首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between leaf resistance to water vapour diffusion and each of the factors leaf water potential, light intensity and leaf temperature was determined for leaves on seedling apple trees (Malus sylvestris Mill. cv. Granny Smith) in the laboratory. Leaf cuticular resistance was also determined and transpiration was measured on attached leaves for a range of conditions. Leaf resistance was shown to be independent of water potential until potential fell below — 19 bars after which leaf resistance increased rapidly. Exposure of leaves to CO2-free air extended the range for which resistance was independent of water potential to — 30 bars. The light requirement for minimum leaf resistance was 10 to 20 W m?2 and at light intensities exceeding these, leaf resistance was unaffected by light intensity. Optimum leaf temperature for minimum diffusion resistance was 23 ± 2°C. The rate of change measured in leaf resistance in leaves given a sudden change in leaf temperature increased as the magnitude of the temperature change increased. For a sudden change of 1°C in leaf temperature, diffusion resistance changed at a rate of 0.01 s cm?1 min?1 whilst for a 9°C leaf temperature change, diffusion resistance changed at a rate of 0.1 s cm?1 min?1. Cuticular resistance of these leaves was 125 s cm?1 which is very high compared with resistances for open stomata of 1.5 to 4 s cm?1 and 30 to 35 s cm?1 for stomata closed in the dark. Transpiration was measured in attached apple leaves enclosed in a leaf chamber and exposed to a range of conditions of leaf temperature and ambient water vapour density. Peak transpiration of approximately 5 × 10?6 g cm?2 s?1 occurred at a vapour density gradient from the leaf to the air of 12 to 14 g m?3 after which transpiration declined due presumably to increased stomatal resistance. Leaves in CO2-free air attained a peak transpiration of 11 × 10?6 g cm?2 s?1 due to lower values of leaf resistance in CO2 free air. Transpiration then declined in these leaves due to development of an internal leaf resistance (of up to 2 s cm?1). The internal resistance was masked in leaves at normal CO2 concentrations by the increase in stomatal resistance.  相似文献   

2.
Stomatal Response to Environment with Sesamum indicum. L   总被引:7,自引:3,他引:4       下载免费PDF全文
Leaf resistance of Sesamum indicum L. increased when the humidity gradient between leaf and air was increased, at moderate temperatures, even though calculated carbon dioxide concentrations within the leaf decreased slightly. Mesophyll resistance remained relatively constant when humidity gradients were changed, indicating that the increases in leaf resistance were mainly caused by reductions in stomatal aperture and that nonstomatal aspects of photosynthesis and respiration were not affected. Low carbon dioxide concentrations inside the leaf decreased but did not eliminate resistance response to the humidity gradient. Internal carbon dioxide concentrations had little effect on resistance in humid air but had moderate effects on resistance with large humidity gradients between leaf and air. Stomatal response to humidity was not present at high leaf temperatures. Effects of humidity gradients on photosynthetic and stomatal responses to temperature suggested that large humidity gradients may contribute to mid-day closure of stomata and depressions in photosynthesis.  相似文献   

3.
Leaf resistance for water vapor (total diffusion resistance minus boundary layer resistance), transpiration, and leaf temperature were measured in attached leaves of greenhouse-grown Xanthium strumarium L. plants that had been pretreated for 72 hours with high (40 C day, 35 C night), or low (10 C day, 5 C night) air temperatures. Measurements were made in a wind tunnel at light intensity of 1.15 cal cm−2 min−1, air temperatures between 5 and 45 C, and wind speed of 65 cm sec−1. Leaf resistances in low temperature pretreated plants were higher (8 to 27 sec cm−1) than in controls or high temperature pretreated plants (0.5 to 3 sec cm−1) at leaf temperatures between 5 and 25 C. Thus, the pretreatment influenced stomatal aperture.  相似文献   

4.
The efficiency with which plants transport water is related to the water potential differences required to drive water fluxes from the soil to the leaf. A comparative study of two woody and three herbaceous species (Citrus sinensis L. cv. Koethen, Pyrus kawakami L., Helianthus annuus L. cv. Mammoth Russian, Capsicum frutescens L. cv. Yolo Wonder, and Sesamum indicum L. cv. Glauca) indicated contrasts in water transport efficiency. Depression of leaf water potential in response to transpiration increases was found in the woody species; the herbaceous species, however, had more efficient water transport systems and presented no measurable response of leaf water potential to transpiration changes. Different maximum transpiration rates under the same climatic conditions were observed with different species and may be accounted for by stomatal response to humidity gradients between leaf and air. Leaf diffusion resistance in sesame increased markedly as the humidity gradient was increased, while leaf resistance of sunflower responded less to humidity. Stomata appeared to respond directly to the humidity gradient because changes in leaf water potential were not detected when leaf resistance increased or decreased.  相似文献   

5.
Stomatal responses to humidity in air and helox   总被引:11,自引:5,他引:6  
Abstract. Stomatal responses to humidity were studied in several species using normal air and a helium: oxygen mixture (79:21 v/v, with CO2 and water vapour added), which we termed 'helox'. Since water vapour diffuses 2.33 times faster in helox than in air, it was possible to vary the water-vapour concentration difference between the leaf and the air at the leaf surface independently of the transpiration rate and vice versa. The CO2 concentration at the evaporating surfaces ( ci ), leaf temperature and photon flux density were kept constant throughout the experiments. The results of these experiments were consistent with a mechanism for Stomatal responses to humidity that is based on the rate of water loss from the leaf. Stomata apparently did not directly sense and respond to either the water vapour concentration at the leaf surface or the difference in water vapour concentration between the leaf interior and the leaf surface. In addition, stomatal responses that caused reductions in transpiration rate at low humidities were accompanied by decreases in photosynthesis at constant ci , suggesting heterogeneous (patchy) stomatal closure.  相似文献   

6.
The responses of leaf conductance, leaf water potential and rates of transpiration and net photosynthesis at different vapour pressure deficits ranging from 10 to 30 Pa kPa-1 were followed in the sclerophyllous woody shrub Nerium oleander L. as the extractable soil water content decreased. When the vapour pressure deficit around a plant was kept constant at 25 Pa kPa-1 as the soil water content decreased, the leaf conductance and transpiration rate showed a marked closing response to leaf water potential at-1.1 to-1.2 MPa, whereas when the vapour pressure deficit around the plant was kept constant at 10 Pa kPa-1, leaf conductance decreased almost linearly from-0.4 to-1.1 MPa. Increasing the vapour pressure deficit from 10 to 30 Pa kPa-1 in 5 Pa kPa-1 steps, decreased leaf conductance at all exchangeable soil water contents. Changing the leaf water potential in a single leaf by exposing the remainder of the plant to a high rate of transpiration decreased the water potential of that leaf, but did not influence leaf conductance when the soil water content was high. As the soil water content was decreased, leaf conductances and photosynthetic rates were higher at equal levels of water potential when the decrease in potential was caused by short-term increases in transpiration than when the potential was decreased by soil drying.As the soil dried and the stomata closed, the rate of photosynthesis decreased with a decrease in the internal carbon dioxide partial pressure, but neither the net photosynthetic rate nor the internal CO2 partial pressure were affected by low water potentials resulting from short-term increases in the rate of transpiration. Leaf conductance, transpiration rate and net photosynthetic rate showed no unique relationship to leaf water potential, but in all experiments the leaf gas exchange decreased when about one half of the extractable soil water had been utilized. We conclude that soil water status rather than leaf water status controls leaf gas exchange in N. oleander.  相似文献   

7.
The response of xylem pressure potential of Engelmann spruce (Picea engelmannii Engelm.) to environmental factors was studied in the natural subalpine environment. Data were analyzed in the context of a leaf water potential model based upon the van den Honert model for water transport through the soil-plant-atmosphere continuum. At soil temperatures of 10 to 15 C, xylem pressure potential decreased to about −10 bars as the ratio of leaf to air absolute humidity difference to leaf diffusion resistance (an estimate of transpiration) increased. The potentials were slightly lower at all flux rates above zero when the soil temperature was 5 to 10 C, and at temperatures of 0 to 5 C the potentials decreased sharply to as low as −20.4 bars, even though the soil water supply was adequate. The relative viscosity of water and soil to leaf resistances for flow were compared for Engelmann spruce and citrus at low soil temperatures. These comparisons indicated that decreased root permeability was probably not an important factor causing higher stresses in spruce at 5 to 10 C, but for citrus, root permeability became limiting at soil temperatures as high as 13.5 C. Xylem pressure potential was correlated with net radiation during the daytime when soil temperature was above 7 C. Under other conditions, however, xylem potential and net radiation apparently had a different relationship. The relationship between flux density and potential was the same on unshaded and shaded portions of the crown, with differences in potential related to differences in flux density.  相似文献   

8.
Photosynthesis and transpiration of excised leaves of Taraxacum officinale L. and a few other species of plants were measured, using an open gas analysis system. The rates of CO2 uptake and transpiration increased in two steps upon illumination of stomata-bearing epidermis of these leaves at a light intensity of 50 mW × cm−2. Abscisic acid inhibited only the second step of gas exchange. Illumination of the astomatous epidermis of hypostomatous leaves caused only the first step of gas exchange. These data indicate that the first and second steps arise from cuticular and stomatal gas exchange, respectively. The rate of the cuticular photosynthesis in a Taraxacum leaf reached saturation at a light intensity of 5 mW × cm−2, and the rates of the stomatal photosynthesis and transpiration reached saturation at a higher intensity of 35 mW × cm−2. The cuticular photosynthesis of a Taraxacum leaf was 18% of the stomatal photosynthesis at 50 mW × cm−2 and 270% at 5 mW × cm−2. The other species of leaves showed the same trend. The importance of cuticular CO2 uptake in leaf photosynthesis, especially under low light intensity was stressed from these data.  相似文献   

9.
The small-scale distribution of an understory herb, Heracleum lanatum, was evaluated in terms of leaf temperature and water relations limitations due to a large leaf size (630 cm2). Diurnal variations in transpiration (4 to 60 mg m−2 s−1) were influenced by fluctuations in solar irradiance, wind speed, leaf temperature and stomatal conductance. Computer simulations indicated that leaf temperatures in a forest clearing would be > 12 C above air temperature, with maximum transpiration rates of 140 mg m−2 s−1, and daily water loss to be over 200% greater than values at natural understory locations. Simulations of nocturnal temperature relations indicated ~100 W m −2 less incident longwave irradiance in the forest clearing as compared to the understory (560 vs. 660 W m−2 at 400 hr). This difference led to predicted leaf temperatures being as low as 6 C below air temperature in the forest clearing while measured leaf temperatures in the forest understory were within 1.5 C of air temperature throughout the night. Furthermore, minimum air temperatures were at or below 6 C on 36% of the nights during the summer growth period indicating that in open areas leaves of H. lanatum would frequently be below 0 C and subject to possible freeze damage. Heracleum lanatum may be more abundant in the shaded understory of the subalpine forest because exposure in open environments would result in high leaf temperatures and increased transpirational water loss during the day, as well as low leaf temperatures with the possibility of freeze damage at night.  相似文献   

10.
A system for measurement of leaf gas exchange while regulating leaf to air vapour pressure difference has been developed; it comprises an assimilation chamber, leaf temperature controller, mass flow controller, dew point controller and personal computer. A relative humidity sensor and air and leaf temperature sensors, which are all used for regulating the vapour pressure difference, are mounted into the chamber. During the experiments, the computer continuously monitored the photosynthetic parameters and measurement conditions, so that accurate and intenstive measurements could be made.When measuring the light-response curve of CO2 assimilation for single leaves, in order to regulate the vapour pressure difference, the leaf temperature and relative humidity in the chamber were separately and simultaneously controlled by changing the air temperature around the leaf and varying the air flow rate through the chamber, respectively. When the vapour pressure difference was regulated, net CO2 assimilation, transpiration and leaf conductance for leaves of rice plant increased at high quantum flux density as compared with those values obtained when it was not regulated.When measuring the temperature-response curve of CO2 assimilation, the regulation of vapour pressure difference was manipulated by the feed-forward control of the dew point temperature in the inlet air stream. As the vapour pressure difference was regulated at 12 mbar, the maximum rate of and the optimum temperature for CO2 assimilation in rice leaves increased 5 molCO2 m–2 s–1 and 5°C, respectively, as compared with those values obtained when the vapour pressure difference took its own course. This was reasoned to be due to the increase in leaf conductance and the decrease in transpiration rate. In addition, these results confirmed that stomatal conductance essentially increases with increasing leaf temperature under constant vapour pressure difference conditions, in other words, when the influence of the vapour pressure difference is removed.This system may be used successfully to measure inter- and intra-specific differences and characteristics of leaf gas exchange in plants with a high degree of accuracy.Abbreviations A CO2 assimilation rate - Amax Maximum rate of CO2 assimilation - Aopt Optimum teperature for CO2 assimilation - CTWB Controlled-temperature water bath - DPC Dew point controller - E Transpiration rate; gl, leaf conductance - HCC Humidity control circuit - IRGA Infrared gas analyzer - LT Leaf temperature - LTC Leaf temperature controller - MFC Mass flow controller - QFD Quantum flux density - RH Relative humidity - RHC Relative humidity controller - VPD Vapour pressure difference - CO2 Difference of CO2 concentration between inlet and outlet air  相似文献   

11.
Transpiration was measured in apple leaves (Malus sylvestris Mill.) which were enclosed in a leaf chamber and subjected to rapid changes in leaf temperature. Fluctuations in leaf temperature produced parallel fluctuations in transpiration. The change in transpiration rate with change in temperature was found to be less than the theoretical value calculated from the change in water vapour density gradient from leaf to air. The results suggest the presence of a small and rapidly varying resistance to water vapour loss from the leaf. The magnitude of this additional resistance increased to a maximum value of approximately 1.5 s cm-1 as the magnitude of the temperature change increased to a maximum of approximately 12°C.  相似文献   

12.
Differences in plant resistance to water flow, patterns of water transport through stems, and stomatal behavior were studied on three species native to the exceptionally hot and dry habitat of Death Valley, California (—, and Larrea divaricata). Dawn xylem water potentials in July for Atriplex were — 27.5 bar under natural conditions. Corresponding values for Tidestromia and Larrea were respectively — 8.0 bar and -32.0 bar (natural) and — 7.5 bar and — 18.0 bar (irrigated). Recovery of xylem water potential in covered field plants of an irrigated transplant garden reached a maximum value in July of — 9.5 bar in Atriplex, — 5.7 bar in Tidestromia and — 7.0 bar in Larrea. Resistance to free-energy transfer was used to study resistance to water transport through the plants. Under field conditions irrigated Atriplex plants gave a whole plant resistance of 20.70 × 106 s cm-1, as compared lo 18.37 × 106 s cm-1 for Larrea and 10.01 × 106 s cm-1 for Tidestromia. Plant resistance to water How computed by this method on Atriplex plants grown under laboratory conditions gave a value of 3.73 × 106 s cm-1 at 35C. Paths of water flow in field plants as investigated with injected acid fuchsin indicated a sectorial straight type vessel. The relationship between transpiration rates and xylem water potentials in Atriplex hymenelytra was linear between transpiration 1.28 μg cm-2 s-1 and 2.35 μg cm-2 s-1 at 35°C. These results indicate that according to the Van den Honert model for water transport, plant resistance to water flow remained rather constant at this temperature. In Atriplex grown under laboratory conditions there was an adjustment of plant resistance so change in water flux at 9.5°C and 25°C. When laboratory-grown plants of Atriplex and Tidestromia were subjected to water stress by withholding water. Tidestromia closed stomata and reduced transpiration rates at higher water potentials than in Atriplex. The ratio of vapor pressure gradients of leaf/air to leaf diffusion resistance was proportional lo transpiration rates. It is suggested that Atriplex hymenelytra is a species that combines strong regulation of water loss by stomata with low efficiency of the water transport system. These plants are unable to prevent depression of plant water potential as transpiration increases. On the other hand. Tidestromia oblongifolia has little stomatal regulation of transpiration and a highly efficient water transport system. These plants sustain very high rates of transpiration without significant decrease in plant water potential.  相似文献   

13.
Stomatal control of transpiration from a developing sugarcane canopy   总被引:2,自引:2,他引:0  
Abstract. Stomatal conductance of single leaves and transpiration from an entire sugarcane (Saccharum spp. hybrid) canopy were measured simultaneously using independent techniques. Stomatal and environmental controls of transpiration were assessed at three stages of canopy development, corresponding to leaf area indices (L) of 2.2, 3.6 and 5.6. Leaf and canopy boundary layers impeded transport of transpired water vapour away from the canopy, causing humidity around the leaves to find its own value through local equilibration rather than a value determined by the humidity of the bulk air mass above the canopy. This tended to uncouple transpiration from direct stomatal control, so that transpiration predicted from measurement of stomatal conductance and leaf-to-air vapour pressure differences was increasingly overestimated as the reference point for ambient vapour pressure measurement was moved farther from the leaf and into the bulk air. The partitioning of control between net radiation and stomata was expressed as a dimensionless decoupling coefficent ranging from zero to 1.0. When the stomatal aperture was near its maximum this coefficient was approximately 0.9, indicating that small reductions in stomatal aperture would have had little effect on canopy transpiration. Maximum rates of transpiration were, however, limited by large adjustments in maximum stomatal conductance during canopy development. The product of maximum stomatal conductance and L. a potential total canopy conductance in the absence of boundary layer effects, remained constant as L increased. Similarly, maximum canopy conductance, derived from independent micrometeorological measurements, also remained constant over this period. Calculations indicated that combined leaf and canopy boundary layer conductance decreased with increasing L such that the ratio of boundary layer conductance to maximum stomatal conductance remained nearly constant at approximately 0.5. These observations indicated that stomata adjusted to maintain both transpiration and the degree of stomatal control of transpiration constant as canopy development proceeded.  相似文献   

14.
The response of leaf water potential to change in transpirationrate was examined in young soybean and cotton plants. Leaf waterpotential measured 1 h after transpiration became constant followinga change in humidity and was constant over a wide range of transpirationrates in both species. However, leaf water potential was notin equilibrium with flow until 3 h after transpiration becameconstant. At equilibrium an increase in transpiration alwaysresulted in a decrease in leaf water potential. It was alsofound that different responses of equilbrium leaf water potentialto transpiration rate occurred depending on whether transpirationwas altered by changing humidity, light intensity, or leaf area.Low light and decreased leaf area caused lower leaf water potentialsfor a given transpiration rate. These increases in root resistancecorrelated with lower rates of root elongation. The data indicatethat shoot-root interactions are occurring which affect apparentroot resistance to water flow, and complicate interpretationof whole plant data on leaf water potential and transpirationin terms of the flow dependence of root hydraulic characteristics.  相似文献   

15.
A leaf chamber is described which allows continuous measurementof transpiration from an attached leaf while leaf temperatureis controlled independently of air temperature. Leaf temperaturecan be varied from approximately 3 °C below air temperatureto 12 °C above air temperature while air temperature remainsrelatively constant (±2 °C). Leaf temperature canbe varied rapidly (by up to 12 °C in 30 s) in order to simulatethe rapid, short-term temperature fluctuations to which leavesare frequently exposed in the field. The chamber operates overa wide range of conditions of visible and total radiation, ofair and leaf temperatures, and of ambient carbon dioxide concentrationand water vapour density  相似文献   

16.
At several heights and times of day within a crop of Zea mays, internal leaf diffusion resistance (ri) and external boundary layer diffusion resistance (ra) were evaluated by measuring the temperature of a transpiring and a non-transpiring leaf (simulated by covering both sides of a normal leaf with strips of poly-ethylene tape), and by measuring the immediate air temperature, humidity and windspeed.

Both ra and ri increased with depth into the crop. However, ra generally was less than 10% of ri.

Profiles of latent-heat flux density and source intensity of transpiration showed that transpiration corresponded roughly to foliage distribution (with an upward shift) and were not similar to the profile of radiation absorption.

The data were compared with heat budget data. The 2 approaches yielded quite similar height distributions of transpiration per unit leaf area and total transpiration resistance.

The total crop resistance to transpiration was computed as 0.027 min cm−1. This compares to Monteith's values of 0.017 to 0.040 min cm−1 for beans (Phaseolus vulgaris L.), and Linacre's values of 0.015 to 0.020 min cm−1 for turf.

  相似文献   

17.
During the grain filling period we followed diurnal courses in leaf water potential (ψ1), leaf osmotic potential (ψπ), transpiration (E), leaf conductance to water vapour transfer (g) and microclimatic parameters in field-grown spring barley (Hordeum distichum L. cv. Gunnar). The barley crop was grown on a coarse textured sandy soil at low (50 kg ha−1) or high (200 kg ha−1) levels of potassium applied as KCl. The investigation was undertaken at full irrigation or under drought. Drought was imposed at the beginning of the grain filling period. Leaf conductance and rate of transpiration were higher in the flag leaf than in the leaves of lower insertion. The rate of transpiration of the awns on a dry weight basis was of similar magnitude to that of the flag leaves. On clear days the rate of transpiration of fully watered barley plants was at a high level during most part of the day. The transpiration only decreased at low light intensities. The rate of transpiration was high despite leaf water potentials falling to rather low values due to high evaporative demands. In water stressed plants transpiration decreased and midday depression of transpiration occurred. Normally, daily accumulated transpirational water loss was lower in high K leaves than in low K leaves and generally the bulk water relations of the leaves were more favourable in high K plants than in low K plants. The factorial dependency of the flag leaf conductances on leaf water potential, light intensity, leaf temperature, and leaf-to-air water vapour concentration difference (ΔW) was analysed from a set of field data. From these data, similar sets of microclimatic conditions were classified, and dependencies of leaf conductance on the various environmental parameters were ascertained. The resulting mathematical functions were combined in an empirical simulation model. The results of the model were tested against other sets of measured data. Deviations between measured and predicted leaf conductance occurred at low light intensities. In the flag leaf, water potentials below-1.6 MPa reduced the stomatal apertures and determined the upper limit of leaf conductance. In leaves of lower insertion level conductances were reduced already at higher leaf water potentials. Leaf conductance was increased hyperbolically as photosynthetic active radiation (PAR) increased from darkness to full light. Leaf conductance as a function of leaf temperature followed an optimum curve which in the model was replaced by two linear regression lines intersecting at the optimum temperature of 23.4°C. Increasing leaf-to-air water vapour concentration difference caused a linear decrease in leaf conductance. Leaf conductances became slightly more reduced by lowered water potentials in the low K plants. Stomatal closure in response to a temperature change away from the optimum was more sensitive in high K plants, and also the decrease in leaf conductance under the influence of lowered ambient humidity proceeded with a higher sensitivity in high K plants. Thus, under conditions which favoured high conductances increase of evaporative demand caused an about 10% larger decrease in leaf conductance in the high K plants than in the low K plants. Stomatal sizes and density in the flag leaves differed between low and high K plants. In plants with partially open stomata, leaf conductance, calculated from stomatal pore dimensions, was up to 10% lower in the high K plants than in the low K plants. A similar reduction in leaf conductance in high K plants was measured porometrically. It was concluded that the beneficial effect of K supply on water use efficiency reported in former studies primarily resulted from altered stomatal sizes and densities.  相似文献   

18.
Apparent resistances to water transport in the liquid phase were determined from measurements of soil, root, basal shoot internode, shoot apex, and leaf water potentials and water flux in Vitis vinifera (cv White Riesling) during soil drying. Predawn water potential differences (ΔΨ) in the shoots accounted for 20% of the total ΔΨ between the soil and the shoot apex when plants were well-watered but increased to about 90% when shoot growth ceased. The ΔΨ from soil to root was essentially constant during this period. At low water potential, the ΔΨ in the shoot was persistent when transpiration was low (predawn) or completely prevented (plant bagging). The apparent hydraulic resistance between the basal shoot internode and most rapidly expanding leaf (or shoot apex) increased several-fold when water was withheld. Leaf and internode expansion both exhibited high sensitivity to increasing hydraulic resistance. Measurements of pneumatic resistance to air flow through frozen internode segments indicated progressive vapor-filling of vessels as soil drying progressed. From these observations and others in the literature, it was suggested that embolization may be a common occurrence and play an important role in the inhibition of shoot growth at moderate water deficits.  相似文献   

19.
Ungrafted apple rootstocks were grown in sand cultures at constant root temperatures between 20°C to 40°C. Temperatures of 30°C and above reduced root and shoot growth. Serious damage to the leaves occurred at 35°C and above. The O2 consumption, CO2 evolution and respiratory quotient (RQ) of the roots showed maximum values at 35°C. Different rootstock cultivars varied greatly in their susceptibility to damage by supraoptimal root temperatures apparently due to anaerobic respiration. The more susceptible ones differed from resistant types in the larger amount of ethanol they accumulated in their roots at supraoptimal root temperature, and the more severe reduction in the malic acid content of the roots at such temperature. Acetaldehyde was also found in roots and leaves at supraoptimal root temperatures, whereas the organic acid content of the leaves tended to decrease. Supraoptimal root temperature also caused a reduction of cytokinins in both roots and leaves accompanied by a reduction in the leaf chlorophyll content. This could be prevented by the application of kinetin or benzyladenine to the leaves. In a short experiment a rise in root temperature up to 40°C caused an increase in transpiration and a decrease in the resistance of the leaves to the passage of water vapor, whereas in prolonged experiments transpiration reached a maximum and leaf resistance a minimum at 30°C. The leaf water potential increased also with increasing root temperature. Leaf temperature increased with increasing root temperature, irrespective of increasing or decreasing transpiration rates.  相似文献   

20.
A field study was conducted to determine how atmospheric and edaphic conditions influenced the water relations of avocado trees (Persea americana Mill. cv. Bacon). With high and low levels of incident photosynthetically active radiation (PAR, 400–700 nm wave length), and either wet or dry soil, leaf conductance decreased as the absolute humidity difference from leaf to air increased. For any water stress treatment, conductance was higher at high PAR than at low PAR. Both conductance and transpiration were higher in well-watered trees than in stressed trees, and in prestressed trees levels were intermediate to unstressed and stressed trees. A model for water flux through the soil-plant-atmosphere continuum was used to examine the relationship of leaf xylem pressure potential to transpiration in well-watered trees and in trees stressed by dry soil. There was a close linkage between leaf xylem pressure potential and transpiration in unstressed and previously stressed trees with high or low PAR, i.e. similar potentials occurred with equivalent transpiration regardless of previous treatment or time of day. In stressed trees, xylem pressure potential was lower than in unstressed trees both during the day and night, and at a given transpiration rate the potential was lower after 1400 h than before that time. The model indicated that in stressed trees xylem pressure potential was uncoupled from transpiration, presumably because of altered resistance in the soil-root portion of the transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号