase transporter activity in neutrophils (Styrt et al., 1988). Interestingly, CHS leukocytes show alterations in chemotaxis with a reduced response to chemotactic factors (Clark and Kimball, 1971), which is supportive of the findings of Melchionda et al. (2016). Much remains to be elucidated about the enigma of mammalian lysosomal Ca2+ uptake, but the work of Melchionda et al. (2016) begins to pick this mystery apart.  相似文献   

11.
A boron-containing antibiotic, boromycin (BM), was found to influence the Ca2+ homeostasis in both excitable and non-excitable cells. In non-excitable cells (human erythrocytes and leucocytes) it inhibited the resting passive45Ca2+ transport in 10–6–10–5 mol/L concentrations. In human erythrocytes, the passive 45Ca2+ transport induced by the presence of 1 mmol/L NaVO3 was inhibited by boromycin (90% inhibition) as well. The inhibitory effect of BM on the NaVO3-induced passive 45Ca2+ transport was diminished in the presence of inhibitory concentrations of nifedipine (10 mol/L – 60% inhibition) or of those of K+ o (75 mmol/L – 20% inhibition). On the other hand, in rat brain synaptosomes, and rat cardiomyocytes, BM stimulated the passive 45Ca2+ transport in resting cells at similar concentrations. In rat cardiomyocytes the stimulation was transient. The stimulatory effect on the passive 45Ca2+ transport in rat brain synaptosomes was accompanied with the increase of cytoplasmic Ca2+ concentration measured by means of the entrapped fluorescent Ca2+ chelator fura-2. The stimulatory effect of BM was diminished when synaptosomes were pre-treated with veratridine (10 mol/L) which itself stimulated the passive 45Ca2+ transport. At saturating concentrations of veratridine, no stimulatory effect of BM was observed. These results could be explained by the indirect interaction of BM with both Ca2+ and Na+ transport systems via transmembrane ionic gradients of monovalent cations and could be useful in determining whether the cells belong to excitable, or non-excitable cells.  相似文献   

12.
Summary Plasma membrane vesicles, which are mostly right side-out, were isolated from corn leaves by aqueous two-phase partitioning method. Characteristics of Ca2+ transport were investigated after preparing inside-out vesicles by Triton X-100 treatment.45Ca2+ transport was assayed by membrane filtration technique. Results showed that Ca2+ transport into the plasma membrane vesicles was Mg-ATP dependent. The active Ca2+ transport system had a high affinity for Ca2+(K m (Ca2+)=0.4 m) and ATP(K m (ATP)=3.9 m), and showed pH optimum at 7.5. ATP-dependent Ca2+ uptake in the plasma membrane vesicles was stimulated in the presence of Cl or NO 3 . Quenching of quinacrine fluorescence showed that these anions also induced H+ transport into the vesicles. The Ca2+ uptake stimulated by Cl was dependent on the activity of H+ transport into the vesicles. However, carbonylcyanidem-chlorophenylhydrazone (CCCP) and VO 4 3– which is known to inhibit the H+ pump associated with the plasma membrane, canceled almost all of the Cl-stimulated Ca2+ uptake. Furthermore, artificially imposed pH gradient (acid inside) caused Ca2+ uptake into the vesicles. These results suggest that the Cl-stimulated Ca2+ uptake is caused by the efflux of H+ from the vesicles by the operation of Ca2+/H+ antiport system in the plasma membrane. In Cl-free medium, H+ transport into the vesicles scarcely occurred and the addition of CCCP caused only a slight inhibition of the active Ca2+ uptake into the vesicles. These results suggest that two Ca2+ transport systems are operating in the plasma membrane from corn leaves, i.e., one is an ATP-dependent active Ca2+ transport system (Ca2+ pump) and the other is a Ca2+/H+ antiport system. Little difference in characteristics of Ca2+ transport was observed between the plasma membranes isolated from etiolated and green corn leaves.  相似文献   

13.
14.
Some features of the Ca2+-transport system in mitochondria of the yeast Endomyces magnusii are considered. The Ca2+ uniporter was shown to be specifically activated by low concentrations of physiological modulators such as ADP, NADH, spermine, and Ca2+ itself. The Na+-independent system responsible for Ca2+ release from Ca2+-preloaded yeast mitochondria was characterized. The rate of the Ca2+ release was proportional to the Ca2+ load, insensitive to cyclosporin A and to Na+, inhibited by La3+, TPP+, Pi, and nigericin, while being activated by spermine. We conclude that Ca2+ release from preloaded E. magnusii yeast mitochondria is mediated by a Na+-independent pathway, very similar to that in mitochondria from nonexcitable mammalian tissues. A scheme describing an arrangement of the Ca2+ transport system of yeast mitochondria is proposed.  相似文献   

15.
Zhao J  Barkla BJ  Marshall J  Pittman JK  Hirschi KD 《Planta》2008,227(3):659-669
Perturbing CAX1, an Arabidopsis vacuolar H+/Ca2+ antiporter, and the related vacuolar transporter CAX3, has been previously shown to cause severe growth defects; however, the specific function of CAX3 has remained elusive. Here, we describe plant phenotypes that are shared among cax1 and cax3 including an increased sensitivity to both abscisic acid (ABA) and sugar during germination, and an increased tolerance to ethylene during early seedling development. We have also identified phenotypes unique to cax3, namely salt, lithium and low pH sensitivity. We used biochemical measurements to ascribe these cax3 sensitivities to a reduction in vacuolar H+/Ca2+ transport during salt stress and decreased plasma membrane H+-ATPase activity. These findings catalog an array of CAX phenotypes and assign a specific role for CAX3 in response to salt tolerance.  相似文献   

16.
Transient receptor potential (TRP) cation channels, which are conserved across mammals, flies, fish, sea squirts, worms, and fungi, essentially contribute to cellular Ca2+ signaling. The activity of the unique TRP channel in yeast, TRP yeast channel 1 (TRPY1), relies on the vacuolar and cytoplasmic Ca2+ concentration. However, the mechanism(s) of Ca2+-dependent regulation of TRPY1 and possible contribution(s) of Ca2+-binding proteins are yet not well understood. Our results demonstrate a Ca2+-dependent binding of yeast calmodulin (CaM) to TRPY1. TRPY1 activity was increased in the cmd1–6 yeast strain, carrying a non–Ca2+-binding CaM mutant, compared with the parent strain expressing wt CaM (Cmd1). Expression of Cmd1 in cmd1–6 yeast rescued the wt phenotype. In addition, in human embryonic kidney 293 cells, hypertonic shock-induced TRPY1-dependent Ca2+ influx and Ca2+ release were increased by the CaM antagonist ophiobolin A. We found that coexpression of mammalian CaM impeded the activity of TRPY1 by reinforcing effects of endogenous CaM. Finally, inhibition of TRPY1 by Ca2+–CaM required the cytoplasmic amino acid stretch E33–Y92. In summary, our results show that TRPY1 is under inhibitory control of Ca2+–CaM and that mammalian CaM can replace yeast CaM for this inhibition. These findings add TRPY1 to the innumerable cellular proteins, which include a variety of ion channels, that use CaM as a constitutive or dissociable Ca2+-sensing subunit, and contribute to a better understanding of the modulatory mechanisms of Ca2+–CaM.  相似文献   

17.
Effects of endotoxin administration on the ATP-dependent Ca2+ transport in canine cardiac sarcolemma were investigated. The results show that the sidedness of the sarcolemmal vesicles was not affected but the ATP-dependent Ca2+ transport in cardiac sarcolemma was decreased by 22 to 46% (p < 0.05) at 4 h following endotoxin administration. The kinetic analysis indicates that the Vmax for ATP and for Ca2+ were decreased by 50% (p < 0.01) and 32% (p < 0.01), respectively, while the Km values for ATP and Ca2+ were not significantly affected after endotoxin administration. Magnesium (1–5 mM) stimulated while vanadate (0.25–3.0 M) inhibited the ATP-dependent Ca2+ transport, but the Mg2+-stimulated and the vanadate-inhibitable activities remained significantly lower in the endotoxin-treated animals. These data demonstrate that endotoxin administration impairs the ATP-dependent Ca2+ transport in canine cardiac sarcolemma and that the impairment is associated with a mechanism not affecting the affinity towards ATP and Ca2+. Additional experiments show that the Ca2+ sensitivity of the Ca2+-ATPase activity was indifferent between the control and endotoxic groups suggesting that endotoxic injury impairs Ca2+ pumping without affecting Ca2+-ATPase activity. Since sarcolemmal ATP-dependent Ca2+ transport plays an important role in the regulation of cytosolic Ca2+ homeostasis, an impairment in the sarcolemmal ATP-dependent Ca2+ transport induced by endotoxin administration may have a pathophysiological significance in contributing to the development of myocardial dysfunction in endotoxin shock.  相似文献   

18.
Summary In internodal cells ofLamprothamnium succinctum, turgor regulation in response to hypotonie treatment is inhibited by lowering external Ca2+ concentration ([Ca2+]e) from 3.9 (normal) to 0.01 (low) mM. In order to clarify whether a change in the cytoplasmic free Ca2+ concentration ([Ca2+]c) is involved in turgor regulation, the Ca2+ sensitive protein aequorin was injected into the cytoplasm of internodal cells. A large transient light emission was observed upon hypotonic treatment under normal [Ca2+]e but not under low [Ca2+]e. Thus hypotonic treatment induces a transient increase in [Ca2+]c under normal [Ca2+]e but not under low [Ca2+]e.Abbreviations ASW artificial sea water - i cellular osmotic pressure - [Ca2+]c cytoplasmic free Ca2+ concentration - EDTA ethylenediamine-tetraacetic acid - EGTA ethylenglycol-bis(-aminoethyl ether(N,N-tetraacetic acid - [Ca2+]e external Ca2+ concentration - e external osmotic pressure - GM glass micropipette - GP glass plate - HEPES N-2-hydroxyethylpiperazine-N-2-ethansulfonic acid - MS microscope stage - OL objective lens - PIPES piperazine-N-N-bis(2-ethanesulfonic acid) - W Weight  相似文献   

19.
Summary Basolateral plasma membranes from rat kidney cortex have been purified 40-fold by a combination of differential centrifugation, centrifugation in a discontinuous sucrose gradient followed by centrifugation in 8% percoll. The ratio of leaky membrane vesicles (L) versus right-side-out (RO) and inside-out (IO) resealed vesicles appeared to be LROIO=431. High-affinity Ca2+-ATPase, ATP-dependent Ca2+ transport and Na+/Ca2+ exchange have been studied with special emphasis on the relative transport capacities of the two Ca2+ transport systems. The kinetic parameters of Ca2+-ATPase activity in digitonin-treated membranes are:K m =0.11 m Ca2+ andV max=81±4 nmol Pi/min·mg protein at 37°C. ATP-dependent Ca2+ transport amounts to 4.3±0.2 and 7.4±0.3 nmol Ca2+/min·mg protein at 25 and 37°C, respectively, with an affinity for Ca2+ of 0.13 and 0.07 m at 25 and 37°C. After correction for the percentage of IO-resealed vesicles involved in ATP-dependent Ca2+ transport, a stoichiometry of 0.7 mol Ca2+ transported per mol ATP is found for the Ca2+-ATPase. In the presence of 75mm Na+ in the incubation medium ATP-dependent Ca2+ uptake is inhibited 22%. When Na+ is present at 5mm an extra Ca2+ accumulation is observed which amounts to 15% of the ATP-dependent Ca2+ transport rate. This extra Ca2+ accumulation induced by low Na+ is fully inhibited by preincubation of the vesicles with 1mm ouabain, which indicates that (Na+–K+)-ATPase generates a Na+ gradient favorable for Ca2+ accumulation via the Na+/Ca2+ exchanger. In the absence of ATP, a Na+ gradient-dependent Ca2+ uptake is measured which rate amounts to 5% of the ATP-dependent Ca2+ transport capacity. The Na+ gradient-dependent Ca2+ uptake is abolished by the ionophore monensin but not influenced by the presence of valinomycin. The affinity of the Na+/Ca2+ exchange system for Ca2+ is between 0.1 and 0.2 m Ca2+, in the presence as well as in the absence of ATP. This affinity is surprisingly close to the affinity measured for the ATP-dependent Ca2+ pump. Based on these observations it is concluded that in isolated basolateral membranes from rat kidney cortex the Ca2+-ATPase system exceeds the capacity of the Na+/Ca2+ exchanger four- to fivefold and it is therefore unlikely that the latter system plays a primary role in the Ca2+ homeostasis of rat kidney cortex cells.  相似文献   

20.
Vacuolar localized Ca(2+)/H(+) exchangers such as Arabidopsis thaliana cation exchanger 1 (CAX1) play important roles in Ca(2+) homeostasis. When expressed in yeast, CAX1 is regulated via an N-terminal autoinhibitory domain. In yeast expression assays, a 36 amino acid N-terminal truncation of CAX1, termed sCAX1, and variants with specific mutations in this N-terminus, show CAX1-mediated Ca(2+)/H(+) antiport activity. Furthermore, transgenic plants expressing sCAX1 display increased Ca(2+) accumulation and heightened activity of vacuolar Ca(2+)/H(+) antiport. Here the properties of N-terminal CAX1 variants in plants and yeast expression systems are compared and contrasted to determine if autoinhibition of CAX1 is occurring in planta. Initially, using ionome analysis, it has been demonstrated that only yeast cells expressing activated CAX1 transporters have altered total calcium content and fluctuations in zinc and nickel. Tobacco plants expressing activated CAX1 variants displayed hypersensitivity to ion imbalances, increased calcium accumulation, heightened concentrations of other mineral nutrients such as potassium, magnesium and manganese, and increased activity of tonoplast-enriched Ca(2+)/H(+) transport. Despite high in planta gene expression, CAX1 and N-terminal variants of CAX1 which were not active in yeast, displayed none of the aforementioned phenotypes. Although several plant transporters appear to contain N-terminal autoinhibitory domains, this work is the first to document clearly N-terminal-dependent regulation of a Ca(2+) transporter in transgenic plants. Engineering the autoinhibitory domain thus provides a strategy to enhance transport function to affect agronomic traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号