首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione S-transferase (GST) and glutathione reductase (GR) play crucial roles in balancing the production and decomposition of reactive oxygen species (ROS) in living organisms. These enzymes act cooperatively and synergistically to scavenge ROS, as not one of them can singlehandedly clear all forms of ROS. In order to imitate the synergy of the enzymes, we designed and generated a recombinant protein, which comprises of a Schistosoma japonicum GST (SjGST) and a bifunctional 35-mer peptide with SOD and GPX activities. The engineered protein demonstrated SOD, GPX and GST activities simultaneously. This trifunctional enzyme with SOD, GPX and GST activities is expected to be the best ROS scavenger.  相似文献   

2.
Aging is accompanied by increased production of free oxygen radicals and impairment of normal cellular functions. The aim of this work was to provide preliminary data on age-related differences in the activities of antioxidant enzymes and phase II biotransformation enzyme glutathione S-transferase (GST) in a wild population of the Asian clam Corbicula fluminea. The antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), and GST were assessed in visceral mass of four age classes (0+-, 1+-, 2+-, and 3+-year-old) of C. fluminea clams. Age-related changes were seen in antioxidant enzyme status: levels of total SOD (totSOD) (P < 0.05), MnSOD, and CuZnSOD (P < 0.05) activities increased progressively during aging from younger to older clams. Changes in CAT and GR activities with advancing age were found, the levels being the highest in age class II, then being lower in age classes III and IV (P < 0.05). Activities of GPX and GST were lower in the senescent individuals (2+- and 3+-year-old clams) compared with young individuals (0+- and 1+-year-old clams). Overall, the decline of glutathione-dependent enzyme activities, coupled with higher and lower activities of totSOD and CAT, respectively, as the individual grows older, may render the older animals more susceptible to oxidative stress. Data reported here are not intended to be exhaustive since they concern only age/size structure of the population at one locality, so more detailed studies on both the developmental stages and levels of antioxidant enzymes of this new alien species in Serbian rivers are required.  相似文献   

3.
研究了浓度为0、1、5、10、15、20 mg/L的新兴离子液体溴化1-己基-3-甲基咪唑([C6mim]Br)在24h、48h、72h和96h对斜生栅藻还原型谷胱甘肽(GSH)及其代谢酶-谷胱甘肽过氧化物酶(GPX)、谷胱甘肽转硫酶(GST)和谷胱甘肽还原酶(GR)的影响。结果表明:GSH含量在24h、48h和72h时,在最低处理浓度下不变,其他处理浓度下随胁迫浓度增加而降低,96h时则与对照无差异或较小;GPX和GST的活性在72h之前明显升高(最高浓度组的GST活性有波动),96h时均降低至对照水平;GR活性在24h时,[C6mim]Br=1 mg/L时升高,之后降低,在48h增高至对照水平,72h时,[C6mim]Br≥10 mg/L的处理组高于对照水平,96h时,除最低处理组外,均降至对照水平以下。GR是GSH系统中的限速酶,GST则是该系统中活性和灵敏性最高的酶,可作为[C6mim]Br胁迫时的敏感的生物标志物。1 mg/L的[C6mim]Br可引起藻细胞的氧化胁迫,具有环境毒性。  相似文献   

4.
The effect of carbon sources, glucose and sucrose, and nitrogen sources such as ammonia, glutamate andl-citrulline on the activities of glutathione metabolic enzymes has been studied. Yeast and mycelial cells were used to identify changes in activity levels of glutathione reductase (GSSGR), glutathione transferase (GST), glutathione peroxidase (GPX) and -glutamyl transpeptidase (GGT). Enzyme activities from cells grown in sucrose media were lower than in glucose media regardless of the enzyme tested, morphological form, or the growth interval. In all enzymes except GST, activity was higher in yeast form than in mycelia, regardless of nitrogen source, with lower activity from 24 to 72 h than at 96 h. In citrulline media, yeast form showed the maximum GST, GGT, and GPX activity. In ammonia-amended media, mycelia showed maximum activity in GGT, whereas in glutamate media, mycelia showed the maximum activity in GST. Also, the type of nitrogen source had no effect on GPX activity in the mycelial form. Finally, changing the nitrogen source showed no significant effect on GSSGR activity, either in the yeast or mycelial form.  相似文献   

5.
6.
7.
There are several anti-oxidant enzyme families that play pivotal roles in facilitating the survival of parasites. Glutathione transferases (GSTs) are members of the anti-oxidant family that can detoxify a broad range of exogenous or endogenous compounds including reactive oxidative species. GSTs have been studied as vaccine candidates, immunodiagnostic markers and as treatment targets. Helminths of the genus Angiostrongylus live inside arteries of vertebrates and two main species are associated with accidental human infections: Angiostrongylus costaricensis adult worms live inside the mesenteric arteries and larvae of Angiostrongylus cantonensis become trapped in the central nervous system vasculature. Since the interactions between angiostrongylid nematodes and their vertebrate hosts are poorly understood, this study characterized the anti-oxidant enzymatic activities of A. cantonensis from female worms by collecting excreted and secreted (ES) and total extract (TE) molecules. Catalase (CAT) and superoxide dismutase (SOD) activities were found both in the ES and TE while glutathione peroxidase (GPX) and GST were found only in the TE. GSTs were purified by glutathione agarose affinity column (AcGST) and the pool of eluted GSTs was analyzed by mass spectrometry (LC-MS/MS) and de novo sequencing (Masslynx software). Sequences from two peptides (AcGSTpep1 and AcGSTpep2) present high identity to the N-terminal and C-terminal from sigma class GSTs of nematodes. It is known that these GST enzymes are associated with host immune regulation. Furthermore, understanding the role of parasite-derived anti-oxidant molecules is important in understanding host-parasite interactions.  相似文献   

8.
We have previously expressed hexa-histidine-tagged human glutathione transferase GST T1-1 at very high levels in an Escherichia colilacZ mutagenicity assay strain. Ethylene dibromide (EDB), which is activated by GST T1-1, produces a potent response in the mutation assay. We have now constructed and expressed two SNP variants of wild-type GST T1-1:D141N and E173K. The EDB activation activities of both variant enzymes, as measured by the lacZ mutagenicity assay, are greatly reduced The D141N variant behaved similarly to the wild-type enzyme, in terms of expression level and specific activities for conjugation of glutathione with 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP), ethylene diiodide (EDI), and 4-nitrobenzyl chloride (NBCl), and for peroxidative detoxication of cumene hydroperoxide (CuOOH). In contrast, variant E173K is poorly expressed, has no detectable activity with EPNP, NBCl, or CuOOH, and has EDI activity much lower than that of the wild-type enzyme. The circular dichroism (CD) thermal denaturation profiles of the wild-type protein and variant D141N show a sharp two-state transition between native and denatured states. Variant E173K showed a very different profile, consistent with improper or incomplete protein folding. Our results show that SNP variants can give rise to GSTT1-1 proteins with significantly altered properties.  相似文献   

9.
Glutathione peroxidase (GPX) and glutathione S-transferase (GST) are key enzymes of cellular detoxification systems that defend cells against reactive oxygen species (ROS). In this study, we isolated the GPX and GST full-length cDNA and investigated the expression of these mRNAs from livers of olive flounder during salinity changes (35, 17.5, 8.75, 4 and 0 psu) by quantitative PCR (QPCR). GPX cDNA consists of 429 base pairs (bp) and encodes a protein of 142 amino acids. GST cDNA consists of 663 bp and encodes a protein of 220 amino acids. Both of GPX and GST mRNA expressions were the highest in 4 psu and then decreased in 0 psu. Also, the levels of Na(+) and Cl(-) decreased, and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) increased during the experimental period. These findings provide molecular characterization of GPX and GST in olive flounder and suggest that GPX and GST play important roles in detoxification of ROS, thereby these maybe indicators of oxidative stress responses by salinity changes in olive flounder.  相似文献   

10.
This study aimed to estimate reactive oxygen species (ROS) production, antioxidants activity, and biomarkers level of oxidative damage to protein and DNA in the cerebrospinal fluid (CSF) of C57BL/6 mice infected with Angiostrongylus cantonensis. The mean ROS concentration in the CSF of infected mice increased gradually, and the increase in ROS in CSF became statistical significance at days 12-30 post-infection compared to that before infection (< 0.001), and then ROS returned to normal level at day 45 after infection. In parallel with the increase in ROS in the CSF, infected mice showed similar of changes in reduced glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx), and glutathione S-transferase (GST) as that in ROS in the CSF. GSH, GR, GPx, and GST in the CSF of infected mice were all significantly higher than they were before infection during days 12-30 post-infection. However, protein carbonyl content and 8-hydroxy-2′-deoxyguanosine, biomarkers of oxidative damage to protein and DNA, respectively, were also significantly higher in the CSF of infected mice during this period. These results suggest that oxidative stress occur in the cells of central nervous system of mice infected with A. cantonensis during days 12-30 after infection due to ROS overproduction in CSF despite the increase in antioxidants during this period.  相似文献   

11.
Evolution of a probable 'glutathione-binding ancestor' resulting in a common thioredoxin-fold for glutathione S-transferases and glutathione peroxidases may possibly suggest that a glutathione S-transferase could be engineered into a selenium-containing glutathione S-transferase (seleno-GST), having glutathione peroxidase (GPX) activity. Here, we addressed this question by production of such protein. In order to obtain a recombinant seleno-GST produced in Escherichia coli, we introduced a variant bacterial-type selenocysteine insertion sequence (SECIS) element which afforded substitution with selenocysteine for the catalytic Tyr residue in the active site of GST from Schistosoma japonica. Utilizing coexpression with the bacterial selA, selB, and selC genes (encoding selenocysteine synthase, SelB, and tRNA(Sec), respectively) the yield of recombinant seleno-GST was about 2.9 mg/L bacterial culture, concomitant with formation of approximately 85% truncation product as a result of termination of translation at the selenocysteine-encoding UGA codon. The mutations inferred as a result of the introduction of a SECIS element did not affect the glutathione-binding capacity (Km = 53 microM for glutathione as compared to 63 microM for the wild-type enzyme) nor the GST activity (kcat = 14.3 s(-1) vs. 16.6 s(-1)), provided that the catalytic Tyr residue was intact. When this residue was changed to selenocysteine, however, the resulting seleno-GST lost the GST activity. It also failed to display any novel GPX activity towards three standard peroxide substrates (hydrogen peroxide, butyl hydroperoxide or cumene hydroperoxide). These results show that recombinant selenoproteins with internal selenocysteine residues may be heterologously produced in E. coli at sufficient amounts for purification. We also conclude that introduction of a selenocysteine residue into the catalytic site of a glutathione S-transferase is not sufficient to induce GPX activity in spite of a maintained glutathione-binding capacity.  相似文献   

12.
Antiretroviral protease inhibitors significantly potentiated the sensitivity of chloroquine-resistant malaria parasites to the antimalarial drug in vitro and in vivo. Ritonavir was found to be potent in potentiating CQ antimalarial activities in both -resistant and -sensitive lines. The mechanism by which the APIs modulate the CQ resistance in malaria parasites was further investigated. CQ-resistant parasites showed increased intracellular glutathione levels in comparison with the CQ-sensitive parasites. Treatment with APIs significantly reduced the levels of GSH and glutathione S-transferase activities in CQ-resistant parasites. Ritonavir also decreased glutathione reductase activities and glutathione peroxidase activities in CQ-resistant parasite line. Taken together, these results demonstrate that parasite GSH and GST may play an important role in CQ resistance and APIs are able to enhance the sensitivity of CQ-resistant malaria parasite to the drug by influencing the levels of GSH and the activities of the related enzymes.  相似文献   

13.
The present study was conducted to evaluate the protective effects of vitamin E and selenium (Se) application on alteration of antioxidant enzyme activities against cigarette smoking induced oxidative damage in brains, kidneys and liver of mice. Male mice (balb/c) were exposed to cigarette smoke and treated with Se and/or vitamin E. Glutathione transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GRX), superoxide dismutase (SOD) and catalase (CAT) enzyme activities in mice brain, kidney and liver were measured spectrophotometrically. GST, GPX, GRX, SOD and CAT enzyme activities in the brains of smoke-exposed mice were found lower than the enzymes activities of control mice and Se-and vitamin E-treated mice at the end of the three and five months. Opposite to brain, enzyme activities in kidneys and livers of smoke-exposed mice were found higher than the enzymes activities of control mice and Se-and vitamin E-treated mice at the end of the three and five months. Activities of GST, GPX, GRX SOD and CAT in the livers, kidneys and brains of smoke-exposed mice were found statistically different (p < 0.01) compared to control mice and Se-and vitamin E-treated mice. Combined application of vitamin E and Se had an additive protective effect against changing enzymes activities in smoke-exposed mice livers, kidneys and brains at the end of the both application periods. These results suggest that cigarette smoke exposure enhances the oxidative stress, thereby disturbing the tissue antioxidant defense system and combined application of vitamin E and Se protects the brain, kidney and liver from oxidative damage through their antioxidant potential.  相似文献   

14.
15.
Invasive species represent a risk to natural ecosystems and a biodiversity hazard. The present work aims to determine the antioxidant enzyme response – superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), the phase II detoxifying enzyme – glutathione S-transferase (GST) – and markers of oxidative damage – thioredoxin reductase (TR) and malondialdehyde (MDA) – in gills and digestive gland of Pinna nobilis and to study the antioxidant response effects in the bivalve colonised by the invasive macroalgae Lophocladia lallemandii. Colonised specimens were collected in a control area without L. lallemandii and another area completely colonised by L. lallemandii. All enzyme activities were found to be present in gills and digestive gland, with some tissue differences. CAT and SOD activities were higher in gills than digestive gland, whereas GST activity and MDA levels were higher in digestive gland. The presence of L. lallemandii induced a significant increase in the activities of antioxidant enzymes in both gills and digestive gland, except for CAT activity in gills. GST and TR activities were also increased in both tissues, as well as the MDA concentration. We can conclude that the presence of L. lallemandii colonising P. nobilis induces a biological stress and oxidative damage to the fan mussel.  相似文献   

16.
Research in our laboratory has focused on the analysis of the functions of a variety of enzymes that are involved in the scavenging of reactive oxygen intermediates (ROI) such as superoxide radicals (·O 2 ) and hydrogen peroxide (H2O2). Recent work has been on transgenic plants that over-express glutathione S-transferases (GST) that also have glutathione peroxidase activity. Transgenic tobacco plants that contain gene constructs that encode two different tobacco GST’s had elevated levels of both GST and GPX activity. Analysis of mature vegetative transgenic tobacco plants that over-express GST/GPX failed to show any increase in paraquat tolerance or protection from photooxidative stress. However, seeds of these GST/GPX-expressing tobacco lines are capable of more rapid germination and seedling growth at low temperatures and at elevated salt concentrations. Reduced levels of lipid peroxidation were noted in GST/GPX-expressing seedling compared to control seedlings under both stressful and non-stressful conditions. In addition, GST/GPX-expressing seedlings significantly accumulated more oxidized glutathione (GSSG) than control seedlings during stress. These characteristics clearly indicate that over-expression of GST/GPX in transgenic seedlings can have substantial effects on their stress tolerance. Furthermore, it appears that this effect is due primarily to the elevated levels of GPX activity.  相似文献   

17.
镉对长江华溪蟹肝胰腺抗氧化酶活力的影响   总被引:9,自引:0,他引:9  
闫博  王兰  李涌泉  刘娜  王茜 《动物学报》2007,53(6):1121-1128
重金属对环境的污染已成为全球面临的首要问题之一,其中镉(Cd2 )是一种广泛存在的毒性污染物,能通过消化道和呼吸道进入生物体,对机体造成损伤(Zyadah and Abdel-Baky,2000)。研究表明,Cd2 可以通过Ca2 通道穿过细胞膜进入机体(Roesijadi and Robinson,1994),诱导产生大量自由基和活性氧(ROS),从而形成氧胁迫(Toppi andGabbrielli,1994;Hegedus et al.,2001)。ROS可以与体内脂质、蛋白质和核酸反应,导致脂质过氧化、细胞膜损伤并且影响多种酶的活力,对生物体造成威胁。由于在水生生态系统中生物富集污染物的作用明显,故相对于陆地生…  相似文献   

18.
The effects of a standardized extract of Ginkgo biloba L. leaves (EGb) and its terpene constituents, bilobalide and ginkgolides, on the activities of detoxification enzymes, i.e., glutathione S-transferases (GSTs) and DT-diaphorase, and glutathione contents, were investigated in the mouse liver. Oral treatment with EGb (100-1,000 mg/kg) and bilobalide (10-30 mg/kg) once a day for 4 days caused a dose-dependent elevation in GST activity. Ginkgolide A (30 mg/kg, for 4 days) also significantly elevated GST activity, whereas ginkgolide B and ginkgolide C at the same dose had no effects. EGb significantly increased the protein level of GST pi, and bilobalide significantly increased those of GST alpha and GST mu Moreover, EGb-treatment and bilobalide-treatment caused significant elevations in DT-diaphorase activity and in hepatic glutathione contents.  相似文献   

19.
Yu T  Li YS  Chen XF  Hu J  Chang X  Zhu YG 《Journal of plant physiology》2003,160(11):1305-1311
A GST (EC 2.5.1.18) gene (Gst-cr 1) from cotton was introduced into Nicotiana tabacum by Agrobacterium tumefaciens-mediated transformation. Transgenic tobacco plants overexpressing Gst-cr1 were normal in growth and mature compared with control, but had much higher levels of GST and GPx activities and showed an enhanced resistance to oxidative stress induced by a low concentration of methyl viologen (MV). Six antioxidant enzymes, glutathione S-transferase, glutathione peroxidase (EC 1.11.1.9), superoxide dismutase (EC 1.15.1.1), peroxidase (EC 1.11.1.7), catalase (EC 1.11.1.6), and ascorbate peroxidase (EC 1.11.1.11) were monitored in transgenic lines and non-transgenic control during MV treatments. When they were treated with 0.03 mmol/L of MV, both transgenic lines and control showed a rapid increase in the activities of GST, GPx, SOD, POD, APx, while the activity of CAT seemed to be irregular. The percent of the increase in SOD and POD activities was much higher in control than in transgenic plants. When treated with 0.05 mmol/L of MV, both control and transgenic plants were severely damaged, and the activities of the six enzymes decreased sharply.  相似文献   

20.
Burak Kaptaner 《Cytotechnology》2016,68(4):1577-1583
The present study was conducted to determine cytotoxic effects of 4-octylphenol (4-OP) on primary cultured hepatocytes of pearl mullet (Alburnus tarichi). Lactate dehydrogenase (LDH) release, malondialdehyde (MDA) level, antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST)] and glutathione (GSH) content were measured after 24-h exposure to 4-OP. 4-OP caused dose- and time-dependent increases in LDH release. Significant induction of MDA level and decrease in GSH content were found. SOD and GPx activities were decreased while GST activity was increased. These findings suggest that 4-OP leads to cytotoxicity by depressing antioxidant defenses in fish hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号