首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 906 毫秒
1.
玉米幼苗地上部/根间氮的循环及其基因型差异   总被引:8,自引:0,他引:8  
以两个玉米(ZeamaysL.)自交系原引1号(YY1)和综31(Z31)为研究材料,采用盆栽土培的培养方法,在正常供氮(HN,0.15gN/kg干土)和低氮量供应(LN,0.038gN/kg干土)培养条件下对玉米幼苗植株体内氮的循环量及其在地上部/根间的分配量进行了定量地测定、计算。结果表明,在玉米幼苗地上部/根间氮的循环量很高。低氮量供应使玉米幼苗植株吸氮量下降,根中氮的分配比例增加,同时地上部/根间氮的循环量也随之减少。与氮低效自交系Z31相比,氮高效自交系YY1幼苗中地上部/根间的氮循环量大、氮向根的分配量高,因而有利于其根系的生长,表现为根/地上部之比和总根长较高。这可能有利于其中后期对氮素的高效吸收与利用。  相似文献   

2.
安慧  上官周平 《生态学报》2009,29(11):6017-6024
采用植物生长箱溶液培养方式,对白三叶幼苗进行了不同光强(2个水平)和氮浓度(5个水平)处理,探讨其生长、生物量和光合生理特征对生境变化的响应.结果表明:两种光强下白三叶幼苗茎和叶生物量随氮素浓度呈先升高后降低,而根系生物量和根冠比则随氮素浓度增高而降低.光照强度降低使白三叶幼苗根、茎、叶和整株生物量分别降低67.8%、29.9%、42.5%和45.2%;低光处理使幼苗的根冠比显著下降,而比叶面积(SLA)明显提高.幼苗根系体积随氮素浓度增高而降低,高生长光强根系体积显著高于低生长光强下的白三叶.幼苗根系表面积、根系长度和根系直径随氮素浓度增加呈先增加后降低趋势,两种不同生长光强下幼苗根系长度和根系直径差异显著,而根系表面积差异不明显.白三叶叶片光合速率(Pn)随氮素浓度增加呈先增加后降低趋势,高生长光强白三叶Pn显著高于低生长光强下的白三叶.两种生长光强间叶片气孔导度(Gs),胞间CO2浓度(Ci)和蒸腾速率(Tr)无显著差异,但氮素浓度对叶片Gs、Ci和Tr均有显著影响.光、氮及其交互作用对白三叶幼苗生长发育产生了显著影响,光照不足和氮缺乏都将导致白三叶幼苗生长减弱,但幼苗对这些不利环境具有较强的调节和适应能力.  相似文献   

3.
玉米幼苗地下部/根间氮的循环及其基因型差异   总被引:6,自引:0,他引:6  
以两个玉米(Zea mays L.)自交系原引1号(YY1)和综31(Z31)为研究材料,采用盆裁土培的培养方法,在正常供氮(HN,K0.15gN/kg干土)和低氮量供应(ON,0.038gN/kg干土)培养条件下对玉米幼苗植株体内氮的循环量及其他在地上部/根间的分配量进行了定量地测定、计算。结果表明,在玉米幼苗地上部/根间氮的循环量很高。低氮量供应使玉米幼苗植株吸氮量下降,根中氮的分配比例增加,同时地上部/根间氮的循环量也随之减少。与氮低效自交系Z31相比,氮高效自交系YY1幼苗中地上部/根间的氮循环量大、氮向根的分配量高,因而有利于其根系的生长,表现为根/地上部之比和部根长较高。这可能有利于其中后期对氮素的高效吸收与利用。  相似文献   

4.
麦棉套作复合根系群体对棉株氮素吸收与分配的影响   总被引:2,自引:1,他引:1  
在盆栽麦棉套作条件下,于2003~2004年设置麦棉自然根系(麦棉根系和肥水均可相互通过)、麦棉纱网隔根(肥水可相互通过,麦棉根系不能相互通过)和麦棉塑膜隔根(麦棉根系和肥水均不能相互通过)3种麦棉根系处理,运用小麦叶片15N富积标记法和15N同位素稀释法,研究麦棉复合根系群体对棉花氮素吸收与分配的影响.结果表明,在麦棉套作群体中,既存在麦棉共处期小麦对棉花根区氮素的竞争,又存在小麦根区及其所吸收氮素向棉花的转移.棉花根系吸收的15N肥料大多分配到地上部,根系分配的量较少,且麦棉自然根系处理地上部的15N标记肥料氮的吸收率(NUR)最大,纱网隔根处理次之,塑膜隔根处理最少.在麦棉共处期,麦棉自然根系处理棉花的植株从15N标记肥料中吸收的氮占其全氮的百分率(Ndff)和NUR均低于隔根处理.至棉花初花期(小麦已收获,秸秆原位埋入土壤中),麦棉自然根系处理棉花吸收的氮素主要来源于化学肥料而非秸秆降解物.棉株不同器官所分配的15N标记肥料比例不同,棉花生殖器官中15N含量明显高于其他器官.麦棉自然根系处理棉株生物量也高于隔根处理.  相似文献   

5.
氮添加对二年生三七生长、光合特性及皂苷含量的影响   总被引:1,自引:0,他引:1  
为探究氮素对药用植物三七[Panax notoginseng (Burkill) F. H. Chen]生长、光合特性及皂苷含量的影响,从而为氮肥合理施用提供理论依据,通过盆栽试验,研究不同氮添加水平(低氮0 kg·hm~(-2),LN;中氮225 kg·hm~(-2),MN;高氮450 kg·hm~(-2),HN)对二年生三七叶片解剖结构、根系形态特征、生物量、光合效率及皂苷含量的影响。结果表明:三七叶片的上表皮厚度、下表皮厚度、栅栏组织厚度和海绵组织厚度在HN水平下最大,总根长、主根长、根系表面积、须根数、须根长、根长密度、根质比、根冠比和比叶面积在LN水平下最大,MN水平根系活力显著高于其他氮素水平(P0.05);光响应和CO_2响应过程中,MN处理的净光合速率、最大光合速率、羧化速率、最大电子传递速率和最大羧化速率均显著高于其他处理(P0.05);单位叶面积氮含量、叶绿素含量和叶氮在光合组织中的分配量在HN处理下最大;光合氮素利用率在LN水平下最高,根部总氮含量在MN处理下最高;三七根的皂苷含量在HN处理下最低。缺氮和高氮均不利于三七生长,光合效率均降低,缺氮下的叶片变薄和高氮下的叶片增厚均能抑制CO_2的扩散;缺氮条件下,需产生更多保护自身生存的皂苷类防御物质;氮富余条件下,C/N比减少,则削弱皂苷的生物合成。  相似文献   

6.
洪丕征  刘世荣  王晖  于浩龙 《生态学报》2016,36(14):4485-4495
采用盆栽试验和韧皮部环割方法研究了碳水化合物供应、氮素形态及其交互作用对红椎幼苗叶片光合特性的影响。无机氮源采用硝酸铵(AN)、铵态氮(NH_4~+-N)、硝态氮(NO_3~--N),有机氮源采用尿素(Urea)、精氨酸(Arg)和甘氨酸(Gly),氮素施用量均为10g N/m~2,处理时间为10 d。研究结果表明,环割、氮素形态及其交互作用均显著影响了红椎幼苗叶片的净光合速率(Pn);单一环割处理显著降低了红椎幼苗叶片Pn、气孔导度(Gs)、胞间CO_2浓度(Ci)、蒸腾速率(Tr)、相对叶绿素含量和CO2利用效率(CUE),但显著提高了叶片水分利用效率(WUE)和气孔限制值(Ls),其叶片Pn降低主要是由气孔限制和叶绿素含量降低所导致的。正常条件下,所有氮素形态处理均显著降低了红椎幼苗叶片的Pn、Gs、Ci和Tr,但显著升高了叶片Ls和WUE,其叶片Pn降低的主要原因是供氮过高引起的叶片气孔限制。正常条件下,除Arg处理外,其他氮素形态均显著升高了红椎幼苗叶片的CUE,其中以Gly处理的促进作用最大。环割条件下,3种有机态氮素的添加均显著缓解了单一环割处理对红椎幼苗叶片Pn的抑制作用,尤其以精氨酸最为明显,供应精氨酸的叶片Pn值从单一环割处理的强烈抑制中恢复到了对照水平,而无机态氮的供应均未显著改变这种抑制。结果表明短期碳水化合物供应的阻断会显著抑制红椎幼苗叶片的光合能力,适量供应精氨酸、甘氨酸和尿素等有机态氮会有效缓解这种抑制作用,其中以精氨酸的作用最为明显。  相似文献   

7.
在大田控制条件下,以植物叶片气体交换和叶绿素荧光测定相结合的方法,研究抗旱性不同品种冬小麦拔节期叶片的光合电子传递及激发能利用分配对氮素响应的结果表明,施氮可提高抗旱性不同品种小麦叶片天线色素吸收光能的能力,虽然氮素不能改变激发能在光合碳还原(PCR)和光合碳氧化(PCO)之间的分配比例,但可提高PSⅡ总电子传递速率(JF)和Pn。低氮下不同品种小麦叶片的热耗散比例有差异,但中高氛下叶片之间无显著差异。旱地品种的鼻值随氮素水平的提高而先增加后下降,而水地品种则表现为持续升高:2个小麦品种的叶片J0值随氮素水平的提高而呈持续升高的变化趋势。氮素对叶片PSⅡ反应中心活性有影响.而不同抗旱性品种之间亦有差别,说明施氮可改善小麦叶片热耗散和光化学反应对激发能的竞争关系,从而增强光合机构的自我保护能力。  相似文献   

8.
薛亮  马忠明  杜少平 《生态学杂志》2017,28(6):1909-1916
通过裂区设计田间试验,主区为2种栽培方式(嫁接栽培和自根栽培),副区为4个施氮水平(0、120、240、360 kg N·hm-2),研究了栽培方式和施氮量对甜瓜产量和品质、氮素运移和分配,以及氮素利用率的影响.结果表明: 嫁接栽培的甜瓜商品瓜产量较自根甜瓜提高了7.3%,可溶性固形物含量降低了0.16%~3.28%;生长前期嫁接栽培甜瓜氮素累积量较自根栽培低,结果后嫁接栽培氮素累积量显著升高,收获时植株氮素累积量较自根栽培增加了5.2%,果实中的氮素累积量提高了10.3%;嫁接栽培植株氮素向果实的转移量较自根栽培提高了20.9%,嫁接栽培果实中的氮素分配率在80%以上,自根栽培的分配率在80%以下;在同一施氮水平下,嫁接栽培的甜瓜氮素吸收利用率较自根栽培提高了1.3%~4.2%,氮素农学效率提高了2.73~5.56 kg·kg-1,氮素生理利用率提高了7.39~16.18 kg·kg-1;从商品瓜产量、氮素吸收量和氮素利用率综合考虑,施氮量240 kg·hm-2为本区域嫁接甜瓜较适宜的氮素用量.  相似文献   

9.
赵明  武鹏  何海旺  龙芳  莫天利  黄相  邹瑜 《广西植物》2022,42(11):1892-1900
为探究氮素亏缺及亏缺后补偿供氮对蕉苗生长及其根系形态特征的影响,该研究以主要栽培品种基因组类型(AAA型和ABB型)的香蕉品种为材料,通过石英砂基质培养结合氮素亏缺与补偿处理,分析其株高、叶长、叶宽、新增绿叶数、地上部和根系的鲜重和干物质质量、根长和根表面积及根体积等指标的变化。结果表明:(1)亏缺30 d,香蕉苗呈现明显的缺氮表型症状,株高、叶长、叶宽及新增绿叶数均显著降低,根系干物质积累增加,品种Ⅰ、Ⅱ根系干物质分别提高64.71%、87.50%,根冠比增加,总根表面积分别增加4.38%、11.85%,体积分别增加71.78%、66.55%。(2)亏缺68 d,干物质积累受到明显抑制,品种Ⅰ、Ⅱ全株干物质质量降低33.74%、42.04%,根系干物质质量与常规处理无显著差异,根系形态参数变化趋势与轻度亏缺一致。(3)亏缺后补偿供氮,缺氮症状消失,植株生长指标恢复正常水平; 品种Ⅰ、Ⅱ根系干物质质量显著增加51.22%、52.38%,根冠比显著高于常规处理,根系趋向正常形态生长,并且总根体积分别增加61.80%、45.92%; 轻度氮素亏缺后适时补偿供氮,缺氮蕉苗可恢复正常生长,根系干物质质量及体积显著高于常规处理且幼苗的长势更好。综上认为,生产中可以综合利用亏缺胁迫后补偿供氮的方式来培育香蕉苗,以利于其在田间栽培的生长。  相似文献   

10.
依托FACE(Free-air CO2 enrichment)研究平台,利用特制分根集气生长箱,采用静态箱-GC(Gas chromatography)法,连续两年研究了大气CO2浓度升高和不同氮肥水平对冬小麦拔节期、孕穗抽穗期和灌浆末期的根系呼吸及生物量的影响。两季结果表明,CO2浓度升高和高氮肥量均不同程度地增加了3个阶段的地上部和地下部的生物量,这有利于增加根茬的还田量;CO2浓度升高对冬小麦不同生长阶段的根系呼吸影响不同,在拔节期影响较小;孕穗抽穗期显著增加了根系呼吸,2004~2005季分别增加33.8%(148.1mg N·kg^-1干土,HN)和43.9%(88.9mg N·kg^-1干土,LN),2005~2006季分别为23.8%(HN)和28.9%(LN);而灌浆末期显著降低了根系呼吸,2004~2005季分别降低31.4%(HN)和23.3%(LN),2005~2006季分别为25.1%(HN)和18.5%(LN);高施氮量比低施氮量促进了根系呼吸;随着作物生长根系呼吸与地下生物量呈显著线性负相关,高CO2环境中的R^2变小,表明随着作物生长发育高CO2浓度降低了作物根系呼吸与地下部生物量积累间的相关性。  相似文献   

11.
Measurements of the deposition rates of atmospheric trace constituents to forest ecosystems in Austria have shown that the deposition of plant utilizable nitrogen compounds is in the range from 12 kg N to more than 30 kg N ha-1 a-1. Locally, even higher deposition rates are encountered as a consequence of point sources or special deposition mechanisms such as fog interception, hoar frost formation, and accumulation in snow drifts. In order to place these values into perspective, they are compared with the nitrogen demand of past and present forest land use and with natural processes of nitrogen depletion and accumulation in forest ecosystems. During wind erosion of forest litter, woody material with a wide C/N-ratio remains on the windward side of ridges, while nutrient-rich material with a narrow C/N-ratio is deposited on the leeward side. As a result, total nitrogen storage in the forest soil as well as overall C/N-ratios change dramatically along a transect over a ridge, thus indicating a strong influence of litter C/N ratio on nitrogen retention in the forest soil. A study of nitrogen stores in the soil of beech ecosystems of the same yield class in the Vienna Woods showed a significant correlation of total N-content with base saturation. These results suggest that nitrogen storage capacity of forest soils may be managed by liming and tree species selection. As knowledge is still meagre, a special study on factors which determine nitrogen storage in forest soils is proposed within the FERN-programme.  相似文献   

12.
Yield of nitrogen from minimally disturbed watersheds of the United States   总被引:13,自引:8,他引:5  
Watersheds of the US Geological Survey's Hydrologic Benchmark Network program were used in estimating annual yield of total nitrogen and nitrogen fractions (ammonium, nitrate, dissolved organic N, particulate N) in relation to amount of runoff, elevation, and watershed area. Only watersheds minimally disturbed with respect to the nitrogen cycle were used in the analysis (mostly natural vegetation cover, no point sources of N, atmospheric deposition of inorganic N < 10 kg ha–1 y–1). Statistical analysis of the yields of total nitrogen and nitrogen fractions showed that elevation and watershed area bear no significant relationship to nitrogen yield for these watersheds. The yields of total nitrogen and nitrogen fractions are, however, strongly related to runoff (r 2 = 0.91 for total N). Annual yield increases as runoff increases, but at a rate lower than runoff; annual discharge-weighted mean concentrations decline as annual runoff increases. Yields of total nitrogen and most nitrogen fractions bear a relationship to runoff that is nearly indistinguishable from a relationship that was documented previously for minimally disturbed watersheds of the American tropics. Overall, the results suggest strong interlatitudinal convergence of yields and percent fractionation for nitrogen in relation to runoff.  相似文献   

13.
Atmospheric organic nitrogen (ON) appears to be a ubiquitous but poorly understood component of the atmospheric nitrogen deposition flux. Here, we focus on the ON components that dominate deposition and do not consider reactive atmospheric gases containing ON such as peroxyacyl nitrates that are important in atmospheric nitrogen transport, but are probably not particularly important in deposition. We first review the approaches to the analysis and characterization of atmospheric ON. We then briefly summarize the available data on the concentrations of ON in both aerosols and rainwater from around the world, and the limited information available on its chemical characterization. This evidence clearly shows that atmospheric aerosol and rainwater ON is a complex mixture of material from multiple sources. This synthesis of available information is then used to try and identify some of the important sources of this material, in particular, if it is of predominantly natural or anthropogenic origin. Finally, we suggest that the flux of ON is about 25 per cent of the total nitrogen deposition flux.  相似文献   

14.
We examined the importance of nitrogen inputs from groundwater and runoff in a small coastal marine cove on Cape Cod, MA, USA. We evaluated groundwater inputs by three different methods: a water budget, assuming discharge equals recharge; direct measurements of discharge using bell jars; and a budget of water and salt at the mouth of the Cove over several tidal cycles. The lowest estimates were obtained by using a water budget and the highest estimates were obtained using a budget of water and salt at the Cove mouth. Overall there was more than a five fold difference in the freshwater inputs calculated by using these methods. Nitrogen in groundwater appears to be largely derived from on site septic systems. Average nitrate concentrations were highest in the region where building density was greatest. Nitrate in groundwater appeared to behave conservatively in sandy sediments where groundwater flow rates were high (> 11/m2/h), indicating that denitrification was not substantially reducing external nitrogen loading to the Cove. Nitrogen inputs from groundwater were approximately 300 mmol-N/m3/y of Cove water. Road runoff contributed an additional 60 mmol/m3/y. Total nitrogen inputs from groundwater and road runoff to this cove were similar in magnitude to river dominated estuaries in urbanized areas in the United States.  相似文献   

15.
Jenkinson  D. S. 《Plant and Soil》2001,228(1):3-15
The 6 billion people alive today consume about 25 million tonnes of protein nitrogen each year, a requirement that could well increase to 40–45 million tonnes by 2050. Most of them ultimately depend on the Haber-Bosch process to fix the atmospheric N2 needed to grow at least part of their protein and, over the earth as a whole, this dependency is likely to increase. Humans now fix some 160 million tonnes of nitrogen per year, of which 98 are fixed industrially by the Haber-Bosch process (83 for use as agricultural fertilizer, 15 for industry), 22 during combustion and the rest is fixed during the cultivation of leguminous crops and fodders. These 160 million tonnes have markedly increased the burden of combined nitrogen entering rivers, lakes and shallow seas, as well as increasing the input of NH3, N2O, NO and NO2 to the atmosphere. Nitrogen fertilizers give large economic gains in modern farming systems and under favourable conditions can be used very efficiently. Losses of nitrogen occur from all systems of agriculture, with organic manures being particularly difficult to use efficiently. Although nitrate leaching has received much attention as an economic loss, a cause of eutrophication and a health hazard, gaseous emissions may eventually prove to be the most serious environmentally. Scientists working on the use and fate of nitrogen fertilizers must be careful, clear headed and vigilant in looking for unexpected side effects.  相似文献   

16.
Field and greenhouse experiments were conducted to assess the nitrogen fixation rates of four cultivars of common bean (Phaseolus vulgaris L.) at different growth stages. The 15N isotope dilution technique was used to quantify biological nitrogen fixation. In the greenhouse, cultivars M4403 and Kallmet accumulated 301 and 189 mg N plant–1, respectively, up to 63 days after planting (DAP) of which 57 and 43% was derived from atmosphere. Under field conditions, cultivars Bayocel and Flor de Mayo RMC accumulated in 77 DAP, 147 and 135 kg N ha–1, respectively, of which approximately one-half was derived from the atmosphere. The rates of N2 fixation determined at different growth stages increased as the plants developed, and reached a maximum during the reproductive stage both under field and greenhouse conditions. Differences in translocation of N were observed between the cultivars tested, particularly under field conditions. Thus, the fixed N harvest index was 93 and 60 for cultivars Flor de Mayo and Bayocel, respectively. In early stages of growth, the total content of ureides in the plants correlated with the N fixation rates. The findings reported in the present paper can be used to build a strategy for enhancing biological N2 fixation in common bean.  相似文献   

17.
Warren  G. P.  Whitehead  D. C. 《Plant and Soil》1988,112(2):155-165
The available N of 27 soils from England and Wales was assessed from the amounts of N taken up over a 6-month period by perennial ryegrass grown in pots under uniform environmental conditions. Relationships between availability and the distribution of soil N amongst various fractions were then examined using multiple regression. The relationship: available soil N (mg kg–1 dry soil)=(Nmin×0.672)+(Ninc×0.840)+(Nmom×0.227)–5.12 was found to account for 91% of the variance in available soil N, where Nmin=mineral N, Ninc=N mineralized on incubation and Nmom=N in macro-organic matter. The N mineralized on incubation appeared to be derived largely from sources other than the macro-organic matter because these two fractions were poorly correlated. When availability was expressed in terms of available organic N as % of soil organic N (Nao) the closest relationship with other soil characteristics was: Nao=[Ninc×(1.395–0.0347×CNmom]+[Nmom×0.1416], where CNmom=CN ratio of the macro-organic matter. This relationship accounted for 81% of the variance in the availability of the soil organic N.The conclusion that the macro-organic matter may contribute substantially to the available N was confirmed by a subsidiary experiment in which the macro-organic fraction was separated from about 20 kg of a grassland soil. The uptake of N by ryegrass was then assessed on two subsamples of this soil, one without the macro-organic matter and the other with this fraction returned: uptake was appreciably increased by the macro-organic matter.  相似文献   

18.
Mechanisms of plant species impacts on ecosystem nitrogen cycling   总被引:16,自引:0,他引:16  
Plant species are hypothesized to impact ecosystem nitrogen cycling in two distinctly different ways. First, differences in nitrogen use efficiency can lead to positive feedbacks on the rate of nitrogen cycling. Alternatively, plant species can also control the inputs and losses of nitrogen from ecosystems. Our current understanding of litter decomposition shows that most nitrogen present within litter is not released during decomposition but incorporated into soil organic matter. This nitrogen retention is caused by an increase in the relative nitrogen content in decomposing litter and a much lower carbon‐to‐nitrogen ratio of soil organic matter. The long time lag between plant litter formation and the actual release of nitrogen from the litter results in a bottleneck, which prevents feedbacks of plant quality differences on nitrogen cycling. Instead, rates of gross nitrogen mineralization, which are often an order of magnitude higher than net mineralization, indicate that nitrogen cycling within ecosystems is dominated by a microbial nitrogen loop. Nitrogen is released from the soil organic matter and incorporated into microbial biomass. Upon their death, the nitrogen is again incorporated into the soil organic matter. However, this microbial nitrogen loop is driven by plant‐supplied carbon and provides a strong negative feedback through nitrogen cycling on plant productivity. Evidence supporting this hypothesis is strong for temperate grassland ecosystems. For other terrestrial ecosystems, such as forests, tropical and boreal regions, the data are much more limited. Thus, current evidence does not support the view that differences in the efficiency of plant nitrogen use lead to positive feedbacks. In contrast, soil microbes are the dominant factor structuring ecosystem nitrogen cycling. Soil microbes derive nitrogen from the decomposition of soil organic matter, but this microbial activity is driven by recent plant carbon inputs. Changes in plant carbon inputs, resulting from plant species shifts, lead to a negative feedback through microbial nitrogen immobilization. In contrast, there is abundant evidence that plant species impact nitrogen inputs and losses, such as: atmospheric deposition, fire‐induced losses, nitrogen leaching, and nitrogen fixation, which is driven by carbon supply from plants to nitrogen fixers. Additionally, plants can influence the activity and composition of soil microbial communities, which has the potential to lead to differences in nitrification, denitrification and trace nitrogen gas losses. Plant species also impact herbivore behaviour and thereby have the potential to lead to animal‐facilitated movement of nitrogen between ecosystems. Thus, current evidence supports the view that plant species can have large impacts on ecosystem nitrogen cycling. However, species impacts are not caused by differences in plant quantity and quality, but by plant species impacts on nitrogen inputs and losses.  相似文献   

19.
The contribution of small mammals to nitrogen cycling could have repercussions for the producer community in the maintaining or perhaps magnifying of nitrogen availability. Our objective was to model nitrogen outputs (deposition of feces and urine) of small mammals in an old-field ecosystem and estimate the amount of fecal and urinary nitrogen deposited annually. To address this objective, we used models from laboratory studies and combined these with data from field studies to estimate dietary nitrogen and monthly and annual nitrogen outputs from fecal and urine deposition of five rodent species. The models accounted for monthly fluctuations in density and biomass of small-mammal populations. We estimated that the minimal amount of nitrogen deposited by rodents was 1.0 (0.9–1.1) and 2.7 (2.6–2.9) kg Nha−1 year−1 from feces and urine, respectively, for a total contribution of 3.7 (3.5–4.0) kg Nha−1 year−1. Hispid cotton rats (Sigmodon hispidus) accounted for >75% of the total nitrogen output by small mammals. Our estimates of annual fecal and urinary nitrogen deposited by rodents were comparable to nitrogen deposits by larger herbivores and other nitrogen fluxes in grassland ecosystems and should be considered when assessing the potential effects of herbivory on terrestrial nitrogen cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号